58,304 research outputs found

    Security Issues in Manet and Counter-Measures

    Get PDF
    Mobile Ad-hoc Networks (MANET) are self-configuring networks of mobile nodes connected by wireless links. These nodes are able to move randomly and organize themselves and thus, the network's wireless architecture change rapidly and unpredictably. MANETs are usually utilized in situations of emergency for temporary operations or when there are no resources to set up elaborate networks. Mobile Ad-hoc Networks operate in the absence of any fixed infrastructure, which makes them easy to deploy, at the same time however, due to the absence of any fixed infrastructure, it becomes difficult to make use of the existing routing techniques for network services, and this poses a number of challenges in ensuring the security of the communication network, something that is not easily done as many of the demands of network security conflict with the demands of mobile networks due to the nature of the mobile devices (e.g. low power consumption, low processing load). Most of the ad-hoc routing protocols that address security issues rely on implicit trust relationships to route packets among participating nodes. Apart from security objectives like authentication, availability, confidentiality, and integrity, the ad-hoc routing protocols should also address location confidentiality, cooperation fairness and absence of traffic diversion. In this paper we attempt to survey security issues faced by the mobile ad-hoc network environment and provide a classification of the various security mechanisms. We also analyzed the respective strengths and vulnerabilities of the existing routing protocols and proposed a broad and comprehensive frame-work that can provide a tangible solution

    Context Aware Service Oriented Computing in Mobile Ad Hoc Networks

    Get PDF
    These days we witness a major shift towards small, mobile devices, capable of wireless communication. Their communication capabilities enable them to form mobile ad hoc networks and share resources and capabilities. Service Oriented Computing (SOC) is a new emerging paradigm for distributed computing that has evolved from object-oriented and component-oriented computing to enable applications distributed within and across organizational boundaries. Services are autonomous computational elements that can be described, published, discovered, and orchestrated for the purpose of developing applications. The application of the SOC model to mobile devices provides a loosely coupled model for distributed processing in a resource-poor and highly dynamic environment. Cooperation in a mobile ad hoc environment depends on the fundamental capability of hosts to communicate with each other. Peer-to-peer interactions among hosts within communication range allow such interactions but limit the scope of interactions to a local region. Routing algorithms for mobile ad hoc networks extend the scope of interactions to cover all hosts transitively connected over multi-hop routes. Additional contextual information, e.g., knowledge about the movement of hosts in physical space, can help extend the boundaries of interactions beyond the limits of an island of connectivity. To help separate concerns specific to different layers, a coordination model between the routing layer and the SOC layer provides abstractions that mask the details characteristic to the network layer from the distributed computing semantics above. This thesis explores some of the opportunities and challenges raised by applying the SOC paradigm to mobile computing in ad hoc networks. It investigates the implications of disconnections on service advertising and discovery mechanisms. It addresses issues related to code migration in addition to physical host movement. It also investigates some of the security concerns in ad hoc networking service provision. It presents a novel routing algorithm for mobile ad hoc networks and a novel coordination model that addresses space and time explicitly

    Mac layer misbehaviors in mobile ad hoc networks

    Get PDF
    MAC misbehavior in mobile ad hoc networks (MANET) is relatively new and unexplored in the literature. Different from traditional wireline networks, the unique nature of MANETs has opened new challenges in the network design. An Mobile Ad Hoc Network (MANET) is a collection of wireless mobile hosts forming a temporary network without the aid of any established infrastructure or centralized administration. In such an environment, one mobile host may need the aid of other hosts to communicate with the destination. However, failed data transmission due to selfish or malicious or hybrid node misbehavior and faulty nodes can severely degrade the overall network performance. Hence, a well-behaved node needs to adaptively change its cooperation level to cope with node misbehavior. In this thesis, we first briefly overview the existing security issues in ad hoc network routing and MAC layers. We explain security methods such as economic incentives, secure routing by cryptography and detection system against greedy behavior alleviate some of the problems, but not all

    Intrusion Detection in Mobile Ad Hoc Networks Using Transductive Machine Learning Techniques

