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Abstract—Dynamic Spectrum Sharing (DSS) aims to provide
secondary access to under-utilised spectrum in cellular networks.
The main aim of the paper is twofold. Firstly, secondary operator
aims to borrow spectrum bandwidths under the assumption that
more spectrum resources exist considering a merchant mode.
Two optimization models are proposed using stochastic and
optimization models in which the secondary operator (i) spends
the minimal cost to achieve the target GoS assuming unrestricted
budget or (ii) gains the maximal profit to achieve the target GoS
assuming restricted budget. Results obtained from each model are
then compared with results derived from algorithms in which
spectrum borrowings were random. Comparisons showed that
the gain in the results obtained from our proposed stochastic-
optimization framework is significantly higher than heuristic
counterparts. Secondly, post-optimization performance analysis
of the operators in the form of blocking probability in various
scenarios is investigated to determine the probable performance
gain and degradation of the secondary and primary operators
respectively. We mathematically model the sharing agreement
scenario and derive the closed form solution of blocking probabil-
ities for each operator. Results show how the secondary operator
perform in terms of blocking probability under various offered
loads and sharing capacity.

Index Terms—Spectrum sharing, spectrum allocation, mer-
chant mode, spectrum pricing, mathematical programming, ag-
gregated channel allocation algorithms.

I. INTRODUCTION

A. Background and motivation

The static partitioning of spectrum in cellular networks
has significant operational implications, (e.g., pseudo scarcity
of the available radio spectrum) which have been identified
by extensive spectrum utilisation measurements [1, 2]. These
measurements show that a large part of the radio spectrum,
which is allocated to cellular and Personal Communications
Service (PCS) use, are quite well utilised, but the utilisation
varies dramatically over time and space. Such variation of
spectrum utilisation causes the so-called spectrum holes [3,
4].

The current static spectrum management must give way to
a new approach that breaks down artificial spectrum access
barriers and enables networks and their subscribers to dynam-
ically access the spectrum [5–7]. As a response, for example,
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in the UK there are plans for spectrum liberalisation between
operators with different spectrum holdings [8]. Liberalisation
of spectrum of the incumbent holders and mandatory spectrum
release may lead to some spectrum being under the control of
a third party for secondary use. It is also possible that spectrum
might be redistributed not only because of such a mandate and
realisation but also as a result of secondary market trading
[9–12]. Secondary trading of spectrum enhances the overall
spectrum utilisation. As a result, network operators would be
allowed to release their under-utilised commodities to potential
operators [13, 14].

With the large number of service providers in the mobile
cellular network industry, each with their own policy and
strategy, a variety of spectrum opportunities could be available
for secondary use. To this end, in order to distinguish be-
tween options of different bandwidth opportunities, incumbent
holders of spectrum licenses may broadcast information in
relation to these available bandwidths for possible leasing to
secondary operators [15]. Part of the information broadcasted
by the spectrum holders are in the form of available spectrum
size, location boundaries, maximum allowable transmit power,
duration of the lease, type of band and admission cost [16].

Operators aim to provide a stable grade of service (GoS)
to their end users with their limited allocated spectrum.
However, in high demand periods, operators would require
additional spectrum. A solution to increase the spectrum by
means of sharing has been addressed in the research domain
[17–19]. Spectrum sharing between operators often results in
a significant improvement of GoS, although it would incur
additional costs to the operators [20]. Since network operators
often operate with a limited budget, the borrowing decisions
of a network operator would be affected. Consequently, the
operators would need to make dynamic, on-demand and cor-
rect choices of borrowing additional bandwidths from other
operators.

Given a market scenario with several operators, rules and
conditions of spectrum access, spectrum requirement and their
prices, and other parameters, our main idea is to optimize
the resource sharing under a target GoS and budget restric-
tion. We propose two algorithms: the first is to optimize
the amount of savings that secondary operator could achieve
when they engage in spectrum trading with primary operators
(incumbent holders of spectrum licenses) to gain a certain
threshold of GoS. Second is to optimize the profit of sec-
ondary operator under budget restrictions. However, due to
the mutual spectrum sharing agreement between the operators,
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the targeted GoS can not be always guaranteed. Therefore, a
post-optimization analysis is needed to calculate the actual
GoS in terms of blocking probability. Hence, we derive the
blocking probability formulae under a mutual agreement to
share spectrum where the leased spectrum bandwidth can be
deviated according to the operators internal demand. We allow
operators to dynamically access or handover part of the shared
spectrum according to their internal demand state.

Major contributions of this paper are summarized as fol-
lows:
• a novel purchase approach for dynamic spectrum sharing

(DSS) network is proposed in the presence of multiple
primary service operators. We introduce two optimization
problems in merchant mode DSS.

• the robustness of the proposed algorithms are investigated
in the presence of large number of cells and various types
of spectrum bandwidths and the proposed algorithms are
compared with heuristic borrowing algorithm. Compar-
isons show a substantial gain over the heuristic borrowing
algorithms and

• a post-optimization analysis technique of the operators’
performance (secondary and primary) in the form of
blocking probability is derived, which gives the actual
GoS of the operators.

B. Related work

In the literature, a great number of studies has appeared in
recent years on the design of dynamic spectrum sharing within
cellular networks [21–27]. Interests in this context include
secondary leasing and pricing strategies among incumbent
spectrum license holders, secondary operators and secondary
users. These prior studies mainly focused on approaches using
auction mode and game theory to implement the spectrum
pricing and allocation schemes by taking into account the
variation of the networks demands and constraints such as
power, price and interference [21–26, 28].

In [28], the authors proposes a multiple-dimension auc-
tioning mechanism through a broker to facilitate an effi-
cient secondary spectrum market. In [27] a knapsack based
auction mode that dynamically allocates spectrum to the
wireless service providers such that revenue and spectrum
usage are maximised. A dynamic pricing strategy for the
service providers is also proposed. Auction schemes where
a central clearing authority auctions spectrum to bidders,
while explicitly accounting for communication constraints is
proposed in [16]. The used techniques are related to the
posterior matching scheme, which is used in systems with
channel output feedback. While in [29], spectrum auctions in a
dynamic setting where secondary users can change their valu-
ations based on their experiences with the channel quality was
studied. The authors in [23] investigate price-based resource
allocation strategies for two-tier femtocell networks, in which
a central macrocell is underlaid with distributed femtocells, all
operating over the same frequency bandwidths. A Stackelberg
game is formulated to study the joint utility maximisation of
the macrocell and femtocells subject to a maximum tolerable
interference power constraint at the macrocell base station.

Price-based DSS has also been investigated from the business
perspective [9, 30]. For example, in [31] An extensive business
portfolio for heterogeneous networks is presented to analyse
the benefits due to multi-operator cooperation for spectrum
sharing. High resolution pricing models are developed to
dynamically facilitate price adaptation to the system State.
In [32], a quality-aware dynamic pricing algorithm (QADP)
which maximises the overall network revenue while maintain-
ing the stability of the network was studied.

