2,499 research outputs found

    Cooperative Cognitive Relaying Under Primary and Secondary Quality of Service Satisfaction

    Full text link
    This paper proposes a new cooperative protocol which involves cooperation between primary and secondary users. We consider a cognitive setting with one primary user and multiple secondary users. The time resource is partitioned into discrete time slots. Each time slot, a secondary user is scheduled for transmission according to time division multiple access, and the remainder of the secondary users, which we refer to as secondary relays, attempt to decode the primary packet. Afterwards, the secondary relays employ cooperative beamforming to forward the primary packet and to provide protection to the secondary destination of the secondary source scheduled for transmission from interference. We characterize the diversity-multiplexing tradeoff of the primary source under the proposed protocol. We consider certain quality of service for each user specified by its required throughput. The optimization problem is stated under such condition. It is shown that the optimization problem is linear and can be readily solved. We show that the sum of the secondary required throughputs must be less than or equal to the probability of correct packets reception.Comment: This paper was accepted in PIMRC 201

    Enhancing Secrecy with Multi-Antenna Transmission in Wireless Ad Hoc Networks

    Full text link
    We study physical-layer security in wireless ad hoc networks and investigate two types of multi-antenna transmission schemes for providing secrecy enhancements. To establish secure transmission against malicious eavesdroppers, we consider the generation of artificial noise with either sectoring or beamforming. For both approaches, we provide a statistical characterization and tradeoff analysis of the outage performance of the legitimate communication and the eavesdropping links. We then investigate the networkwide secrecy throughput performance of both schemes in terms of the secrecy transmission capacity, and study the optimal power allocation between the information signal and the artificial noise. Our analysis indicates that, under transmit power optimization, the beamforming scheme outperforms the sectoring scheme, except for the case where the number of transmit antennas are sufficiently large. Our study also reveals some interesting differences between the optimal power allocation for the sectoring and beamforming schemes.Comment: to appear in IEEE Transactions on Information Forensics and Securit

    Outage Efficient Strategies for Network MIMO with Partial CSIT

    Full text link
    We consider a multi-cell MIMO downlink (network MIMO) where BB base-stations (BS) with MM antennas connected to a central station (CS) serve KK single-antenna user terminals (UT). Although many works have shown the potential benefits of network MIMO, the conclusion critically depends on the underlying assumptions such as channel state information at transmitters (CSIT) and backhaul links. In this paper, by focusing on the impact of partial CSIT, we propose an outage-efficient strategy. Namely, with side information of all UT's messages and local CSIT, each BS applies zero-forcing (ZF) beamforming in a distributed manner. For a small number of UTs (KMK\leq M), the ZF beamforming creates KK parallel MISO channels. Based on the statistical knowledge of these parallel channels, the CS performs a robust power allocation that simultaneously minimizes the outage probability of all UTs and achieves a diversity gain of B(MK+1)B(M-K+1) per UT. With a large number of UTs (KMK \geq M), we propose a so-called distributed diversity scheduling (DDS) scheme to select a subset of \Ks UTs with limited backhaul communication. It is proved that DDS achieves a diversity gain of B\frac{K}{\Ks}(M-\Ks+1), which scales optimally with the number of cooperative BSs BB as well as UTs. Numerical results confirm that even under realistic assumptions such as partial CSIT and limited backhaul communications, network MIMO can offer high data rates with a sufficient reliability to individual UTs.Comment: 26 pages, 8 figures, submitted to IEEE Trans. on Signal Processin

    Cooperative Secure Transmission by Exploiting Social Ties in Random Networks

    Full text link
    Social awareness and social ties are becoming increasingly popular with emerging mobile and handheld devices. Social trust degree describing the strength of the social ties has drawn lots of research interests in many fields in wireless communications, such as resource sharing, cooperative communication and so on. In this paper, we propose a hybrid cooperative beamforming and jamming scheme to secure communication based on the social trust degree under a stochastic geometry framework. The friendly nodes are categorized into relays and jammers according to their locations and social trust degrees with the source node. We aim to analyze the involved connection outage probability (COP) and secrecy outage probability (SOP) of the performance in the networks. To achieve this target, we propose a double Gamma ratio (DGR) approach through Gamma approximation. Based on this, the COP and SOP are tractably obtained in closed-form. We further consider the SOP in the presence of Poisson Point Process (PPP) distributed eavesdroppers and derive an upper bound. The simulation results verify our theoretical findings, and validate that the social trust degree has dramatic influences on the security performance in the networks.Comment: 30 pages, 11 figures, to be published in IEEE Transactions on Communication

    Cooperative Feedback for Multi-Antenna Cognitive Radio Networks

    Full text link
    Cognitive beamforming (CB) is a multi-antenna technique for efficient spectrum sharing between primary users (PUs) and secondary users (SUs) in a cognitive radio network. Specifically, a multi-antenna SU transmitter applies CB to suppress the interference to the PU receivers as well as enhance the corresponding SU-link performance. In this paper, for a multiple-input-single-output (MISO) SU channel coexisting with a single-input-single-output (SISO) PU channel, we propose a new and practical paradigm for designing CB based on the finite-rate cooperative feedback from the PU receiver to the SU transmitter. Specifically, the PU receiver communicates to the SU transmitter the quantized SU-to-PU channel direction information (CDI) for computing the SU transmit beamformer, and the interference power control (IPC) signal that regulates the SU transmission power according to the tolerable interference margin at the PU receiver. Two CB algorithms based on cooperative feedback are proposed: one restricts the SU transmit beamformer to be orthogonal to the quantized SU-to-PU channel direction and the other relaxes such a constraint. In addition, cooperative feedforward of the SU CDI from the SU transmitter to the PU receiver is exploited to allow more efficient cooperative feedback. The outage probabilities of the SU link for different CB and cooperative feedback/feedforward algorithms are analyzed, from which the optimal bit-allocation tradeoff between the CDI and IPC feedback is characterized.Comment: 26 pages; to appear in IEEE Trans. Signal Processin
    corecore