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Recent Advances in Local Energy Trading in the
Smart Grid Based on Game–Theoretic Approaches

Matthias Pilz, Student Member, and Luluwah Al-Fagih

Abstract—The global move towards efficient energy consump-
tion and production has led to remarkable advancements in the
design of the smart grid infrastructure. Local energy trading is
one way forward. It typically refers to the transfer of energy
from an entity of the smart grid surplus energy to one with a
deficit.

In this paper, we present a detailed review of the recent
advances in the application of game–theoretic methods to local
energy trading scenarios. An extensive description of a complete
game theory-based energy trading framework is presented. It
includes a taxonomy of the methods and an introduction to
the smart grid architecture with a focus on renewable energy
generation and energy storage. Finally, we present a critical
evaluation of the current shortcomings and identify areas for
future research.

Index Terms—Game Theory, Energy Trading, Smart Grid,
Renewable Energy, Energy Storage

I. INTRODUCTION

IN recent times, there have been substantial efforts to reduce
energy consumption, with many countries committing to

combat climate change by adopting the 2015 Paris Agree-
ment [1]. Restricting green house gas emissions is critical
for limiting the global average temperature increase to the
Paris target of 1.5 degrees Celsius above pre-industrial levels.
The rise in electricity demand [2] along with efforts to limit
global warming, pose a serious and complex problem. One
part of the solution is the implementation of the smart power
grid [3], i.e. a technologically advanced, decentralised version
of the current power grid. It includes two-way communication
and energy transfer which in turn allow for innovation and
efficiency gains. Furthermore, the idea of microgrids (MGs)
comes into life. An MG describes a locally distributed collec-
tion of electricity sources and smart–users, e.g. a neighbour-
hood or a village that is itself connected to a bigger macrogrid.

Key elements of the smart grid are distributed energy stor-
age and the integration of renewable energy (RE) resources.
The persistent trend of price reduction for solar panels, i.e.
Swanson’s law [4], inspires to expect many more homes to
be equipped with their own small-scale power plant in the
future. To extract most value from them, there is a need for
a thorough understanding of this technology. Fortunately, the
introduction of smart meters means that a lot more data can
be accessed to achieve this goal. Suitable models are needed
to utilise this data and make energy usage more efficient. In
particular local energy trading among or within multiple MGs
yields promising perspectives, as we point out in this paper.
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The term energy trading has been historically used to refer
to the buying and selling of energy, e.g. electricity and gas, in
the wholesale markets such as the European Energy Exchange.
It traditionally takes place between producers, retailers and
traders as well as large industrial users. More recently, the use
of the term energy trading was extended by Saad et al. in [5]
to refer to the ‘local’ transfer of energy between users within
a smart grid. Since then, an array of literature has adopted
this new definition (cf. [6]–[9] and [10] for a comprehensive
review of energy trading in the smart grid). In such a scenario,
it is usually assumed that the demand could also be satisfied
from the macrogrid, but at a higher cost. The task is to
find optimal strategies for each entity such that a reductions
of energy costs is realised. Additionally, this brings several
technical advantages. Firstly, the inherent local usage of energy
in such a system results in better power quality, i.e. less voltage
fluctuations, and even more directly in less line loss [10].
Secondly, the system is more reliable, as it is safe from outages
of the macrogrid.

A commonly used approach to tackle the energy trading
problem is based on single objective optimisation [11]–[13].
It uses a centralised approach, where an independent controller
is in charge of solving the optimisation problem. The solution
is the amount of energy to be traded such that generation
and transportation costs are minimised. This stands in contrast
to the idea of a decentralised power grid. Indeed, a trading
model needs to evaluate the behaviour of all participants
and incorporates their individual preferences. As the actions
of one influences all the others, Game Theory (GT) is a
suitable method to choose. GT is a branch of mathematics
that deals with the analysis of competitive situations, where
the outcome of one participant does not only depend on their
own strategy but also on the strategies of the others. It was first
introduced for problems in economics [14], but is nowadays
applied in many areas, such as biology [15]–[17] and computer
science [18]. The game–theoretic approach internalises the
decentralised structure of the smart grid.