The vast majority of the aforementioned studies consider
competitive market scenarios and therefore auction and game
theory have been discussed to develop DSS strategies. By
using the same assumption, pricing in the context of DSS has
mainly been considered from the spectrum owners perspective
to maximise their revenues [25, 30, 33]. However, when the
number of available bandwidths from multiple license owners
is higher than SNO’s demand, then auction mode is not always
the best strategy. This is because the number of bidders might
be too small and the best selling price can not be achieved for
the license owners by using auction mode. A more realistic
and pragmatic model in this case is a merchant mode, which to
the best of the authors’ knowledge, has not been investigated
in the context of DSS. Moreover, spectrum borrowing when
considering budget restrictions has not been addressed. Also,
there is currently no published work, which attempted to study
the admission cost minimisation in the merchant mode with
target performance. Thus, the problems that we formulate and
solve substantially differ from those available in the literature.

The analysis of blocking probability and dynamic aggre-
gated channel assignment has been extensively considered in
the context of cellular networks [34, 35]. However, there are
significant differences between auction mode and the focus of
our work. For example, in auction mode network operators
are not assumed to claim back the leased spectrum within
a single trading window during busy intervals [12]; whereas
in our approach, the leased capacity is dynamic in size. To
the best of our knowledge, our post-optimization analysis is
the first to study the blocking probability behaviour during
a trading window with the presence of multiple operators. It
also addresses the issue of primary operators’ change in state
during a single trading window.

The paper is organised as follows: the proposed dynamic
spectrum management model is described in Section II. Sec-
tion III addresses the problem of spectrum allocation in cel-
lular networks and describes our mathematical programming
formulations to the problem. Section III-G, presents block-
ing probability analysis under resource sharing with multiple
PNOs. In Section IV, we present our findings. Finally, Section
V summarises our conclusions.

II. DYNAMIC SPECTRUM MANAGEMENT MODEL

We consider a cellular network to consists of one secondary
network operator (SNO) and N , with size |N | = N , denote
the set of primary network operators (PNOs) serving a region
R, see Figure 1. Let L, with size |L| = L, be the set of cells in
the region. Existence of multi-SNOs in a common area results
in competition between operators. Such competition analysis
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and optimization among SNOs is outside the scope of this
paper.

Each operator in the network is licensed with an incumbent
bandwidth consisting of a set of component carriers, each of
which can be allocated to support the operators’ subscribers.
The antenna towers/masts at the centre of each cell i ∈ L
is shared among the operators. In the context of this cellular
networks arrangement, we only consider cells with an almost
identical radio environment, which is visible to all providers in
each cell. An example of this setup is when a town or city re-
quires operators to use common towers for their antennas, due
to economy of scale property of telecommunication industry.

Due to spectrum liberalisation, the PNOs |N | will have
the freedom to lease their spectrum bandwidths to the SNO.
Leasing spectrum bandwidths would mean that the secondary
operator will have to pay a certain compensation to the primary
operator for using the spectrum bandwidths, and naturally the
amount of compensation is expected to be proportional to the
amount of allowed spectrum leasing by the primary system.
We assume the compensation paid to the PNO is in form
of monetary value. The PNOs broadcast specific information
about their available bands for leasing and admission cost (per
unit bandwidth) at each cell i ∈ L at fixed identical intervals
(e.g., every 2 hours). The lease conditions may specify ad-
ditional parameters such as the extent of spatial region for
spectrum use and maximum power. The compliant use of
leased spectrum requires that the SNO returns the spectrum
to the PNO at the end of the lease interval. The duration
of each lease could be decided by the network providers
under a mutual agreement, and/or any other regulatory bodies’
conditions (e.g., minutes, hours, days).

PNO 1 PNO 2 PNO 3

SNO

sub-bands for PNO 1 sub-bands for PNO 2 sub-bands for PNO 3

c′1 c′2 c′3
c1 c2 c3

Allocation, merchant mode algorithms
(RNC controller)

Fig. 1: Network model for cellular network with 3 PNO and
1 SNO

III. PROBLEM FORMULATION

Considering the system model described in the previous
section, the problem now becomes how the SNO acquires
additional spectrum from PNOs. The spectrum borrowing for
an SNO can be performed by considering one of the following
objectives:
• to minimise borrowing cost in each time slot by selecting

the lowest cost combinations of available spectrum from
the primary networks to achieve a specified grade of
service (GoS) and

• to maximise profit in each time slot by borrowing the
highest profit combinations of available spectrum from

the primary networks under restricted budget to achieve
a specified grade of service.

In principle, the SNO’s objective is to minimise overall
operating cost or to maximise revenue as well as to maximise
utility to the end users. Next, we formulate each problem as a
finite horizon nonlinear stochastic program whose computation
time is polynomial in the input size.

A. Modelling assumptions

We identify the part of network information which is
assumed to be known to the SNO:
• arrival rate of the SNO at ith cell for jth type of spectrum

band λi j , ∀i, j,
• service rate of the SNO at ith cell for jth type of spectrum

band µi j , ∀i, j,
• available bandwidth of the SNO at ith cell for jth type

of spectrum band wi j , ∀i, j,
• borrowing cost of the SNO for unit bandwidth from

the PNOs at ith cell for jth type of spectrum band
ci j k, ∀i, j, k (which are assumed to be announced peri-
odically by the PNOs),

• allocated budget for borrowing bandwidths to the SNO
at ith cell for jth type of spectrum bandfrom the PNOs
bi j , ∀i, j,

• available bandwidth of the kth PNO at ith cell for jth
type of spectrum band ai j k, ∀i, j, k, (which are assumed
to be announced periodically by the PNOs), and

• expected profit of the SNO at ith cell for jth type of
spectrum band for borrowing unit bandwidth from kth
PNO γi j k, ∀i, j, k.

Time is divided into equal-length slots T = {0, 1, 2, . . .}. At
each time slot t ∈ T the process of aggregated channel
borrowing is repeated. We use the time indicator (t) to em-
phasise the vectors dependancy in time. Trading of bandwidth
is done between primary and secondary providers separately
in each of successive time windows of a particular duration.
Henceforth, we focus on the the process of channel borrowing
and optimization in a single window.

B. Notations used in Problem 1 and Problem 2:

Let us define the following quantities which are used later in
mathematical programming problems (Problem 1 and Problem
2):

ci j k (t) B cost of unit bandwidth to be borrowed from kth
PNO for j type resource at ith cell during time interval t,
where ci j k (t) ∈ R

L×Ni j

≥0 .
xi j k (t) B unit of spectrum bandwidths (or sub-bands) to be

borrowed from kth PNO for j type resource at ith cell during
time interval t, where xi j k (t) ∈ R

L×Ni j

≥0 .
θi j k (t) B PNOs intrinsic quality (e.g., the extent of the

coverage area and/or maximum allowable transmit power),
where {θi j1, θi j2, . . . , θi j k, . . . , θL×N }.

pi j (t) B target blocking probability for j type resource
at ith cell during time interval t for the secondary network
operator.
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ai j k (t) B unit bandwidth available from kth PNO to be
leased to SNO for jth type resource at the ith cell during time
interval t, where ai j k (t) ∈ R

L×Ni j

≥0 .
ri j (t) B unit bandwidth required to satisfy the target

blocking probability pi j (t) for the SNO’s for jth type resource
at ith cell during time interval t, where ri j (t) ∈ R

L
≥0.

