1,812 research outputs found

    A dynamic gradient approach to Pareto optimization with nonsmooth convex objective functions

    Full text link
    In a general Hilbert framework, we consider continuous gradient-like dynamical systems for constrained multiobjective optimization involving non-smooth convex objective functions. Our approach is in the line of a previous work where was considered the case of convex di erentiable objective functions. Based on the Yosida regularization of the subdi erential operators involved in the system, we obtain the existence of strong global trajectories. We prove a descent property for each objective function, and the convergence of trajectories to weak Pareto minima. This approach provides a dynamical endogenous weighting of the objective functions. Applications are given to cooperative games, inverse problems, and numerical multiobjective optimization

    Process Knowledge-guided Autonomous Evolutionary Optimization for Constrained Multiobjective Problems

    Get PDF
    Various real-world problems can be attributed to constrained multi-objective optimization problems. Although there are various solution methods, it is still very challenging to automatically select efficient solving strategies for constrained multi-objective optimization problems. Given this, a process knowledge-guided constrained multi-objective autonomous evolutionary optimization method is proposed. Firstly, the effects of different solving strategies on population states are evaluated in the early evolutionary stage. Then, the mapping model of population states and solving strategies is established. Finally, the model recommends subsequent solving strategies based on the current population state. This method can be embedded into existing evolutionary algorithms, which can improve their performances to different degrees. The proposed method is applied to 41 benchmarks and 30 dispatch optimization problems of the integrated coal mine energy system. Experimental results verify the effectiveness and superiority of the proposed method in solving constrained multi-objective optimization problems.The National Key R&D Program of China, the National Natural Science Foundation of China, Shandong Provincial Natural Science Foundation, Fundamental Research Funds for the Central Universities and the Open Research Project of The Hubei Key Laboratory of Intelligent Geo-Information Processing.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235hj2023Electrical, Electronic and Computer Engineerin

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    A Coevolutionary Particle Swarm Algorithm for Bi-Level Variational Inequalities: Applications to Competition in Highway Transportation Networks

    Get PDF
    A climate of increasing deregulation in traditional highway transportation, where the private sector has an expanded role in the provision of traditional transportation services, provides a background for practical policy issues to be investigated. One of the key issues of interest, and the focus of this chapter, would be the equilibrium decision variables offered by participants in this market. By assuming that the private sector participants play a Nash game, the above problem can be described as a Bi-Level Variational Inequality (BLVI). Our problem differs from the classical Cournot-Nash game because each and every player’s actions is constrained by another variational inequality describing the equilibrium route choice of users on the network. In this chapter, we discuss this BLVI and suggest a heuristic coevolutionary particle swarm algorithm for its resolution. Our proposed algorithm is subsequently tested on example problems drawn from the literature. The numerical experiments suggest that the proposed algorithm is a viable solution method for this problem
    • …
    corecore