The use of game–theoretic methods for the smart grid in
general can been seen in [19]–[29], and has been extensively
reviewed in [30] (and [31]). In this paper, we review the recent
advances in the use of game–theoretic approaches for the smart
grid specifically within the local energy trading framework as
introduced in the recent literature.

This work is intended to be a standalone reference for the
reader and thus provides an introduction to the game–theoretic
principles used in the smart grid energy trading literature as
well as a brief overview of the main features of the smart
grid. In summary, the main contributions of this paper are as
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follows:
(i) a focussed taxonomy of non-cooperative games allowing

for a clear classification of the papers under review. We
introduce four characteristics that will later allow us to
classify the respective games.

(ii) a comprehensive brief of the smart grid architecture
that underlies the trading activities, with a focus on RE
generation and energy storage.

(iii) a detailed review of recent advances in ‘local’ energy
trading using game–theoretic methods.

The paper is structured as follows: Section II focusses on
a taxonomy of GT tailored to the concepts that are relevant
for the reviewed trading scenarios. Section III comprises three
parts: a smart grid architecture overview, RE generation, and
energy storage. The key contributions of the latest literature is
reviewed in Section IV. We conclude with a critical evaluation
of the current shortcomings.

Please note that in order to increase the outreach of this
work, we omit all formulas and instead use only words to
present the ideas and concepts behind the game–theoretic
approach.

II. GAME THEORY TAXONOMY

In this section, a brief overview of the vast field of GT is
presented, focussing on concepts relevant to energy trading in
the smart grid. For more insight into GT, suitable references
are provided where appropriate

At the most abstract level, one can classify games into direct
and indirect games. Direct GT aims to find optimal strategies
for players (cf. [14]), while indirect GT is concerned with
designing games such that certain outcomes will be achieved
by rational players (cf. [32]). As the latter has not played a
major role in energy trading to this point in time, we focus
our attention on direct games. In particular, non-cooperative
games with selfish players, i.e. games in which each player is
only concerned about their own outcome.

To the best of our knowledge, a generally accepted char-
acterisation of games cannot be found currently, as many
properties overlap in their classification. In order to intro-
duce a consistent framework, we propose to talk about the
‘mode of playing’ and the ‘information’ each player possesses
(cf. Fig. 1), which in turn leads to four key properties:
Frequency, chronology, awareness, and knowledge. There are
other criteria, e.g. ‘value’ or symmetry of games [14], but
the ones discussed here are sufficient to cover the important
aspects for our review.

(i) Frequency of play: Here, we differentiate between games
that are played once and games that are played repeatedly. The
repetition of a game with the same opponent usually results in
different behaviours, as the players have to consider the impact
of their actions on the opponent for the next round. The utility
function, i.e. the outcome for each player, for such games is
usually a (weighted) average over the payoffs of each round.
The closely related topic of learning in games is discussed
in [32].

(ii) Chronology of play: This refers to either simultaneous
or sequential games (cf. Fig. 1). In a sequential game players

sequential simultaneous once repeated 

mode of  

playing 

chronology frequency 

imperfect  perfect incomplete complete 

information 

of players awareness knowledge 

Fig. 1. Taxonomy of non-cooperative games split into ‘mode of playing’ and
‘information of players’.

move in turns and eventually reach the end of the game where
the outcome is defined by a utility function. Moreover, in each
turn players might have different actions available. In contrast,
players of simultaneous games do not have the ability to react
to their opponent. They choose their actions at the same time.
This is why they are also called ‘one-shot’ or ‘static’ games.

Note that there is an important difference between a re-
peated static game and a sequential game. Whereas the utility
function can be evaluated after each round of a repeated game,
it can only be evaluated once at the end of a sequential
game. An important class of sequential games are Stackelberg
games [33]. They originated within an economic application
where an established company and a startup compete for
market share. The sequential nature is expressed by the burden
(or chance) of the bigger company to move first, while the
startup can react to the respective decision. More generally, the
game exhibits a leader-follower structure. In the energy context
we will see a dominant application of this structure, where the
seller(s) takes the role of the leader, while the buyer(s) act as
followers.