γi j k (t) B the expected profit for borrowing unit bandwidth
from kth PNO for jth type resource at ith cell during time
interval t, where γi j k (t) ∈ RL×Ni j .

C. Spectrum allocation by minimising borrowing cost

We now formulate the spectrum allocation problem, that is,
how much spectrum bandwidths to be borrowed from each
PNO to keep the blocking probability in a specific level, for
instance, at 1%. Given a set of possible available spectrum
resources {ai j k (t)} and their associated prices {ci j k (t)}, the
problem is to find the feasible set of spectrum bandwidths
{xi j k (t)} by minimising the total borrowing cost. The PNOs
set their prices according to the maximum allowed transmit
power $i j k and the pricing coefficient ϕi j k , which can be
written as [20]

ci j k =

∑
k ∈ ai j k

[
log

(
1 +

h$i j k

%i

)
− ($i j k · ϕi j k )

]

ai j k
(1)

where h is the average aggregated channel gain and %i is
the additive noise received by SNO users at cell i. Resource
acquisition in this case is obtained by solving the following
optimization problem:

Problem 1:

minimise


L∑
i j=1

Ni j∑
k=1

ci j k (t) · xi j k (t) · θi j k (t)

, (2)

subject to

arg min
xi j k ∀i, j,k

Pr
(
λ(t), µ(t), ri j k (t) + wi j

)
≤ pi j (t), ∀i j, k (3)

xi j k (t) ≤ ai j k (t), ∀i j, k (4)
Ni j∑
k=1

xi j k (t) ≤ ri j (t), ∀i j, k (5)

While borrowing cost for each cell i can be calculated as

Ni j∑
k=1

ci j k (t) · xi j k (t) · θi j k (t). (6)

The parameter θi j k (t) (0 ≤ θi j k (t) ≤ 1) defines the in-
trinsic quality by weighing the cost of borrowing spectrum
bandwidths. The intrinsic quality represents the quality of the
available heterogeneous aggregated channels to carry the data
for transmission. Therefore, the price per unit bandwidth in
each PNO can vary, i.e., ci j k (t) Q ci j l (t), ∀i j and ∀k, l with
k , l. We thus refer to this pricing scheme as non-uniform
pricing.

The blocking probability in constraint (3) is a non-linear
function of spectrum bandwidth for each cell. Therefore, the
above optimization problem is considered as a non-linear
optimization problem which can be solved in two phases: the
SNO set the target blocking probability for each cell (e.g.,
pi j = 0.01, ∀i j ). Then it calculates the bandwidth ri j (t) re-
quired to achieve the target blocking probability pi j (t) for each
cell i. Next the SNO finds the amount of bandwidth required
to borrow from primary networks. Blocking probability at the
ith cell of SNO can be defined as

P(b) (t) =
1
ν!

(
λ(t)
µ(t)

)ν 

ν∑
n=0

1
n!

(
λ(t)
µ(t)

)n

−1

. (7)

Now with the initial fixed bandwidth wi j , we first calculate the

total required bandwidth τi j (t) to achieve the target blocking
probability for the ith cell of the SNO

τi j (t) = f −1
(
Pr

(
λi j (t), µi j (t),wi j

))
. (8)

where f −1(·) is the inverse function of P(b) (t) (equation 7)
used to derive the required capacity over the existing capacity.

Subtracting the fixed bandwidth wi j from the total required
τi j (t), we obtain the required bandwidth ri j (t) at the ith cell
of the SNO during time interval t

ri j (t) = τi j (t) − wi j . (9)

Now the problem is to find the feasible set of bandwidth
xi j k (t) from the PNOs which minimises the borrowing cost.
This is done in the next mathematical programming phase.

In this phase, we set up the borrowing cost ci j k (t) and the
maximum possible bandwidth available ai j k (t). The borrow-
ing decisions of the SNO are made subject to the lowest price
from the set {ai j k (t)}. The decision variable xi j k (t) in this
context can be a combination of a number of acquisitions, e.g.,
SNO selects the lowest price from the available set of band-
widths from the PNOs. If the acquired resources ai j k (t) are
insufficient to reach the target blocking probability pi j (t) (i.e.,
ri j k (t)−ai j k (t) > 0), then the SNO borrows from the remain-
ing bandwidths from the set {ai j1(t), ai j2(t), . . . , ai jN (t)} =
ai j k (t) for which the cost is minimum. If the required blocking
probability pi j (t) is reached, then the SNO stops acquiring
new spectrum bandwidths until the next time interval (t + 1).

Once we solve the problem, the new blocking probability
can be calculated as

P(bnew
i j

) (t) = Pr *.
,
λi j (t), µi j (t),

*.
,
wi j +

Ni j∑
k=1

xi j k (t)+/
-

+/
-

=
1
νi j !

(
λi j (t)

µi j (t)

)νi j 

νi j∑
n=0

1
n!

(
λi j (t)

µi j (t)

)n

−1

. (10)

where

νi j = wi j +

Ni j∑
k=1

xi j k (t).

Consequently, the SNO will achieve the blocking probability
with the required amount of bandwidths satisfying the target
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blocking probability pi j (t) or with the highest possible bor-
rowed bandwidths which is mathematically expressed as

P(bnew
i j

) (t) =



pi j (t),
∑Ni j

k=1 ai j k (t) ≥ ri j (t)

P(bnew
i j

) (t), otherwise.
(11)

Algorithm 1 Optimal spectrum borrowing

1: Initialisation: Number of cells in the network = L,
number of operators in the network = N and number of
types of spectrum bands = M .

2: Calculate ri j ∀i, j which satisfies pi j , and get ci j k and ai j k

∀i, j, k.
3: for every time slot (t) do
4: for all cells i ← 1 : L do
5: for all PNOs k = 1 : N do
6: Solve the nonlinear stochastic Problem 1 s.t.

constraints (3), (4) and (5)
7: end for
8: end for
9: end for

10: return

D. Spectrum allocation using heuristic algorithm

In this approach, spectrum acquisition is performed ran-
domly as illustrated in Algorithm 2. The optimal borrowing
cost using this algorithm can only be found randomly from
the set of capacity values ai j k by satisfying the constraints in
equation (4) and (5).

Algorithm 2 Heuristic spectrum borrowing

1: Initialisation: Number of cells in the network = L,
number of operators in the network = N and number of
types of spectrum bands = M .