    Get PDF
    This thesis presents a research whose objective is to design an intrusion detection model for Mobile Ad hoc NETworks (MANET). MANET is an autonomous system consisting of a group of mobile nodes with no infrastructure support. The MANET environment is particularly vulnerable because of the characteristics of mobile ad hoc networks such as open medium, dynamic topology, distributed cooperation, and constrained capability. Unfortunately, the traditional mechanisms designed for protecting networks are not directly applicable to MANETs without modifications. In the past decades, machine learning methods have been successfully used in several intrusion detection methods because of their ability to discover and detect novel attacks. This research investigates the use of a promising technique from machine learning to designing the most suitable intrusion detection for this challenging network type. The proposed algorithm employs a combined model that uses two different measures (nonconformity metric measures and Local Distance-based Outlier Factor (LDOF)) to improve its detection ability. Moreover, the algorithm can provide a graded confidence that indicates the reliability of the classification. In machine learning algorithm, choosing the most relevant features for each attack is a very important requirement, especially in mobile ad hoc networks where the network topology dynamically changes. Feature selection is undertaken to select the relevant subsets of features to build an efficient prediction model and improve intrusion detection performance by removing irrelevant features. The transductive conformal prediction and outlier detection have been employed for feature selection algorithm. Traditional intrusion detection techniques have had trouble dealing with dynamic environments. In particular, issues such as collects real time attack related audit data and cooperative global detection. Therefore, the researcher is motivated to design a new intrusion detection architecture which involves new detection technique to efficiently detect the abnormalities in the ad hoc networks. The proposed model has distributed and cooperative hierarchical architecture, where nodes communicate with their region gateway node to make decisions. To validate the research, the researcher presents case study using GLOMOSIM simulation platform with AODV ad hoc routing protocols. Various active attacks are implemented. A series of experimental results demonstrate that the proposed intrusion detection model can effectively detect anomalies with low false positive rate, high detection rate and achieve high detection accuracy

    Smart detection and prevention procedure for DoS attack in MANET

    Get PDF
    A self-organized wireless communication short-lived network containing collection of mobile nodes is mobile ad hoc network (MANET). The mobile nodes communicate with each other by wireless radio links without the use of any pre-established fixed communication network infrastructure or centralized administration, such as base stations or access points, and with no human intervention. In addition, this network has potential applications in conference, disaster relief, and battlefield scenario, and have received important attention in current years. There is some security concern that increases fear of attacks on the mobile ad-hoc network. The mobility of the NODE in a MANET poses many security problems and vulnerable to different types of security attacks than conventional wired and wireless networks. The causes of these issues are due to their open medium, dynamic network topology, absence of central administration, distributed cooperation, constrained capability, and lack of clear line of defense. Without proper security, mobile hosts are easily captured, compromised, and attacked by malicious nodes. Malicious nodes behavior may deliberately disrupt the network so that the whole network will be suffering from packet losses. One of the major concerns in mobile ad-hoc networks is a traffic DoS attack in which the traffic is choked by the malicious node which denied network services for the user. Mobile ad-hoc networks must have a safe path for transmission and correspondence which is a serious testing and indispensable issue. So as to provide secure communication and transmission, the scientist worked explicitly on the security issues in versatile impromptu organizations and many secure directing conventions and security measures within the networks were proposed. The goal of the work is to study DoS attacks and how it can be detected in the network. Existing methodologies for finding a malicious node that causes traffic jamming is based on node’s retains value. The proposed approach finds a malicious node using reliability value determined by the broadcast reliability packet (RL Packet). In this approach at the initial level, every node has zero reliability value, specific time slice, and transmission starts with a packet termed as reliability packet, node who responded properly in specific time, increases its reliability value and those nodes who do not respond in a specific time decreases their reliability value and if it goes to less than zero then announced that it’s a malicious node. Reliability approach makes service availability and retransmission time