Von Neumann [34] pointed out that one could model a
simultaneous game as a sequential game with players being
unaware of the other player’s move. His idea leads to the next
classifier.

(iii) Awareness of players: In the literature, one usually
refers to perfect and imperfect information. The game of chess
serves as a good example of a perfect information game. At
every stage of the game, each player knows exactly about
the history and in principle (though intractable [35]) about all
future moves and their respective outcomes. In an imperfect
information game the situation is different. If a player has
imperfect information it means they are not aware of the move
that has been played before, yet they still know about the
general structure of the game, all the utility values, and all
possible actions.

(iv) Knowledge of players: The previous example showed a
complete (but imperfect) information game. If the knowledge
of a player is incomplete, they might not know about the
payoffs, strategies, or structure of the game. Such a game is
referred to as Bayesian game. The beliefs of a player about
the information of their opponents is decoded in their ‘type’
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Fig. 2. Abstract representation of the envisioned smart grid architecture.
Based on decentralisation, two way communication, and energy transfer, a
layered structure from the macrogrid on the top to an individual smart home
at the bottom is shown. Around central unit A, a collection of multiple MGs
that are able to exchange energy among each other and communicate through
a central unit is shown. Zooming into it, the structure within an MG is
shown, highlighting the fact that it consists not only of smart homes but
also RE generation and medium scale storage facilities. Similar to the layer
above it, a central unit manages the direct exchange of energy between the
entities. Another zoom in shows the smart home which possesses a smart
meter allowing it to communicate with its individual RE generation, energy
storage system, and various household appliances.

(cf. [36], [37]).

III. SMART GRID ARCHITECTURE

A smarter power grid structure is needed to cope with
the ever increasing demand while reducing greenhouse gas
emissions. Within the current structure, energy is sent from
a central large power station to substations. The substations
distribute the energy to low voltage subgrids. A failure at a
substation could lead to a wide area outage. This is a direct

result from the centralised architecture of the grid. The new
generation of power grids thus aims for decentralisation. The
smart architecture comprises many (almost) self-sustaining
MGs that locally produce their own energy. The one-way
communication and transmission links are replaced by two-
way processes. Key elements for self-sustained operation and
a green future are (i) RE generation and (ii) suitable energy
storage systems.

Fig. 2 gives an overview of a smart power grid as envisioned
in parts by the authors of the papers under review in Sec-
tion IV. Its inherent decentralised structure is best understood
by looking at it from the bottom to the top. The bottom
panel is an abstract representation of how a household of
the future, i.e. a smart home, might look like. Through its
own RE generation and energy storage system, it is able to
function independently from the macrogrid. All the appliances
are continuously monitored by a ‘smart meter’ which also
serves as the communication link to the macro/micro grid.

As shown in Fig. 2, a set of these smart homes together
with generation and storage of energy comprises an MG. The
notion of MGs is not uniquely defined within the literature.
A definition from the US. Department of Energy Microgrid
Exchange Group reads as follows [38]:

A microgrid is a group of interconnected loads and
distributed energy resources within clearly defined
electrical boundaries that acts as a single controllable
entity with respect to the grid. A microgrid can
connect and disconnect from the grid to enable it
to operate in both grid-connected or island-mode.

For privacy reasons, all the communication and organisation
of energy transfers is managed by an independent central
operator. Nevertheless, smart homes are still able to transfer
energy between each other and the storage facilities directly.
In many scenarios we review in Section IV, the energy trading
algorithms are implemented and executed through the operator.

Similar to within an MG, the communication between
multiple MGs is managed by a central unit (cf. Fig. 2), while
energy transfer is possible directly between them. Energy
from the utility companies is fed in through the macrostation
which connects to the macrogrid via high voltage, long
distance power lines.

Future generation of RE on the smart home– and MG–
level will rely heavily on wind and photovoltaic (PV) tech-
nologies [3]. Following their nature, they are usually referred
to as variable RE resources. To make them work reliably
and efficiently, there are several technical and economical
challenges as outlined below.