2: Calculate ri j ∀i, j which satisfies pi j , and get ci j k and ai j k

∀i, j, k.
3: for every time slot (t) do
4: for all cells i ← 1 : L do
5: Set x ← {0N }.
6: Set counter←

∑
x.

7: Choose a random integer n ∈ {1, 2, . . . , N }.
8: for all PNOs k = n : N 1 : (n − 1) do
9: if 0 < ai j k > (ri j − counter) then

10: xi j k ← (ri j − counter).
11: BREAK
12: else if ai j k > 0 & counter < ri j then
13: xi j k ← ai j k .
14: counter← counter + xi j k .
15: else
16: xi j k ← 0.
17: end if
18: end for
19: end for
20: end for
21: return

For all i, j and k, equation (5) ensures that the SNO does
not borrow more than the network’s bandwidths demand by
controlling the borrowed spectrum bandwidth size in each
iteration, which can be expressed mathematically as

xi j k (t) =



ai j k (t), ri j (t) ≥ ai j k (t)

ri j (t), otherwise.
(12)

This scenario can also be regarded as round-robin schedul-
ing algorithm, where SNOs randomly gain access to the PNOs’
available spectrum, and the PNOs serve one SNO in each turn.
The resource allocation in algorithm 2 evolves in two main
discrete steps:
• compute the spectrum demand in each cell ri j , ∀i, j from

equation (9)
• randomly obtain xi j k subject to equations (4) and (5)

from the vector ai j k

The only difference between the two formulations is that
in the heuristic formulation, the cost of spectrum access
is not considered, where spectrum acquisition is performed
randomly from the set {ai j k }. Note that when

∑
ai j k ≤ ri j

the feasible set {xi j k } is equal for both formulations. We also

note that when
∑Ni j

k=1 ai j k (t) > ri j (t), the optimal and heuristic
algorithm may achieve the same outcome in terms of total
borrowing cost, however, this is a result of randomness in the
selection process with probability

P(selecting optimal bandwidths)

=




1
N

ai j k ≥ ri j ,∀i j
1

���{āi j ..}
���

∑
m {āi j lm, ∀l,m} ≥ ri j ,∀i j

1
∑Ni j

k=1 ai j k ≤ ri j ,∀i j

(13)

where {āi j lm, ∀l,m} ⊂ {ai j k, ∀i j , k }, and ���{āi j ..}
��� is the number

of subsets in the set {āi j ..} which satisfy the bandwidth
requirement for the ith cell with jth type of spectrum band.

E. Expected profit maximisation under restricted budget

In this section, we formulate the second spectrum allocation
problem that illustrates how much spectrum bandwidths to be
borrowed from each PNO to keep the blocking probability
in a specific level. Given a set of possible available spec-
trum resources {ai j k (t)}, their associated prices {ci j k (t)} and
expected profit {γi j k (t)}, the problem is to find the feasible
set of spectrum bandwidths {xi j k (t)} by maximising the total
profit of the SNO, under allocated budget and performing the
selection according to the highest possible profit combination.
Resource acquisition in this case is obtained by solving the
following optimization problem:

Problem 2:

maximise


L∑
i=1

M∑
j=1

N j∑
k=1

γi j k (t) · xi j k (t)


(14)
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subject to

arg min
xi j k ∀i, j,k

Pr
(
λ(t), µ(t), ri j k (t) + wi j

)
≤ pi j (t), ∀i j, k (15)

xi j k (t) ≤ ai j k (t),∀i j, k(16)
Ni j∑
k=1

xi j k (t) ≤ ri j (t), ∀i j, k(17)

N j∑
k=1

ci j k (t) · xi j k (t) ≤ bi j , ∀i j, k, (18)

where γi j k (t) consists of two parts: the expected revenue vi j (t)
and cost ci j k (t), which can be obtained as

γi j k (t) = vi j k (t) − ci j k (t), (19)

Here
vi j k (t) = f

(
βi j (t), θi j k (t)

)
. (20)

where βi j (t) is the selling price per unit bandwidth for the
ith cell and jth type service during time period t. In equation
(20), the expected revenue vi j k (t) is the function f (·) of the
selling price βi j k (t) and the intrinsic quality (θi j k (t)) which
may take, in general, a non-linear form. In the simplest case,
the function can be defined as

vi j k (t) = βi j k (t)
[
−e−θi j k (t ) ]

. (21)

We consider the the intrinsic quality per unit bandwidth
(θi j k (t)) for each PNO, which can vary, i.e., θi j k (t) Q θi j l (t),
∀i j and ∀k, l with k , l according to spatial structure of the
base stations, allowed transmission power, bandwith types, etc.
In this problem formulation, the parameter θi j k (t) influences
the optimal spectrum borrowing decisions.

The revenue earned through the sale of the borrowed band-
width can be equal, higher or lower than the cost. However,
for simplicity, we model the revenue vi j k (t) earned through
the sale of the borrowed bandwidth to exceed the borrowing
cost, i.e., vi j k (t) > ci j k (t) due to the assumption that profit
of the SNO for borrowing a unit bandwidth is always positive
(γi j k (t)).

The inequality constraint in equation (18) implies that the
SNO maximises its profit by taking into account the limitations
imposed by cost of the utility and the maximum allowable
expenditure which the SNO can spend for borrowing spectrum
demand in each cell. Next, we solve the the above non-linear
optimization problem in two phases:

In the first phase, the same steps are performed using
equation (15) as for solving Problem 1. The SNO calculates
the spectrum demand to meet its time varying target blocking
probability over time and location. The spectrum demand
is adjusted dynamically based on the network information
provided by the expected cell demand, service rate and existing
spectrum bandwidth.

In the second phase, we set up the vectors {ci j k (t)},
{ai j k (t)} and {γi j k (t)}. The borrowing decisions of the SNO
are made subject to achieving the maximum profit for each ac-
quisition from the PNOs. In Problem 1, the budget restriction

is not considered, where the SNO is allowed to make spectrum
bandwidth borrowing until it meets the spectrum demand, i.e.,

N j∑
k=1

xi j k (t) = ri j (t), assuming
N j∑
k=1

ai j k (t) ≥ ri j (t). (22)

However, in this formulation, the borrowing capacity of the
SNO is restricted to budget allocation bi j . Note that in the case
where the SNO’s budget is too small to provide the required
GoS, then Problem 2 is infeasible. The SNO only achieves a
best effort service to minimise the blocking probability so far
as the budget permits.

Next, we list the detailed procedure in Algorithm 3.

Algorithm 3 Optimal spectrum borrowing under restricted
budget

1: Initialisation: Number of cells in the network = L,
number of operators in the network = N and number of
types of spectrum bands = M .

2: Calculate ri j ∀i, j which satisfies pi j , and get ci j k , ai j k ,
γi j k and θi j k (t) ∀i, j, k.

3: Set maximum allowed budget expenditure for every cell
bi j .

4: for every time slot (t) do
5: for all cells i ← 1 : L do
6: for all PNOs k = 1 : N do
7: Solve the nonlinear stochastic Problem 2 s.t.

