37 research outputs found

    A Survey on Dynamic Spectrum Sharing Using Game Theory in Cognitive Radio Networks

    Get PDF
    Due to the tremendous increase in wireless data traffic, a usable radio spectrum is quickly being depleted. Current Fixed Spectrum Allocation (FSA) strategy give rise to the problem of spectrum scarcity and underutilization. Cognitive Radio (CR) is proposed as a new wireless paradigm to overcome the spectrum underutilization problem. CR is a promising technology which for future wireless communications. CRs can change its operating parameters intelligently in real time to account for dynamic changes in a wireless environment. CR enables a technique called Dynamic Spectrum Allocation (DSA) where the users are able to access unlicensed bands opportunistically. Since idle spectrum from PU is a valuable commodity, many cognitive users will be competing for it simultaneously. Therefore, there arises competition among the users. Users may be only concerned about maximizing their own benefits by behaving rationally and selfishly. Thus spectrum allocation problem falls under NP-hard complex based on its complexity to solve. Out of several solution approaches, Game theory is found to be an efficient mathematical tool since it deals with solving the conflicts among the users. This survey is aimed at providing a comprehensive overview on dynamic spectrum allocation using game theory

    Spectrum Sharing Optimization and Analysis in Cellular Networks under Target Performance and Budget Restriction

    Get PDF
    Dynamic Spectrum Sharing (DSS) aims to provide opportunistic access to under-utilised spectrum in cellular networks for secondary network operators. In this paper we propose an algorithm using stochastic and optimisation models to borrow spectrum bandwidths under the assumption that more resources exist for secondary access than the secondary network demand by considering a merchant mode. The main aim of the paper is to address the problem of spectrum borrowing in DSS environments, where a secondary network operator aims to borrow the required spectrum from multiple primary network operators to achieve a maximum profit under specific grade of service (GoS) and budget restriction. We assume that the primary network operators offer spectrum access opportunities with variable number of channels (contiguous and/or non-contiguous) at variable prices. Results obtained are then compared with results derived from an algorithm in which spectrum borrowing are random. Comparisons showed that the gain in the results obtained from our proposed stochastic-optimisation framework is significantly higher than random counterpart

    Auction-Stackelberg game framework for access permission in femtocell networks with multiple network operators

    Get PDF
    With the explosive growth of indoor data traffic in forthcoming fifth generation cellular networks, it is imperative for mobile network operators to improve network coverage and capacity. Femtocells are widely recognized as a promising technology to address these demands. As femtocells are sold or loaned by a mobile network operator (MNO) to its residential or enterprise customers, MNOs usually employ refunding scheme to compensate the femtocell holders (FHs) providing indoor access to other subscribers by configuring the femtocell to operate in open or hybrid access mode. Due to the selfishness nature, competition between network operators as well as femtocell holders makes it challenging for operators to select appropriate FHs for trading access resources. This inspires us to develop an effective refunding framework, with aim to improve overall network resource utilization, through promoting FHs to make reasonable access permission for well-matched macro users. In this paper, we develop a two-stage auction–Stackelberg game (ASGF) framework for access permission in femtocell networks, where MNO and mobile virtual network operator lease access resources from multiple FHs. We first design an auction mechanism to determine the winner femtocell that fulfils the access request of macro users. We next formulate the access permission problem between the winner femtocell and operators as a Stackelberg game, and theoretically prove the existence of unique equilibrium. As a higher system payoff can be gained by improving individual players’ payoff in the game, each player can choose the best response to others’ action by implementing access permission, while avoiding solving a complicated optimization problem. Numerical results validate the effectiveness of our proposed ASGF based refunding framework and the overall network efficiency can be improved significantly

    Dynamic Spectrum Sharing Optimization and Post-optimization Analysis with Multiple Operators in Cellular Networks

    Get PDF
    Dynamic spectrum sharing aims to provide secondary access to under-utilised spectrum in cellular networks. The main aim of the paper is twofold. Firstly, secondary operator aims to borrow spectrum bandwidths under the assumption that more spectrum resources exist considering a merchant mode. Two optimization models are proposed using stochastic and optimization models in which the secondary operator (i) spends the minimal cost to achieve the target grade of service assuming unrestricted budget or (ii) gains the maximal profit to achieve the target grade of service assuming restricted budget. Results obtained from each model are then compared with results derived from algorithms in which spectrum borrowings are random. Comparisons showed that the gain in the results obtained from our proposed stochastic-optimization framework is significantly higher than heuristic counterparts. Secondly, post-optimization performance analysis of the operators in the form of blocking probability in various scenarios is investigated to determine the probable performance gain and degradation of the secondary and primary operators respectively. We mathematically model the sharing agreement scenario and derive the closed form solution of blocking probabilities for each operator. Results show how the secondary operator perform in terms of blocking probability under various offered loads and sharing capacit

    Dimensions of cooperative spectrum sharing: Rights and enforcement

    Get PDF
    Sharing of radio spectrum requires a careful and nuanced understanding of the rights of incumbents and spectrum entrants. In addition, the dynamics of stakeholders can be understood by examining how various rights are arranged (and rearranged) among them. Importantly, understanding the rights and their distribution is the predicate to developing rational and useful enforcement approaches. In this paper, we show that spectrum sharing involves a rearrangement of the rights associated with radio spectrum among stakeholders. We show how this rearrangement of rights implies the definition of new bundles of rights, appropriate to each particular sharing scenario. We discover these rights - and their (re)arrangement - by examining several cases of spectrum use. We begin with the rights associated with exclusive use and proceed to consider rights arrangement in commons and different spectrum sharing configurations. Further, in the case of commons, we explicitly examine how governance of commons can affect the rights distribution in spectrum. In each case, the bundles of rights associated with each stakeholder changes. New bundles of rights have consequences, not only on the behavior of spectrum users but also on the enforcement process. Our examination of the bundles of rights shows that each rearrangement results in different approaches to enforcement. We demonstrate this by revisiting enforcement in the cases we examine. © 2014 IEEE

    DISCO:Interference-Aware Distributed Cooperation with Incentive Mechanism for 5G Heterogeneous Ultra-Dense Networks

    Get PDF
    Interference and traffic imbalance hinder improved system performance in heterogeneous ultra-dense networks. Network cooperation has become a promising paradigm with sophisticated techniques that can significantly enhance performance. In this article, a coalition game-theoretic framework is introduced to characterize cooperative behaviors, thus exploring these cooperative benefits and diversity gains. First, we introduce the basis of the coalition games. Then we survey its latest applications, in particular, interference mitigation and traffic offloading. Different from most current applications, we concentrate on cooperative incentive mechanism design since node cooperation always means resource consumption and other costs. Moreover, for the incentive mechanism, cooperative spectrum leasing is introduced. To mitigate interference and balance traffic, we propose two schemes under the presented framework: IASL and TOSL. Simulation results show the improved performance of the cooperative gains using the proposed IASL and TOSL schemes
    corecore