The variability and uncertainty can be seen in the fact that
solar output changes rapidly with the appearance of clouds,
or that on average, a wind farm produces 40 per cent of
the time of the year, making it very hard to predict the
hourly output [39]. Another challenge is to balance supply
and demand in scarcity and surplus situations. For solar power
the highest production rates are achieved during the day
which might not coincide with the demand of the respective
household. Solutions to these problems are mainly based on
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better forecasting (e.g. [40], [41]) and demand-side response
(e.g. [6], [39]).

The load-balancing problem is mainly approached from
two different sides: Demand-response systems and energy
storage. The utilisation of an energy storage system allows the
user to save surplus energy for times of low production. Aside
from the technical difficulties, there are also economical
challenges that come with the integration of RE generation.
Most critical are capital-intensive grid upgrades. For instance,
new offshore wind farms require new power lines and
additional rooftop PVs might accelerate fatigue of existing
components. Solutions range from dynamic line rating [39]
to better load-forecasting [42] and grid scale energy storage
systems.

Energy storage systems do not only help to balance the op-
eration with diurnal RE generation but also make fast reacting,
high-emitting peak power plants obsolete [43]. Moreover, they
contribute to an overall improvement of chain efficiency and
smoothing of frequency and voltage fluctuations [10]. Eventu-
ally, this would result in a more reliable and secure network.
One kind of energy storage system is called electricity energy
storage. It converts electricity into another form of energy
and then restores electricity back from it. A comprehensive
overview over this subclass of storage and others can be
found in [43]. Connecting these storage technologies to the
layered grid structure in the context of community based
storage, many different types are in use. In contrast, smart
home storage is almost completely based on electrochemical
energy storage. In particular lithium-ion batteries are widely
employed, as they are insensitive to temperature, have long
lifetimes, need little maintenance, and can be produced to
store enough energy to run a household for one or two days
completely independently [44].

IV. GAME THEORY FOR ENERGY TRADING

In this section, we review the latest achievements of game–
theoretic approaches in local energy trading. Table I gives
an overview of characteristics of the games employed by the
respective research groups, based on our taxonomy in Sec. II.
A comparison of the approaches and results is delivered in the
final subsection.

A. Reviews

In 2011, Saad et al. [5] investigated a futuristic scenario for
that time: they considered groups of plug-in hybrid electric
vehicles (PHEVs) that are able to sell their stored energy back
to the main grid. A group consists of 500 to 1000 individual
PHEVs with a surplus of energy of more than half their total
capacity. One could more generally identify each group as an
MG.

Each group acts as a single player of a non-cooperative
game and decides on a strategy corresponding to the amount
of energy that it is willing to trade. The utility function
incorporates the trading and reservation prices, the amount of
energy to sell, and a term that summarises costs for discharging

TABLE I
GAME–THEORETIC CONCEPTS USED IN THE REVIEWED PAPERS
ACCORDING TO THE TAXONOMY ESTABLISHED IN SECTION II
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[5] 3 3 3 3

[45] 3 3 3 3

[46]a 3 3 3 3

[46]b 3 3 3 3

[47] 3 3 3 3

[48] 3 3 3 3

[49] 3 3 3 3

[50] 3 3 3 3

[51] 3 3 3 3

[52] 3 3 3 3

[53] 3 3 3 3

the batteries. By means of a double auction1, the players are
incentivised to truthfully reveal their reservation price.

The game is solved iteratively: starting with an initial
strategy of selling all the surplus energy, the sellers take turns
replying with their respective best response to the current
strategy played by all the other participants. During these
steps, the energy company serves as the auctioneer directing
the communications (cf. central unit A in Fig. 2). It is shown
that the proposed algorithm on average converges to an
equilibrium in a reasonable amount of iterations. Compared
against a greedy algorithm, in which each seller tries to sell
as much energy as possible, the average utility of a group of
PHEVs is higher using the game–theoretic approach.

The idea of using electric vehicles as the future electricity
storage units that can also take you from A to B, is con-
sidered in the paper by Kim et al. [45]. They design a non-
cooperative scheduling game for the battery where the users
decide between charging the battery, using stored energy for
their appliances, or selling stored energy back to the grid. All
this is set up in an environment of multiple customers that
are connected to an aggregator, which is itself connected to
the macrogrid. Participants will declare their expected demand
for the following day to the aggregator, allowing it to organise
the distribution. The fact that they deal with electric vehicles
instead of stationary batteries is modelled within a constraint
that denotes times of the day where it can be neither charged
nor discharged.