(15), (16), (17) and (18)
8: end for
9: end for

10: end for
11: return

F. Spectrum allocation using heuristic algorithm under budget
constraint

In this subsection, we solve the problem of spectrum
allocation under budget constraint by a heuristic bandwidth
selection algorithm (Algorithm 4). The algorithm performs all
the steps as in Algorithm 3. However, Algorithm 4 does not
perform spectrum selection according to the highest possible
profit combination from the set {ai j k }, rather runs on randomly
selected combination from the set {ai j k } to satisfy the spec-
trum demand ri j . The optimal profit using Algorithm 4 can
only be found from the set of capacity values {ai j k } satisfying
the constraints in equation (16), (17) and (18) with probability
given in equation (13). To satisfy the constraints in equation
(16), (17) and (18) we use

xi j k (t) =




ai j k (t), ri j (t) ≥ ai j k (t), bi j ≥ ci j k,
ri j (t), ri j (t) < ai j k (t), bi j ≥ ci j k,
0, bi j < ci j k or ri j (t) = 0.

(23)
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Algorithm 4 Heuristic spectrum borrowing under restricted
budget

1: Initialisation: Number of cells in the network = L,
number of operators in the network = N and number of
types of spectrum bands = M .

2: Calculate ri j ∀i, j which satisfies pi j , and get ci j k , ai j k ,
γi j k and θi j k (t) ∀i, j, k.

3: Set maximum allowed budget expenditure for every cell
bi j .

4: for every time slot (t) do
5: for all cells i ← 1 : L do
6: Set x ← {0N }.
7: Set counter←

∑
x.

8: Choose a random integer n ∈ {1, 2, . . . , N }.
9: for all PNOs k = n : N and 1 : (n − 1) do

10: if (0 < ai j k ) ≤ (ri j −counter) & (ci j k ∗ai j k ) ≤
bi j then

11: xi j k ← ai j k .
12: counter← counter +

∑
xi j k .

13: bi j ← bi j −
∑

(xi j k ∗ ci j k ).
14: else if (ai j k > 0) & ci j k ≤ (bi j − counter) &

(ai j k ∗ ci j k ) ≥ bi j then

15: xi j k ←
⌊ bi j

ci j k

⌋
where bxc means the floor

of x.

16: counter← counter +
∑

xi j k .
17: bi j ← bi j −

∑
xi j k . ∗ ci j k .

18: else if counter ≤ ri j & ai j k > 0 & ai j k ≥

(ri j − counter) & (ai j k ∗ ci j k ) ≤ bi j then
19: xi j k ← ri j − counter.
20: counter← counter +

∑
xi j k .

21: bi j ← bi j −
∑

xi j k . ∗ ci j k .
22: break
23: else if counter ≤ ri j & ai j k > 0 & ai j k ≥

(ri j − counter) & (ai j k ∗ ci j k ) ≥ bi j then

24: xi j k ← min
{⌊ bi j

ci j k

⌋}
.

25: counter← counter +
∑

xi j k .
26: bi j ← bi j −

∑
xi j k ∗ ci j k .

27: else if
28: then
29: xi j k ← 0.
30: end if
31: end for
32: end for
33: end for
34: return

G. Performance analysis under resource sharing between the
SNO and PNOs

In the optimization problems above, the PNOs lease part
of their spectrum resources to the SNO for monetary benefits.
The leasing and borrowing was based on expected demand
and available spectrum resources. However, the demand in
the PNOs may change during trading window causing one

or more of PNOs’ state to change from the underloaded to
overloaded and their blocking probability would increase. As
a consequence, a PNO may react by deviating part or all
of its leased spectrum resources under mutual agreement,
which results in reducing the size of the shared spectrum
resources. This dynamic mechanism affects the performance
of all operators involved in the trading. The complexity of the
problem depends primarily on the number of PNOs involved
and the level of interactions between them. In this paper we
will consider three cases as follows:

1) case 1: SNO is sharing with three PNOs: Consider a cell
consisting of an SNO with capacity c0 and three PNOs with
capacity c1, c2 and c3. Under a sharing agreement all three
PNO share part of their resources c′1, c

′
2 and c′3, respectively

with the SNO determined using the optimization approach
discussed in the previous sections. These resources may also
be used by the corresponding PNO under mutual agreement.
A state of this network is a vector

n = (n0, n1, n2, n3, n01, n02, n03, n11, n22, n33)

where ni are the number of channel requests in progress in the
secondary operator and primary operators 1, 2, 3 respectively,
n0i, i = 1, 2, 3 are the number of channel requests in the shared
resources of the ith primary operator from the secondary
operator and nii, i = 1, 2, 3 are the number of calls of the
ith primary operator on its own shared resources. The states
n are restricted due to resource sharing constraints. The set of
feasible states can be written as

Ωs = {n : An ≤ s} (24)

where A is a d × 10 matrix, and s is a d-vector, where d is
the number of constraints. The network topology is reflected
in the matrix A, and the vector s.

Let calls arrive to the secondary and ith primary operators
according to a non-homogeneous Poisson process, with rates
λ(t) and λi (t) at time t. These calls are admitted if n + ei ∈
Ωs , where ei is the ith unit vector with 1 in place i and 0
elsewhere. When all c0 resources of the secondary operator
is full then calls are diverted and admitted to the ith primary
operator if n + e0i ∈ Ωs , where e0i is the ith unit vector.
Similarly, being all ci resources occupied calls are diverted to
its shared resources c′i for the ith primary network if n+ eii ∈
Ωs , where eii is the ith unit vector. Assume that admitted
calls in secondary and primary operators i have exponential
holding times with rates µ(t) and µi (t) respectively at time
t. Under these assumptions, the network can be modeled as
a non-homogeneous continuous time Markov chain X(t) =
(Xi (t), X0i (t), Xii (t); i = 1, 2, 3, t ≥ 0) that records the number
of channel requests in progress from all operators. The state
space of the Markov chain is specified in (24), and its transition
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rates Q(t) = (q(n, n′, t), n, n′ ∈ Ωs ) are given by

q(n, n′, t) =




λ(t) n′ = n + e1 or n′ = n + e0i,
if n0 = c0, i = 1, 2, 3

λi (t) n′ = n + ei or n′ = n + eii,
if ni = ci, i = 1, 2, 3

nµ(t) n′ = n − e1
ni µi (t) n′ = n − ei, i = 1, 2, 3
n0i µi (t) n′ = n − e0i, i = 1, 2, 3
nii µi (t) n′ = n − eii, i = 1, 2, 3
0 otherwise.

(25)

Theorem 1. The closed-form solution of n channel requests
in progress at time t is given by equation (26).

Proof. Define the state probabilities

P(n, t) := Pr (X (t) = n), n ∈ Ωs, t ≥ 0 (28)

with initial condition P0(n) = Pr (X (0) = n).
Since the network has a finite state space, these
probabilities are the unique solution of the Kolmogorov
forward equations given in (29) for n ∈ Ωs, t > 0.