    A spontaneous ad hoc network to share www access

    Get PDF
    In this paper, we propose a secure spontaneous ad-hoc network, based on direct peer-to-peer interaction, to grant a quick, easy, and secure access to the users to surf the Web. The paper shows the description of our proposal, the procedure of the nodes involved in the system, the security algorithms implemented, and the designed messages. We have taken into account the security and its performance. Although some people have defined and described the main features of spontaneous ad-hoc networks, nobody has published any design and simulation until today. Spontaneous networking will enable a more natural form of wireless computing when people physically meet in the real world. We also validate the success of our proposal through several simulations and comparisons with a regular architecture, taking into account the optimization of the resources of the devices. Finally, we compare our proposal with other caching techniques published in the related literature. The proposal has been developed with the main objective of improving the communication and integration between different study centers of low-resource communities. That is, it lets communicate spontaneous networks, which are working collaboratively and which have been created on different physical places.Authors want to give thanks to the anonymous reviewers for their valuable suggestions, useful comments, and proofreading of this paper. This work was partially supported by the Ministerio de Educacion y Ciencia, Spain, under Grant no. TIN2008-06441-C02-01, and by the "Ayudas complementarias para proyectos de I+D para grupos de calidad de la Generalitat Valenciana" (ACOMP/2010/005).Lacuesta Gilaberte, R.; Lloret, J.; García Pineda, M.; Peñalver Herrero, ML. (2010). A spontaneous ad hoc network to share www access. EURASIP Journal on Wireless Communications and Networking. 2010:1-16. https://doi.org/10.1155/2010/232083S1162010Preuß S, Cap CH: Overview of spontaneous networking-evolving concepts and technologies. In Rostocker Informatik-Berichte. Volume 24. Fachbereich Informatik der Universit at Rostock; 2000:113-123.Gallo S, Galluccio L, Morabito G, Palazzo S: Rapid and energy efficient neighbor discovery for spontaneous networks. Proceedings of the 7th ACM International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, October 2004, Venice, ItalyLatvakoski J, Pakkala D, Pääkkönen P: A communication architecture for spontaneous systems. IEEE Wireless Communications 2004, 11(3):36-42. 10.1109/MWC.2004.1308947Zarate Silva VH, De Cruz Salgado EI, Quintana FR: AWISPA: an awareness framework for collaborative spontaneous networks. Proceedings of the 36th ASEE/IEEE Frontiers in Education Conference (FIE '06), October 2006 1-6.Feeney LM, Ahlgren B, Westerlund A: Spontaneous networking: an application-oriented approach to ad hoc networking. IEEE Communications Magazine 2001, 39(6):176-181. 10.1109/35.925687Perkins CE, Bhagwat P: Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. Proceedings of the Conference on Communications Architectures, Protocols and Applications (SIGCOMM '94), August 1994 234-244.Johnson DB, Maltz DA, Broch J: DSR: The Dynamic Source Routing Protocol for Multihop Wireless Ad Hoc Networks, Ad Hoc Networking. Addison-Wesley Longman Publishing, Boston, Mass, USA; 2001.Perkins C, Belding-Royer E, Das S: Ad hoc on-demand distance vector (AODV) routing. RFC 3561, July 2003Park V, Corson MS: IETF MANET Internet Draft "draft-ietf-MANET-tora-spe03.txt". Novemmer 2000.Viana AC, De Amorim MD, Fdida S, de Rezende JF: Self-organization in spontaneous networks: the approach of DHT-based routing protocols. Ad Hoc Networks 2005, 3(5):589-606.Gilaberte RL, Herrero LP: IP addresses configuration in spontaneous networks. Proceedings of the 9th WSEAS International Conference on Computers, July 2005, Athens, GreeceViana AC, Dias de Amorim M, Fdida S, de Rezende JF: Self-organization in spontaneous networks: the approach of DHT-based routing protocols. Ad Hoc Networks 2005, 3(5):589-606.Alvarez-Hamelin JI, Carneiro Viana A, Dias De Amorim M: Architectural considerations for a self-configuring routing scheme for spontaneous networks.,Tech. Rep. 1 October 2005.Lacuesta R, Peñalver L: Automatic configuration of ad-hoc networks: establishing unique IP link-local addresses. Proceedings of the International Conference on Emerging Security Information, Systems and Technologies (SECURWARE '07), October 2007, Valencia, SpainFoulks EF: Social network therapies and society: an overview. Contemporary Family Therapy 1985, 3(4):316-320.Wang Y, Wu H: DFT-MSN: the delay/fault-tolerant mobile sensor network for pervasive information gathering. Proceedings of the 25th IEEE International Conference on Computer Communications (INFOCOM '06), April 2006Kindberg T, Zhang K: Validating and securing spontaneous associations between wireless devices. In Proceedings of the 6th Information Security Conference (ISC '03), 2003. Springer; 44-53.Al-Jaroodi J: Routing security in open/dynamic mobile ad hoc networks. The International Arab Journal of Information Technology 2007, 4(1):17-25.Stajano F, Anderson RJ: The resurrecting duckling: security issues for ad-hoc wireless networks. Proceedings of the 7th International Workshop on Security Protocols, April 1999 172-194.Zhou L, Haas ZJ: Securing ad hoc networks. IEEE Network 1999, 13(6):24-30. 