Since the aggregator is interested in making a profit on its
own, a tiered billing function is implemented that charges
a higher price for heavy users, i.e. users that demand more
energy than average. This can also be seen as a measure of
fairness, as otherwise these heavy users would drive up the
price for all the other users. The need for such a pricing
mechanism is justified, because the model is applied to a
mixture of residential and industrial customers.

1The authors of [5] explain how the auction is realised and detail the
properties that lead to a strategy-proof mechanism.
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Another consideration to safeguard the aggregator is the
incorporation of uncertainty. Whether talking about the
uncertainty of weather conditions or the rightfulness of the
declared behaviour of the participants, it will eventually
lead to uncertainty in the demand. It is assumed that these
variations can be bounded by the aggregator based on
historical knowledge. Ensuing from the worst-case scenario
leads to the analysis of a robust game. Tests show that this
increases the social welfare more than twice. More generally,
they show that the trading ability improves the social welfare
outcome.

Soliman et al. [46] consider energy storage in the context
of scheduling and reducing the peak-to-average-ratio of the
demand. They start by designing a smart energy cost function
under the conditions that: (i) it is an increasing, strictly convex
function, (ii) it pays users to sell energy, and (iii) the price
for buying from the utility company is always higher than
selling the same amount of energy. These restrictions lead to
a stable system with a unique optimum. In order to formulate
a scheduling problem, shiftable and non-shiftable appliances
are taken as a starting point. Furthermore, it is assumed that
the total load of each consumer at a certain time interval of the
following day is described by the sum of external power that
is bought from the grid, internal power from their own storage
device, and an amount that is used to charge their batteries.

Starting from this initial setup, two different games are
proposed. In the first one – a static non-cooperative game –
the utility sets a cost function that is valid for the following
day and the consumers play a ‘scheduling-game’ searching for
a strategy that will minimize their respective costs. As users
are allowed to sell energy back to the grid, this runs into the
phenomenon of a ‘reverse peak’, which happens when users
buy extra energy at times of low costs and sell it during peak
hours. The second game provides a solution to overcome this
problem by making the utility company a participant of the
game. It can then adjust the prices in response to the schedules
proposed by the consumers. This is a typical leader-follower
structure that defines the Stackelberg game (see section II).

A strong result of this paper is the formal proof that
the Stackelberg equilibrium is equivalent to the solution
that minimises the peak-to-average-ratio. Moreover, their
simulations provide evidence that: (i) scheduling with storage
always outperforms scheduling without storage in terms of
peak-to-average-ratio and cost, (ii) in a scenario with selling
back only the total amount of storage matters, and (iii)
the consumption profile for the Stackelberg case is almost
perfectly flat.

Tushar et al. [47] look at a situation in which a central
power station cannot cope with the high demand at a certain
point in time and thus buys the needed energy from what
they call energy consumers. These energy consumers are
represented by electric vehicles, RE farms, and smart homes,
i.e. different grid participants that possess energy storage
devices and a communication link to the central power
station. Instead of optimizing each individuals’ utility, the
authors describe a non-cooperative Stackelberg game that opts

to achieve a social optimal solution. With this they assure
that each player can benefit from participating in the energy
trading, implementing a pricing model where the unit energy
price might differ for different energy consumers. The model
rewards a higher unit energy price to consumers that can
only provide small amounts of surplus energy compared to
participants with large surpluses. The authors use an iterative
algorithm to minimise the costs for the central power station
and simultaneously maximise the sum of the utility functions
of the energy consumers. The results show that after 1000
independent simulation runs, the algorithm converges quickly
and reliably. Comparisons to a standard feed-in tariff scheme
show improvement on average utility per consumer and
reduced costs for the power station.