The Kolmogorov forward equations can be defined as

dP(n, t)
dt

=


λ(t) ·

(
1(n0 < c0) + 1(n0 = c0 ∩i∈{1,2,3} n + e0i )

)
+

3∑
i=1

λi (t) · (1(ni < ci ) + 1(ni = ci ∩ n − eii ))


P ((n − ei ), t)

+ (n + 1)µ(t)P ((n + ei ), t) +
3∑

i=1

(n0i + 1)µi (t) · P(n + e0i )

−

[
λ(t) ·

(
1(n0 < c0) + 1(n0 = c0 ∩i∈{1,2,3} n + e0i )

)
+

3∑
i=1

λi (t) ·
(
1(ni < ci ) + 1(ni = ci ∩ n − eii )

+ nµ(t) +
3∑

i=1

n0i µi (t)
)]

P (n, t) (29)

where 1(A) is the indicator function for an event A.

Equations in (29) can be written in the operator form as given
by

dP(t)
dt
= P(t) Q(t), P(0) = P0, t > 0 (30)

where P(t) is the vector of probabilities P(n, t). The formal
solution of the equation (30) is given by

P(t) = P0 EQ (t), t ≥ 0 (31)

where EQ (t) is the time-ordered exponential of the generator
Q(t), that is the unique operator solution to the equation

dEQ (t)
dt

= EQ (0) Q(t), t ≥ 0 (32)

where EQ (0) = I, the identity operator. The unique solution
of the Kolmogorov forward equations (29) is then given by
the equation (26). �

The blocking probability formula can then be derived from the closed-form solution (26). The blocking probability for an
operator i (ith operator could be the SNO or a PNO), is then given by

Pbi (t) =
∑

n∈SR

P(n, t)

=

∑
n∈SR

[
ρ(n+n01+n02+n03) (t)

]
·

[
ρ(n1+n11)

1 (t)
]
·

[
ρ(n2+n22)

2 (t)
]
·

[
ρ(n3+n33)

3 (t)
]

(n0 + n01 + n02 + n03)! (n1 + n11)! (n2 + n22)! (n3 + n33)!

∑
n∈Ωs

[
ρ(n+n01+n02+n03) (t)

]
·

[
ρ(n1+n11)

1 (t)
]
·

[
ρ(n2+n22)

2 (t)
]
·

[
ρ(n3+n33)

3 (t)
]

(n0 + n01 + n02 + n03)! (n1 + n11)! (n2 + n22)! (n3 + n33)!

∀ n ∈ Ωs (33)

where the set SR is the restricted state space, and varies for the SNO and PNOs. For the SNO, it is defined as

SR =
{
n ∈ Ωs | (n0 = c0 ∩ n01 + n11 = c′1 ∩ n02 + n22 = c′2 ∩ n03 + n33 = c′3)

}
, (34)

and for the ith PNO, SR can be replaced by Si and defined as

Si =
{
n ∈ Ωs | (ni = ci ∩ n0i + nii = c′i )

}
, i = 1, 2, 3. (35)
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P(n, t) = K −1

[
ρ(n+n01+n02+n03) (t)

]
·

[
ρ(n1+n11)

1 (t)
]
·

[
ρ(n2+n22)

2 (t)
]
·

[
ρ(n3+n33)

3 (t)
]

(n0 + n01 + n02 + n03)! (n1 + n11)! (n2 + n22)! (n3 + n33)!
∀ n ∈ Ωs (26)

where K is the normalizing constant and given by

K =
∑

n∈Ωs

[
ρ(n+n01+n02+n03) (t)

]
·

[
ρ(n1+n11)

1 (t)
]
·

[
ρ(n2+n22)

2 (t)
]
·

[
ρ(n3+n33)

3 (t)
]

(n0 + n01 + n02 + n03)! (n1 + n11)! (n2 + n22)! (n3 + n33)!
. (27)

2) case 2: SNO is sharing with two PNOs: When two
primary operators (1 and 2) is sharing with the SNO, the
product form solution (26) takes the following form

P(n, t) = K −1

[
ρ(n+n01+n02) (t)

]
·

[
ρ(n1+n11)

1 (t)
]
·

[
ρ(n2+n22)

2 (t)
]

(n0 + n01 + n02)! (n1 + n11)! (n2 + n22)!
∀ n ∈ Ωs

(36)
where

K =
∑

n∈Ωs

[
ρ(n+n01+n02) (t)

]
·

[
ρ(n1+n11)

1 (t)
]
·

[
ρ(n2+n22)

2 (t)
]

(n0 + n01 + n02)! (n1 + n11)! (n2 + n22)!
.

(37)
The blocking probability formula for the ith operator can

be given by

Pbi (t) =
∑

n∈SR

P(n, t)

=

∑
n∈SR

[
ρ(n+n01+n02) (t)

]
·

[
ρ(n1+n11)

1 (t)
]
·

[
ρ(n2+n22)

2 (t)
]

(n0 + n01 + n02)! (n1 + n11)! (n2 + n22)!

∑
n∈Ωs

[
ρ(n+n01+n02) (t)

]
·

[
ρ(n1+n11)

1 (t)
]
·

[
ρ(n2+n22)

2 (t)
]

(n0 + n01 + n02)! (n1 + n11)! (n2 + n22)!

∀ n ∈ Ωs (38)

where the set SR is again the restricted state space, and varies
for the SNO and PNOs. For the SNO, it is defined as

SR =
{
n ∈ Ωs | (n0 = c0 ∩ n01 + n11 = c′1 ∩ n02 + n22 = c′2)

}
,

(39)
and for the ith PNO, SR can be replaced by Si and defined as

Si =
{
n ∈ Ωs | (ni = ci ∩ n0i + nii = c′i )

}
, i = 1, 2. (40)

3) case 3: SNO is sharing with one PNO: Under the sharing
agreement when only the primary operator 1 is sharing with
the secondary operator the equation (26) takes the following
form

P(n, t) = K −1

[
ρ(n0+n01) (t)

]
·

[
ρ(n1+n11)

1 (t)
]

(n0 + n01)! (n1 + n11)!
∀ n ∈ Ωs

(41)

where

K =
∑

n∈Ωs

[
ρ(n0+n01) (t)

]
·

[
ρ(n1+n11)

1 (t)
]

(n0 + n01)! (n1 + n11)!
. (42)

The blocking probability formula for the ith operator is
given by

Pbi (t) =
∑

n∈SR

P(n, t)

=

∑
n∈SR

[
ρ(n+n01) (t)

]
·

[
ρ(n1+n11)

1 (t)
]

(n0 + n01)! (n1 + n11)!

∑
n∈Ωs

[
ρ(n+n01) (t)

]
·

[
ρ(n1+n11)

1 (t)
]

(n0 + n01)! (n1 + n11)!

