35 research outputs found

    On the Performance of Multiple Antenna Cooperative Spectrum Sharing Protocol under Nakagami-m Fading

    Full text link
    In a cooperative spectrum sharing (CSS) protocol, two wireless systems operate over the same frequency band albeit with different priorities. The secondary (or cognitive) system which has a lower priority, helps the higher priority primary system to achieve its target rate by acting as a relay and allocating a fraction of its power to forward the primary signal. The secondary system in return is benefited by transmitting its own data on primary system's spectrum. In this paper, we have analyzed the performance of multiple antenna cooperative spectrum sharing protocol under Nakagami-m Fading. Closed form expressions for outage probability have been obtained by varying the parameters m and Omega of the Nakagami-m fading channels. Apart from above, we have shown the impact of power allocation factor (alpha) and parameter m on the region of secondary spectrum access, conventionally defined as critical radius for the secondary system. A comparison between theoretical and simulated results is also presented to corroborate the theoretical results obtained in this paperComment: Accepted in the proceedings of IEEE PIMRC 2015 Hong Kong, Chin

    Outage Analysis for SWIPT-Enabled Two-Way Cognitive Cooperative Communications

    Full text link
    In this paper, we study a cooperative cognitive radio network (CCRN) where the secondary user-transmitter (SU-Tx) assists bi-directional communication between a pair of primary users (PUs) following the principle of two-way relaying. In return, it gets access to the spectrum of the PUs to enable its own transmission to SU-receiver (SU-Rx). Further, in order to support sustainable operation of the network, SU-Tx is assumed to harvest energy from the RF signals received from the PUs, using the technique of simultaneous wireless information and power transfer (SWIPT). Assuming a decode-and-forward behaviour and power-splitting based relaying protocol at SU-Tx, closed form expressions for outage probability of PU and SU are obtained. Simulation results validate our analytical results and illustrate spectrum-efficiency and energy-efficiency advantages of the proposed system over one-way relaying.Comment: 15 pages, 5 figures, Submitted to IEEE Transactions on Vehicular Technolog

    Outage Analysis for SWIPT-Enabled Two-Way Cognitive Cooperative Communications

    Full text link
    In this paper, we study a cooperative cognitive radio network (CCRN) where the secondary user-transmitter (SU-Tx) assists bi-directional communication between a pair of primary users (PUs) following the principle of two-way relaying. In return, it gets access to the spectrum of the PUs to enable its own transmission to SU-receiver (SU-Rx). Further, in order to support sustainable operation of the network, SU-Tx is assumed to harvest energy from the RF signals received from the PUs, using the technique of simultaneous wireless information and power transfer (SWIPT). Assuming a decode-and-forward behaviour and power-splitting based relaying protocol at SU-Tx, closed form expressions for outage probability of PU and SU are obtained. Simulation results validate our analytical results and illustrate spectrum-efficiency and energy-efficiency advantages of the proposed system over one-way relaying.Comment: 15 pages, 5 figures, Submitted to IEEE Transactions on Vehicular Technolog

    On Information and Energy Cooperation in Energy Harvesting Cognitive Radio

    Full text link
    This paper considers the cooperation between primary and secondary users at information and energy levels when both users are energy harvesting nodes. In particular, a secondary transmitter helps relaying the primary message, and in turn, gains the spectrum access as a reward. Also, the primary transmitter supplies energy to the secondary transmitter if the latter is energy-constrained, which facilitates an uninterrupted cooperation. We address this two-level cooperation over a finite horizon with the finite battery constraint at the secondary transmitter. While promising the rate-guaranteed service to both primary and secondary users, we aim to maximize the primary rate. We develop an iterative algorithm that obtains the optimal offline power policies for primary and secondary users. To acquire insights about the structure of the optimal solution, we examine specific scenarios. Furthermore, we investigate the effects of the secondary rate constraint and finite battery on the primary rate and the probability of cooperation. We show that the joint information and energy cooperation increases the chances of cooperation and achieves significant rate gains over only information cooperation.Comment: 6 pages, 4 figures, to be presented in IEEE PIMRC 201

    Vandermonde-subspace Frequency Division Multiplexing for Two-Tiered Cognitive Radio Networks

    Full text link
    Vandermonde-subspace frequency division multiplexing (VFDM) is an overlay spectrum sharing technique for cognitive radio. VFDM makes use of a precoder based on a Vandermonde structure to transmit information over a secondary system, while keeping an orthogonal frequency division multiplexing (OFDM)-based primary system interference-free. To do so, VFDM exploits frequency selectivity and the use of cyclic prefixes by the primary system. Herein, a global view of VFDM is presented, including also practical aspects such as linear receivers and the impact of channel estimation. We show that VFDM provides a spectral efficiency increase of up to 1 bps/Hz over cognitive radio systems based on unused band detection. We also present some key design parameters for its future implementation and a feasible channel estimation protocol. Finally we show that, even when some of the theoretical assumptions are relaxed, VFDM provides non-negligible rates while protecting the primary system.Comment: 9 pages, accepted for publication in IEEE Transactions on Communication

    Opportunistic Adaptive Relaying in Cognitive Radio Networks

    Full text link
    Combining cognitive radio technology with user cooperation could be advantageous to both primary and secondary transmissions. In this paper, we propose a first relaying scheme for cognitive radio networks (called "Adaptive relaying scheme 1"), where one relay node can assist the primary or the secondary transmission with the objective of improving the outage probability of the secondary transmission with respect to a primary outage probability threshold. Upper bound expressions of the secondary outage probability using the proposed scheme are derived over Rayleigh fading channels. Numerical and simulation results show that the secondary outage probability using the proposed scheme is lower than that of other relaying schemes. Then, we extend the proposed scheme to the case where the relay node has the ability to decode both the primary and secondary signals and also can assist simultaneously both transmissions. Simulations show the performance improvement that can be obtained due to this extension in terms of secondary outage probability.Comment: 5 pages, 4 figures. Accepted for publication in Proc. IEEE International Communications Conference (ICC), Ottawa (ON), Canada, June 201

    On Secondary User Transmission Schemes in Relay-Assisted Cognitive Radio Networks

    Full text link
    corecore