Lee et al. [48] study the trading of energy among MGs,
where the MGs do not directly trade with each other but
rather try to sell surplus energy to the market or buy required
energy from it. This is similar to the architecture described in
Section III, where the MGs are only able to communicate with
a central unit, which serves as a mediator between the MGs,
and between the MGs and the macrogrid. It is assumed that
sellers might want to keep parts of their superfluous energy for
later time periods, while buyers may buy even more energy
than needed, possibly for later trading.

In the multileader-multifollower Stackelberg game pro-
posed, the sellers act as leaders and the buyers act as followers.
The specific utility functions for both groups are set up in a
way that achieves a certain level of fairness. This means, the
surplus energy offered by the sellers is allocated to all the
buyers proportionally to their bids, and the payment from the
buyers to the sellers is proportional to their sales volume. Due
to the specific definition of the sellers’ utility, a convenient
simplification of the analysis arises. It turns out that the payoff
for each seller depends only on their own strategy and the
decision of the buyers. As a result, one only needs to run an
optimisation algorithm to maximise the sellers’ utility given
the buyer’s strategies.

The equilibrium solution for the non-cooperative game
among the buyers is given in closed-form and only depends
on the selling price and the number of players. A neat
and reasonable result for the sum of the utility functions
of both the leaders and followers, respectively, is shown.
Due to the increasing competition between the buyers, the
value monotonically decreases when the number of buyers
increases. At the same time, the sum of the utility values for
the sellers increases, because more costumers allow them to
sell more.

The focus of [49] lies on a more local scenario of energy
trading, i.e between individual households. To this end, a
neighbourhood of up to 50 users is modelled, dividing the
consumers into sellers and buyers. In their scenario the sellers
have the freedom to specify the price for which they want to
sell surplus energy as long as it is smaller than the energy price
from the main grid. The buyers will play a non-cooperative
game in which they decide on how much energy to buy from
which seller. To point out the local character of this trading, the
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utility function favours transactions with sellers that are close,
i.e. with fewer power line hops between buyer and seller.

Similar to the examples in [5], [46], [47] the solution to
the game is achieved by an iterative procedure during which
buyers exchange best replies to each others’ strategies until
nobody wants to deviate any more. On the one hand, the clear
advantage is that there is no need for a centralised operator
managing the transactions. On the other hand, this method
might raise privacy concerns among the users as they need to
reveal their information to all the other participants.

For testing the game results, the authors also describe a
centralised optimisation model which minimises the total
system bill. The comparison between the methods shows that
even though the buyers in the game try to minimise their
individual energy bill, none of them achieves a lower bill
than in the centralised optimisation. Furthermore, it is shown
that the iterative algorithm converges fairly fast.

In [50], another Stackelberg seller-buyer structure among
MGs, similar to the ones in [48], [53], is employed. In order
to make the model more expressive the authors extend this
structure to a Bayesian-Stackelberg game, where each player
has private information about his current state. As explained
in Section II, this knowledge together with beliefs about other
players states is summarised in the ‘type’ of the player. Here
each player is either one of normal or abnormal type. The
abnormal type represents an emergency state where sellers are
less keen to sell energy and value stored energy higher. For
buyers this emergency state means, that they are willing to
bid more money to guarantee the reception of the requested
energy.

In addition to the communication with the market (cf.
[48], [53]), a second channel of communication is introduced
between individual MGs. It models a social network among the
them, where a weighting variable is used to express the social
relation between the respective entities. A close relationship
means that the information communicated is trusted and vice-
versa. Mathematically the conditional probability distribution
over the state of another player is computed in a two stage
process. First, the MG estimates the state based on this players
broadcasted messages. Second, it updates this estimate using
information it obtained from close ‘friends’ in the network,
i.e. their beliefs about the respective player.

Within their model, they are able to simulate the effect
of trust between the MGs. In particular they show that only
partially trusting the messages of others in the social network,
will potentially increase their outcome. As a conclusion they
argue that this will improve the power quality, but have yet
to show this in future work.

Park et al. [51] make use of MG structure shown in Fig.2.
The difference here is that the central unit is not only respon-
sible for the communication but also serves as a gatherer and
distributor of the energy that is traded among the MGs. For
that reason it is assumed to have a rather large storage capacity,
sufficient to store all surplus energy of the MGs that produced
more energy than needed in a specified time frame.