∀ n ∈ Ωs (43)

where the set SR is again the restricted state space, and varies
for the SNO and PNOs. For the SNO, it is defined as

SR =
{
n ∈ Ωs | (n0 = c0 ∩ n01 + n11 = c′1)

}
, (44)

and for the ith PNO, SR can be replaced by S1 and defined as

S1 =
{
n ∈ Ωs | (n1 = c1 ∩ n01 + n11 = c′1)

}
. (45)

IV. RESULTS AND ANALYSIS

In this section, we show the analysis of optimal borrowing
solutions by Algorithms 1 and 3 corresponding to the cost
minimization and profit maximization with restricted budget
scenarios, respectively. To explore the advantages of the pro-
posed formulations, we compare the results from Algorithm
1 and 3 with a heuristic spectrum selection formulation by
Algorithm 2 and 4, respectively.

We simulate the functionalities of the network management,
which are necessary to generate the optimal solution and to
compare with the heuristic spectrum selection algorithms. We
consider one SNO and four PNOs (N = 4) to simulate the
dynamics of the merchant mode resource sharing mechanism.
Some parameters are determined randomly by the algorithms
with specific distribution (e.g., λi , µi , wi) and other param-
eters are preset (e.g., L, pi j ). The algorithms are tested for
different scenarios subject to those network parameters.

A. Cost analysis under target performance (Problem 1)

In the simulation, we consider the PNOs spectral usage
for all cells L, where four base stations of primary network
operators in each cell are deployed (collocated topology), e.g.,
the case in densely populated cities. The demand of service for
each provider (primary or secondary) vary over time and loca-
tion. We assume the spectral utilisation of secondary provider
at time interval t is high whereas the primary operators are
underloaded in the same time interval and at the same location.
The number of idle spectrum resources of PNOs and the level
of spectrum demand of the SNO vary over time and location.
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(a) (b)

Fig. 2: Cost with optimal and heuristic algorithms for (a) per cell and (b) for varying number of cells.

The PNOs charge the SNO at variable rates. The charges
may be assessed by the market on the basis of the current
supply-demand balance for each individual operator at each
cell and possibly other factors [36]. However, we set limits to
the price of unit bandwidth as maximum X(max) and minimum
price X(min) to structure the problem space. For the purpose
of analysis, we parametrise the borrowing cost as

ci j k (t) =
{
ci j k (t) | X(min) ≤ ci j k (t) ≤ X(max)

}
, (46)

where ci j k (t) follows a uniform distribution from [X(min) = 3,
X(max) = 9]. We keep the difference between X(max) and
X(min) relatively small at all cells. This assumption captures
the highly competitive nature of the market economic en-
vironment. We determine the admission cost per unit band-
width based on a discrete uniform random variables. In our
mathematical model all possible variations of the available
bandwidth values ai j k (t) to provide the SNO demand are
considered. This assumption provides realistic scenarios where
PNOs could have different values of leasable spectrum re-
sources. More details about the simulation parameters are
given in Table I.

At time t and in each cell i, the SNO has a particular
blocking probability target pi j . By considering the SNO’s
expected traffic load λi j in the next time interval, the available
capacity wi j and service rate µi j , each cell determines its
required number of channels ri j (t).

TABLE I: Simulation parameters.

Parameter Value(s) (Problem 1) Value(s) (Problem 2)
L 100 100
M 1 1
N 4 4

pi j 0.01 0.01
λi j 10 (40, 120)
µi j 1 (1, 5)
wi j 1 (1, 5)
ci j k (3, 9) (10, 13)
ai j k (5, 10) (30, 40)
bi j −− 50

For comparisons, we simulate the interactions between the
network providers and we solve the resource allocation prob-
lem by the optimal and the heuristic allocation as described
in Algorithms 1 and 2 , respectively. For the simulation of
the heuristic allocation, each cell i makes heuristic selection
of aggregated channels for dynamic access from the set
{ai j k } which are collocated in the same cell. The selection
of aggregated channels is performed regardless of the ad-
mission cost associated with the choice of selected channels.
Algorithm 2 is allowed to perform spectrum borrowing until
the demand is satisfied, assuming

∑Ni j

k=1 ai j k (t) ≥ ri j (t). If∑Ni j

k=1 ai j k (t) < ri j (t) then the algorithm takes all available
bandwidths, however, the target blocking probability will not
be satisfied, such that, P(bnew) (t) < pi j (t).

For the Algorithm 1, the cells of SNO select the combi-
nation {xi j k } with the lowest admission cost from the set
{ai j k (t)}, ∀k, i, to achieve the optimal channel borrowing
admission costs. It is possible that there may be multiple
solutions for the allocation problem which provide the same
required bandwidth to the SNO with different costs.

The main observation here is that the optimal model
achieves lower costs compared to the heuristic algorithm,
except for cells with

∑Ni j

k=1 ai j k (t) < ri j (t), see Figure 2a.
It is also observed that the total borrowing cost of both the
heuristic and optimal configuration vary in every cell due to
the stochastic nature of the costs and number of available
channels.

If we consider the admission cost for large number of cells,
as we can see from Figure 2b, we notice that as the number of
cells increase, the difference in cost between the heuristic and
the optimal selection algorithm becomes larger, which implies
substantial savings for operators with large territories when
the optimal algorithm is used.

We also investigate the effect of target blocking probability
on the admission cost. In Figure 3 we show the results for
different target blocking probabilities ranging from 0−0.9 for
a single cell. We clearly see that as pi j → 0, the admission cost
increases for both algorithms. However, the optimal algorithm
(Algorithm 1) provides lower borrowing cost for most of the
points.
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Fig. 3: Effect of varying target blocking probability on cost
for optimal and heuristic algorithms.

Fig. 4: Effect of borrowing on bandwidth acquisition for the
optimal and heuristic algorithms.

The total number of aggregated channels which are ac-
quired through borrowing by using Algorithms 1 and 2 is
equal, see Figure 4. This is because both algorithms allow
channels to be acquired until a certain grade of service is
reached or until all channels from the available bandwidths
of primary operators {ai j k } are consumed. This also implies
that Prand

(bnew) (t) = Popt
(bnew) (t), where Prand

(bnew) (t) results from using
the heuristic algorithm 1 and Prand

(bnew) (t) results from using
Algorithm 2.

B. Expected profit under budget constraints analysis (Problem
2)

The objective of the SNO can be described from both
economic and system performance perspective. Firstly, the
SNO aims to lower the blocking probability for its subscribers.
Secondly, the SNO attempts to maximise its profit by leasing
additional spectrum from the PNOs in terms of cost and in-
trinsic quality. However, since network operators often operate
with limited budget e.g., SNO can only spend bi j (t) amount of
resources/money at a cell i and time interval t. This is imposed
by the government and regulatory bodies to keep the fairness
of spectrum leasing among network operators.

To demonstrate the gain of the optimal algorithm, detailed
investigation has been made and the results are compared with
the heuristic allocation algorithm (see Figure 5a). The figure

shows the optimal algorithm achieves a substantial gain in
comparison to the heuristic allocation approach. However, both
algorithms provide acceptable efficiency in terms of GoS. We
also notice that as the number of cells increase the profit of
the SNO gets larger, see Figure 5b.

