1,318 research outputs found

    Cooperative Game-theoretic Approach to Load Balancing in Smart Grids with Community Energy Storage

    Get PDF
    In this paper, we propose a model for households to share energy from community energy storage (CES) such that both households and utility company benefit from CES. In addition to providing a range of ancillary grid services, CES can also be used for demand side management, to shave peaks and fill valleys in system load. We introduce a method stemming from consumer theory and cooperative game theory that uses CES to balance the load of an entire locality and manage household energy allocations respectively. Load balancing is derived as a geometric programming problem. Each household’s contribution to overall non-uniformity of the load profile is modeled using a characteristic function and Shapley values are used to allocate the amount and price of surplus energy stored in CES. The proposed method is able to perfectly balance the load while also making sure that each household is guaranteed a reduction in energy costs.Peer reviewe

    Integrating Energy Storage into the Smart Grid: A Prospect Theoretic Approach

    Full text link
    In this paper, the interactions and energy exchange decisions of a number of geographically distributed storage units are studied under decision-making involving end-users. In particular, a noncooperative game is formulated between customer-owned storage units where each storage unit's owner can decide on whether to charge or discharge energy with a given probability so as to maximize a utility that reflects the tradeoff between the monetary transactions from charging/discharging and the penalty from power regulation. Unlike existing game-theoretic works which assume that players make their decisions rationally and objectively, we use the new framework of prospect theory (PT) to explicitly incorporate the users' subjective perceptions of their expected utilities. For the two-player game, we show the existence of a proper mixed Nash equilibrium for both the standard game-theoretic case and the case with PT considerations. Simulation results show that incorporating user behavior via PT reveals several important insights into load management as well as economics of energy storage usage. For instance, the results show that deviations from conventional game theory, as predicted by PT, can lead to undesirable grid loads and revenues thus requiring the power company to revisit its pricing schemes and the customers to reassess their energy storage usage choices.Comment: 5 pages, 4 figures, conferenc

    A Classification Scheme for Local Energy Trading

    Get PDF
    The current trend towards more renewable and sustainable energy generation leads to an increased interest in new energy management systems and the concept of a smart grid. One important aspect of this is local energy trading, which is an extension of existing electricity markets by including prosumers, who are consumers also producing electricity. Prosumers having a surplus of energy may directly trade this surplus with other prosumers, which are currently in demand. In this paper, we present an overview of the literature in the area of local energy trading. In order to provide structure to the broad range of publications, we identify key characteristics, define the various settings, and cluster the considered literature along these characteristics. We identify three main research lines, each with a distinct setting and research question. We analyze and compare the settings, the used techniques, and the results and findings within each cluster and derive connections between the clusters. In addition, we identify important aspects, which up to now have to a large extent been neglected in the considered literature and highlight interesting research directions, and open problems for future work.Comment: 38 pages, 1 figure, This work has been submitted and accepted at OR Spectru

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    Recent advances in local energy trading in the smart grid based on game-theoretic approaches

    Get PDF

    State-Of-The-Art and Prospects for Peer-To-Peer Transaction-Based Energy System

    Get PDF
    Transaction-based energy (TE) management and control has become an increasingly relevant topic, attracting considerable attention from industry and the research community alike. As a result, new techniques are emerging for its development and actualization. This paper presents a comprehensive review of TE involving peer-to-peer (P2P) energy trading and also covering the concept, enabling technologies, frameworks, active research efforts and the prospects of TE. The formulation of a common approach for TE management modelling is challenging given the diversity of circumstances of prosumers in terms of capacity, profiles and objectives. This has resulted in divergent opinions in the literature. The idea of this paper is therefore to explore these viewpoints and provide some perspectives on this burgeoning topic on P2P TE systems. This study identified that most of the techniques in the literature exclusively formulate energy trade problems as a game, an optimization problem or a variational inequality problem. It was also observed that none of the existing works has considered a unified messaging framework. This is a potential area for further investigation
    • …
    corecore