Unlike all the other papers reviewed in this section, there is

no pricing scheme proposed to pay the sellers. By providing
energy to the system the respective MG collects points that
increases its contribution value. If it runs into a shortage of
energy itself at a later time, a high contribution value will allow
it to take a bigger chunk of the energy provided by others at
that time. All this is organised by the central distributor, whose
goal is to maximise a social welfare function.

As this distribution mechanism is known to every consumer,
the non-cooperative game they play deals with the question
of how much energy to request. Directly proportional to
this amount and inversely proportional to their individual
contribution value, each consumer will be assigned a number
in a queue2, i.e. they have to find a strategy in which they
are served early enough while minimising the amount of
energy necessary to require from the main grid. If not enough
surplus energy is available during the specified time frame,
MGs at the end of the queue might not receive any energy
through this sharing mechanism. A nice property of the
Nash equilibrium for this case is that even if participants
deviate from it, the others will not be influenced negatively.
This is shown analytically as well as numerically. Moreover,
the run time of the algorithm is short, allowing practical
implementation.

Rahi et al. [52] investigate a scenario in which there is
a probability of an emergency happening. During such an
emergency the utility company buys a predefined amount of
energy from the existing MGs at a much higher than the
usual price per energy unit. The non-cooperative Bayesian
game captures the decisions of the MGs whether to sell their
excess energy (from local production) at the current price or
store the energy with the possibility of selling it during an
emergency with higher profits. Similar to the sellers in [48],
[53], the action set of each MG comprises of the proportion of
excess energy to be sold. They make use of the Bayesian game
structure (cf. Section II) to model the lack of knowledge of
an individual MG about the amount of excess energy of other
MGs. Thus the type of each player is continuous.

For the scenario with two MGs, Rahi et al.found an analytic
solution of the game. There are four equilibria in total, that
depend on the beliefs of each player about how much they
might be able to sell in case of an emergency. They compare
these results with an extended model that changes the
utility functions according to prospect theory. This theory is
employed to represent typical behaviour in decision making
under risk and by this diverts from the assumption of rational
players. The solution for this model is obtained through a
best–response iteration. It shows deviations of up to ten per
cent compared to the first model.

Similar to the research in [48], the architecture shown in
[53] comprises a number of MGs that are connected with
the market/aggregator through which they are enabled to
trade excess energy. For security reasons, all communications
are organised through the central independent operating unit.

2Please note that this is a simplification of the actual mechanism. See [51]
for the full description of the distribution mechanism.
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Viewed from the perspective of any of the MGs, this leads
to an incomplete information game, as nobody knows about
the strategies and payoffs of the others. More specifically, the
authors divide the MGs into sellers and buyers, and design
a two stage Stackelberg game in which each of these groups
tries to find their best actions by means of a reinforcement
learning algorithm. The same distribution and paying prin-
ciples as in [48] based on proportionality are applied. This
means there are two utility functions, one for each of the
groups of buyers and sellers. Even without explicit knowledge
of the strategies of the other participants, it is shown that
the learning algorithm converges to a best reply which is
equivalent to the solution of the corresponding optimisation
problem for the sellers and buyers, respectively. The tradeoff
for the increased privacy is the slower convergence of the
iterative scheme. In comparison to the iterative solutions found
in [46], [47] it takes approximately 100 times more iterations
until convergence. Nevertheless, in a standard test case [54],
the algorithm converges to the Nash equilibrium, or at least
to the closest best response for scenarios where the Nash
equilibrium is not part of the action set.

B. Comparisons

The literature reviewed in this paper features various simi-
larities and differences.

Firstly, we want to look at the trading capabilities that are
modelled in the different games. Whereas in [5], [47], [52] the
players only consider the possibility to sell energy to the grid,
[45], [46], [48]–[51], [53] incorporate two types of players,
i.e. sellers and buyers. In many of these cases [45], [46],
[48], [51] the selling and buying is done in what we call
an indirect fashion. This refers to models in which energy
is not exchanged between the individual participants of the
game, but rather through an independent third party/operator.
In [50], [53] a third party is only involved to secure the
communication between the trading partners, while the energy
is directly transferred between them. The only paper within
this review that studies a completely decentralised scenario
is [49].