10.1109/65.806983Hauspie M, Simplot-Ryl I: Cooperation in ad hoc networks: enhancing the virtual currency based models. Proceedings of the 1st International Conference on Integrated Internet Ad Hoc and Sensor Networks (InterSense '06), May 2006, Nice, FranceWang X, Dai F, Qian L, Dong H: A way to solve the threat of selfish and malicious nodes for ad hoc networks. Proceedings of the International Symposium on Information Science and Engieering (ISISE '08), December 2008, Shanghai, China 1: 368-370.Kargl F, Klenk A, Weber M, Schlott S: Sensors for detection of misbehaving nodes in MANETs. Detection of Intrusion and Malware and Vulnerability Assessment (DIMVA '04), July 2004, Dortmund, Germany 83-97.Kargl F, Geiss A, Scholott S, Weber M: Secure dynamic source routing. Proceedings of the 38th Annual Hawaii International Conference on System Sciences (HICSS '05), January 2005, Big Island, Hawaii, USAGokhale S, Dasgupta P: Distributed authentication for peer-to-peer networks. Proceedings of the Symposium on Applications and the Internet Workshops, January 2003 347-353.Capkun S, Buttyán L, Hubaux J-P: Self-organized public-key management for mobile ad hoc networks. IEEE Transactions on Mobile Computing 2003, 2(1):52-64. 10.1109/TMC.2003.1195151Stajano F, Anderson R: The resurrecting duckling security issues for ad-hoc wireless networks. In Proceedings of the 7th International Workshop on Security Protocols, 1999, Berlin, Germany, Lecture Notes in Computer Science. Volume 1796. Springer; 172-194.Balfanz D, Smetters DK, Stewart P, Wong HC: Talking to strangers: authentication in ad-hoc wireless networks. Proceedings of the International Symposium on Network and Distributed Systems Security (NDSS '02), February 2002, San Diego, Calif, USABarbara D, Imielinski T: Sleepers and workaholics: caching strategies in mobile environments. Proceedings of the ACM SIGMOD International Conference on Management of Data, May 1994 1-12.Cao G: A scalable low-latency cache invalidation strategy for mobile environments. IEEE Transactions on Knowledge and Data Engineering 2003, 15(5):1251-1265. 10.1109/TKDE.2003.1232276Hu Q, Lee D: Cache algorithms based on adaptive invalidation reports for mobile environments. Cluster Computing 1998, 1(1):39-50. 10.1023/A:1019012927328Jing J, Elmagarmid A, Helal A, Alonso R: Bit-sequences: an adaptive cache invalidation method in mobile client/server environments. Mobile Networks and Applications 1997, 2(2):115-127. 10.1023/A:1013616213333Kahol A, Khurana S, Gupta S, Srimani P: An efficient cache management scheme for mobile environment. Proceedings of the 20th International Conference on Distributied Computing System (ICDCS '00), April 2000, Taipei, Taiwan 530-537.Kazar M: Synchronization and caching issues in the Andrew file system. Proceedings of USENIX Conference, February 1988, Dallas, Tex, USA 27-36.Roussopoulos M, Baker M: CUP: controlled update propagation in peer-to-peer networks. Proceedings of USENIX Annual Technical Conference, June 2003, San Antonio, Tex, USASandberg S, Kleiman S, Goldberg D, Walsh D, Lyon B: Design and implementation of the sun network file system. Proceedings of USENIX Summer Conference, June 1985, Portland, Ore, USA 119-130.Wu K, Yu PS, Chen M: Energy-efficient caching for wireless mobile computing. Proceedings of the 12th IEEE International Conference on Data Engineering, February-March 1996, New Orleans, La, USA 336-343.Yeung MKH, Kwok Y-K: Wireless cache invalidation schemes with link adaptation and downlink traffic. IEEE Transactions on Mobile Computing 2005, 4(1):68-83.Wessels D, Claffy K: Internet cache protocol (IC) v.2. http://www.ietf.org/rfc/rfc2186.txtFan L, Cao P, Almeida J, Broder AZ: Summary cache: a scalable wide-area web cache sharing protocol. IEEE/ACM Transactions on Networking 2000, 8(3):281-293. 10.1109/90.851975Dykes SG, Robbins KA: A viability analysis of cooperative proxy caching. Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '01), April 2001, Anchorage, Alaska, USA 3: 1205-1214.Wessels D, Claffy K: RFC 2186: Internet cache protocol (ICP), version 2. The Internet Engineering Taskforce, September 1997Wessels D, Claffy K: RFC 2187: application of internet cache protocol (ICP), version 2. The Internet Engineering Taskforce, September 1997Ren Q, Dunhan MH: Using semantic caching to manage location dependent data in mobile computing. Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, August 2000, Boston, Mass, USA 210-221.Lim S, Lee W-C, Cao G, Das CR: Cache invalidation strategies for internet-based mobile ad hoc networks. Computer Communications 2007, 30(8):1854-1869. 10.1016/j.comcom.2007.02.020Park B-N, Lee W, Lee C: QoS-aware internet access schemes for wireless mobile ad hoc networks. Computer Communications 2007, 30(2):369-384. 10.1016/j.comcom.2006.09.004Hara T: Effective replica allocation in ad hoc networks for improving data accessibility. Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '01), April 2001, Anchorage, Alaska, USA 1568-1576.Papadopouli M, Schulzrinne H: Effects of power conservation, wireless converage and cooperation on data dissemination among mobile devices. Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc '01), October 2001, Long Beach, Calif, USA 117-127.Can P, Irani S: Cost-aware WWW proxy caching algorithms. Proceedings of the USENIX Symposium on lnternet Technology and Systems, December 1997Rizzo L, Vicisano L: Replacement policies for a proxy cache. IEEE/ACM Transactions on Networking 2000, 8(2):158-170. 10.1109/90.842139Williams S, Abrams M, Strandridge CR, Abdulla G, Fox EA: Removal policies in network caches for world-wide web documents. Proceedings of the ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, August 1996, Palo Alto, Calif, USA 293-305.Hara T: Replica allocation in ad hoc networks with period data update. Proceedings of the 3rd International Conference on Mobile Data Management (MDM '02), July 2002, Edmonton, Canada 79-86.Papadopouli M, Schulzrinne H: Effects of power conservation, wireless coverage and cooperation on data dissemination among mobile devices. Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc '01), October 2001, Long Beach, Calif, USA 117-127.Sailhan F, Issarny V: Cooperative caching in ad hoc networks. Proceedings of the 4th International Conference on Mobile Data Management (MDM '03), January 2003, Melbourne, Australia, Lecture Notes in Computer Science 2574: 13-28.Yin L, Cao G: Supporting cooperative caching in ad hoc networks. IEEE Transactions on Mobile Computing 2006, 5(1):77-89.Karumanchi G, Muralidharan S, Prakash R: Information dissemination in partitionable mobile ad hoc networks. Proceedings of the 18th IEEE Symposium on Reliable Distributed Systems (SRDS '99), October 1999, Lausanne, Switzerland 4-13.Corson MS, Macker JP, Cirincione GH: Internet-based mobile ad hoc networking. IEEE Internet Computing 1999, 3(4):63-70. 10.1109/4236.780962Lim S, Lee W-C, Cao G, Das CR: A novel caching scheme for improving internet-based mobile ad hoc networks performance. Ad Hoc Networks 2006, 4(2):225-239. 10.1016/j.adhoc.2004.04.013Opnet Modeler http://www.opnet.com/solutions/network_rd/modeler_wireless.htmlLacuesta R, Lloret J, Garcia M, Peñalver L: Two secure and energy-saving spontaneous ad-hoc protocol for wireless mesh client networks. Journal of Network and Computer Applications. In pres

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Observation-based Cooperation Enforcement in Ad Hoc Networks

    Full text link
    Ad hoc networks rely on the cooperation of the nodes participating in the network to forward packets for each other. A node may decide not to cooperate to save its resources while still using the network to relay its traffic. If too many nodes exhibit this behavior, network performance degrades and cooperating nodes may find themselves unfairly loaded. Most previous efforts to counter this behavior have relied on further cooperation between nodes to exchange reputation information about other nodes. If a node observes another node not participating correctly, it reports this observation to other nodes who then take action to avoid being affected and potentially punish the bad node by refusing to forward its traffic. Unfortunately, such second-hand reputation information is subject to false accusations and requires maintaining trust relationships with other nodes. The objective of OCEAN is to avoid this trust-management machinery and see how far we can get simply by using direct first-hand observations of other nodes' behavior. We find that, in many scenarios, OCEAN can do as well as, or even better than, schemes requiring second-hand reputation exchanges. This encouraging result could possibly help obviate solutions requiring trust-management for some contexts.Comment: 10 pages, 7 figure
    • …
    corecore