Figure 6 shows the effect of budget and target blocking
probability on achievable profit with varying budget expendi-
ture between 0 − 500 and target blocking probability between
0 − 0.8 for a single cell. It is clear that as we increase the
budget further bi j → 500, the profit increases with respect to
the increase of budget and demand. However, as the budget
reaches a certain value, the profit does not increase because
the budget is larger than required.

We also study how the optimal allocation based on profit
maximisation affects the amount of acquired bandwidths.
With number of cells between 1 − 100, we compare the two
algorithms presented in problem 2, see Figure 7. We find
that, the optimal algorithm can achieve higher number of
aggregated channels due to the higher efficiency in spectrum
borrowing under the restricted budget.

C. Expected profit under budget constraints with multiple
types of services (Problem 2)

In the above analysis, we considered only one type of
spectrum band (M = 1), which is provided to users at all cells
(e.g., 900 MHz). In a more general model, different types of
bands (e.g., 900 MHz, 2.3-2.4 GHz and 2.40-2.4835 GHz) can
be operated by one network operators. Different bands provide
different quality in the mobile broadband services [12]. The
measures of quality include data rate and coverage. Therefore,
they cannot be treated equally. In the proposed algorithms, we
added a functionality to allow the trading to be managed more
effectively by assigning each cell with a particular band type.
In order to quantify the impact of the proposed algorithms we
simulated a network which could support three different bands,
(M = 3). We also tested the algorithms with two different
budgets. In the simulation of 10 cells and allocated budget of
50 and 500 for each cell, we observed a markedly increased
profit in both cases, see Figure 8. We can also see from the
figures (top and bottom figures) that in all types of bands, the
optimal algorithm outperforms its heuristic counterpart.

D. Impact on the performance of the operators

To analyze the impact of unilateral deviation strategy of
the PNOs, we used the closed form formulae presented in
Subsection III-G to compute the blocking probability of oper-
ators. The arrival processes involved in all operators are non-
homogenous Poisson with rates λ, λ1, λ2, and λ3, respectively.
The offered loads are λ/µ and λi/µi for the secondary and
ith PNO, respectively. The number of aggregated channels and
traffic intensities in each operator are independent as shown
in table II. The results show that the operators could obtain an
actual blocking probability values to determine their benefits
when they engage in spectrum trading.

In Figure 9a, we observe the performance of the SNO by
varying the traffic load at the PNOs. If we fix a particular
value of traffic intensity at the SNO (ρ = 15) and change it for
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(a) (b)

Fig. 5: Profit using the optimal and heuristic algorithms for (a) per cell and (b) for varying number of cells.

Fig. 6: Expected profit of the SNO for spectrum borrowing
with target blocking probability = 0 to 0.8 and budget = 0 to
500.

Fig. 7: Bandwidth acquisition of the SNO for spectrum bor-
rowing by the optimal and heuristic algorithms.

the PNOs, then the SNO’s blocking probability increases due
to the available capacity for sharing (c′1, c′2 and c′3) becomes
overloaded by the PNOs’ own traffic. We notice that the
severity of traffic intensity change in the PNOs affects the
performance of the SNO.

To maintain the GoS, SNO should be able to limit the
resulting interference, caused by each PNO, by increasing the

Fig. 8: Effect of spectrum borrowing on profit with budget
= 50 (top) and budget= 500 (bottom).

frequency of trading windows. More specifically, the trading
window is repeated more regularly to recompense the lost
shared capacity caused by the deviation mechanism of the
PNOs.

In Figure 9b, we analyse the impact of change in state
of the PNOs from overloaded to underloaded. As the shared
capacity becomes ample to meet the SNO’s demand, we notice
a significant reduction in blocking probability at all operators.
The results demonstrate that the derived blocking probabilities
can provide a crucial insight to the sharing strategies between
operators.

V. CONCLUSION

In this paper, we presented two finite horizon nonlinear
optimization algorithms to solve two optimization problems
for dynamic spectrum sharing. The efficiency of the proposed
algorithms is compared with their corresponding heuristic
algorithms. We also presented the post-optimization perfor-
mance analysis of the SNO and PNOs through blocking prob-
ability, which provides useful details about spectrum sharing
strategy.

The optimization problems investigated by considering a
comprehensive process of delivering the secondary network
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TABLE II: Configurations used in Figure 9a and 9b.

Number of channels Load (ρ)
SNO PNO 1 PNO 2 PNO 3 SNO PNO 1 PNO 2 PNO 3
c c1 c′1 c2 c′2 c3 c′3 ρ ρ1 ρ2 ρ3

Figure 9a 2 4 2 4 3 6 2 4 (0, 10) (0, 10) (0, 10)
Figure 9b 2 3 (1, 8) 4 (1, 8) 5 (1, 8) 15 4 3 2

(a) (b)

Fig. 9: Blocking probability for each operator when (a) ρ = 4, ρ1, ρ2 and ρ3 are varying from 0 to 10 and (b) c1, c2 and c3
are varying from 1 to 8 (b). See Table II for full configuration details.

operator’s (SNO’s) bandwidth demand and the solution algo-
rithms ensured that either minimum cost of bandwidth borrow-
ing or maximum profit under budget restrictions are achieved
depending on the aim of the SNO. In both cases the SNO aims
to achieve a target performance by borrowing spectrum from
other network operators (PNOs) on temporal and spatial basis.
Results obtained from each model are then compared with
results derived from algorithms in which spectrum borrowing
were heuristic. Detailed comparisons are presented and they
showed that the gain in the results obtained from our pro-
posed stochastic-optimization framework is markedly higher
than heuristic borrowing algorithms. Our proposed approaches
facilitate a dynamic purchasing (also called automation of
licensing) scheme for such complex problems, which provide
incentives to the network operators wishing to adopt dynamic
spectrum sharing as well as substantial benefits for efficient
use of spectrum. The proposed algorithms showed significant
opportunities to increase spectrum utilisation while keeping
GoS at a particular level and ensuring minimum cost. We also
shown that our proposed optimization solution not only reduce
the total borrowing cost of the SNO, but also finds maximum
spectrum access under any allocated budget.

A major challenge with the spectrum sharing optimization
models is to guarantee the operational grade of service (GoS)
under different sharing protocols. Although a vast amount of
literature addressed various spectrum sharing issues very little
has discussed the post-optimization results which are crucial
for the operators to gain the detailed insight and final GoS.
To study these issues and provide the final GoS, we derived
the blocking probability behavior using a time-dependent con-
tinuous time Markov chain framework under various settings.
Results showed that the final GoS is largely affected by the
increase of traffic at the PNOs and the amount of shared

resources. This post-optimization analysis of spectrum sharing
among the operators is an emerging topic that requires further
research that would cover other issues, for instance, different
sharing strategies and configurations.
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