Secondly, we want to look at more specific game–theoretic
differences and similarities. The utility function for each
of the respective games is the main feature to consider in
this case. Almost all utility functions relate to the monetary
cost of energy and hence a pricing component is defined.
In all cases considered, higher loads result in higher prices
(in agreement with the costs for power generation [10]).
In 2013, Kim et al. [45] make use of a quadratic relation.
Soliman et al. [46] extend this notion by means of a loga-
rithmic expression that behaves in a similar manner to the
quadratic relation for positive loads, but also gives more
reasonable prices for negative loads, i.e. selling back to the
grid. Since then, the tendency has been going towards linear
pricing functions as utilised by the authors of [48]–[50], [53].

Choosing the right utility function can also serve as an
opportunity to model the incentives of the players. In addition
to the component containing a price function, the utility
functions can also include other components to help reflect

a more realistic scenario. Saad et al. [5] incorporate the
costs for storing energy. The costs for transmission of energy
between trading partners are included in the utility function
by Yaagoubi et al. [49]. A combination of these additional
costs together with a penalty for insufficient amounts of traded
energy is represented in Tushar et al.’s utility function [47].
Lee et al. and Wang et al. [48], [50], [53] value the energy
that is kept in the seller’s own storage. Disparate from all of
these utility functions is one given by Park et al. [51], where
a contribution-based energy allocation algorithm is used such
that no pricing function is needed. Here, the utility function
depends on the ratio between allocated energy and requested
energy.

Given the differences in the expressions for the outcomes of
the respective players, different goals are pursued in each of
these games. The influence of the number of buyers and sellers
on the system costs is investigated in [48], [49]. The authors
of [47], [51], [53] are mainly concerned with validating and
testing the algorithm developed in their respective papers.
This is sensible as they propose the most blue-sky approaches
with ‘reinforcement learning’ and ‘contribution-based’ energy
trading. Kim et al. and Soliman et al. [45], [46] are concerned
with the influence of different types of users. In [45], different
capabilities of battery storage systems are examined. Addition-
ally, the authors look at the influence of uncertainty and how
this leads to a more robust model. Similarly, the question of
whether it is beneficial to allow consumers to sell their surplus
energy back to the grid or not, is studied in [46].

The results of most of these studies, i.e. the solutions of
their respective games, are obtained in one of two ways.
While the authors of [5], [46], [47], [49], [50] make use
the best–response iterative approach (cf. [32]), [48], [51],
[52] derive analytical solutions for their models. Only [45],
[53] apply more elaborate numerical algorithms. In partic-
ular Kim et al. [45] use a steepest descent approach, while
Wang et al. [53] employ a ‘learning automaton’. On average
the games have around 14 players. This number seems rather
low, but has to be seen under the light of two facts: (i) small
models are sufficient for studies that want to give proof of
concepts, and (ii) the complexity of such games has to be
suitable for real-time computation in realistic scenarios.

V. CONCLUSION

In Section IV, we reviewed state of the art concepts for
energy trading using game–theoretic methods. The results
show considerable progress has already been made, however
many gaps remain thus giving rise to interesting research
questions.

Arguably, the biggest gap stems from the usage of data.
In many of the scenarios shown, customers are classified as
sellers or buyers, based on whether they have a surplus of
energy or not. There are barely any models that combine a high
quality analysis of demand data with that of RE generation
in the context of energy trading. As already highlighted in
Section III, it is exactly the uncertain and variable nature of
RE that can cause problems and thus they must be considered
more rigorously. Bayesian games provide the mathematical
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framework for incorporating uncertainties. Within the notion
of types of players, one should be able to model uncertain-
ties in demand as well as generation. However, only little
work has been done in this direction at this point in time
(see e.g. [55]). Furthermore, there is a lack of long term,
quantitative propositions, opposing the merely one-day ahead
analyses in most works on energy trading. With this, one could
include seasonal effects of RE generation and household-
demand thereby resulting in a more realistic model.
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