9,300 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Modify-and-Forward for Securing Cooperative Relay Communications

    Full text link
    We proposed a new physical layer technique that can enhance the security of cooperative relay communications. The proposed approach modifies the decoded message at the relay according to the unique channel state between the relay and the destination such that the destination can utilize the modified message to its advantage while the eavesdropper cannot. We present a practical method for securely sharing the modification rule between the legitimate partners and present the secrecy outage probability in a quasi-static fading channel. It is demonstrated that the proposed scheme can provide a significant improvement over other schemes when the relay can successfully decode the source message.Comment: IEEE International Zurich Seminar on Communications, Feb. 201

    Strongly Secure Communications Over the Two-Way Wiretap Channel

    Full text link
    We consider the problem of secure communications over the two-way wiretap channel under a strong secrecy criterion. We improve existing results by developing an achievable region based on strategies that exploit both the interference at the eavesdropper's terminal and cooperation between legitimate users. We leverage the notion of channel resolvability for the multiple-access channel to analyze cooperative jamming and we show that the artificial noise created by cooperative jamming induces a source of common randomness that can be used for secret-key agreement. We illustrate the gain provided by this coding technique in the case of the Gaussian two-way wiretap channel, and we show significant improvements for some channel configurations.Comment: 11 pages, 7 figures, submitted to IEEE Transactions on Information Forensics and Security, Special Issue: "Using the Physical Layer for Securing the Next Generation of Communication Systems

    Secure Communication over Parallel Relay Channel

    Full text link
    We investigate the problem of secure communication over parallel relay channel in the presence of a passive eavesdropper. We consider a four terminal relay-eavesdropper channel which consists of multiple relay-eavesdropper channels as subchannels. For the discrete memoryless model, we establish outer and inner bounds on the rate-equivocation region. The inner bound allows mode selection at the relay. For each subchannel, secure transmission is obtained through one of two coding schemes at the relay: decoding-and-forwarding the source message or confusing the eavesdropper through noise injection. For the Gaussian memoryless channel, we establish lower and upper bounds on the perfect secrecy rate. Furthermore, we study a special case in which the relay does not hear the source and show that under certain conditions the lower and upper bounds coincide. The results established for the parallel Gaussian relay-eavesdropper channel are then applied to study the fading relay-eavesdropper channel. Analytical results are illustrated through some numerical examples.Comment: To Appear in IEEE Transactions on Information Forensics and Securit

    Structuring cooperative nuclear risk reduction initiatives with China

    Get PDF
    The Stanford Center for International Security and Cooperation engaged several Chinese nuclear organizations in cooperative research that focused on responses to radiological and nuclear terrorism. The objective was to identify joint research initiatives to reduce the global dangers of such threats and to pursue initial technical collaborations in several high priority areas. Initiatives were identified in three primary research areas: 1) detection and interdiction of smuggled nuclear materials; 2) nuclear forensics; and 3) radiological (“dirty bomb”) threats and countermeasures. Initial work emphasized the application of systems and risk analysis tools, which proved effective in structuring the collaborations. The extensive engagements between national security nuclear experts in China and the U.S. during the research strengthened professional relationships between these important communities.Project on Advanced Systems and Concepts for Countering Weapons of Mass Destruction (PASCC)Grant Number N00244-14-I-003

    The 2010 Nuclear Security Summit: A Status Update

    Get PDF
    Highlights progress made in improving nuclear material security since the April 2010 summit, including in implementation of national commitments to secure or end production of highly enriched uranium and plutonium and to convert or shut down reactors
    • …
    corecore