79,737 research outputs found

    Waveguide cooling system

    Get PDF
    An improved system is described for cooling high power waveguides by the use of cooling ducts extending along the waveguide, which minimizes hot spots at the flanges where waveguide sections are connected together. The cooling duct extends along substantially the full length of the waveguide section, and each flange at the end of the section has a through hole with an inner end connected to the duct and an opposite end that can be aligned with a flange hole in another waveguide section. Earth flange is formed with a drainage groove in its face, between the through hole and the waveguide conduit to prevent leakage of cooling fluid into the waveguide. The ducts have narrowed sections immediately adjacent to the flanges to provide room for the installation of fasteners closely around the waveguide channel

    A novel evaporative cooling system with a polymer hollow fibre spindle

    Get PDF
    A polymer hollow fibre evaporative cooling system with a novel configuration of fibre bundle is proposed. With the aim to avoid the flow channelling or shielding of adjacent fibres the fibres inside each bundle were made into a spindle shape to maximize contact between the air stream and the fibres. For the porous wall of hollow fibre, the vapour of evaporated water can permeate through it effectively, while the liquid water droplets can be prevented from mixing with the processed air. For various dry bulb temperatures (27 °C, 30 °C, 33 °C, 36 °C and 39 °C) and relative humidity (23%, 32% and 40%) of the inlet air, the cooling performances of the proposed novel evaporative cooling system were experimentally investigated. The variations of outlet air dry bulb temperature, wet bulb effectiveness, dew point effectiveness and cooling capacity with respect to different incoming air dry bulb temperature were studied. The effects of various incoming air Reynolds number on the heat and mass transfer coefficients, heat flux and mass flux across the polymer hollow fibre module were analysed. Experimentally derived non-dimensional heat and mass transfer correlations were compared with other correlations from literature. Due to the proposed spindle shape of hollow fibre bundle, the shielding between adjacent fibres could be mitigated greatly, therefore the heat and mass transfer performance of the proposed system demonstrated significant improvement compared with other designs reported in literature

    Heating and cooling system

    Get PDF
    A heating and cooling apparatus capable of cyclic heating and cooling of a test specimen undergoing fatigue testing is discussed. Cryogenic fluid is passed through a block clamped to the speciment to cool the block and the specimen. Heating cartridges penetrate the block to heat the block and the specimen to very hot temperaures. Control apparatus is provided to alternatively activate the cooling and heating modes to effect cyclic heating and cooling between very hot and very cold temperatures. The block is constructed of minimal mass to facilitate the rapid temperature changes

    Cryogenic cooling system Patent

    Get PDF
    Portable cryogenic cooling system design including turbine pump, cooling chamber, and atomize

    Solar residential heating and cooling system

    Get PDF
    System has been placed in operation to verify technical feasibility of using solar energy to provide residential heating and cooling. Complete system analysis was performed to provide design information

    Cooling system for high speed aircraft

    Get PDF
    The system eliminates the necessity of shielding an aircraft airframe constructed of material such as aluminum. Cooling is accomplished by passing a coolant through the aircraft airframe, the coolant acting as a carrier to remove heat from the airframe. The coolant is circulated through a heat pump and a heat exchanger which together extract essentially all of the added heat from the coolant. The heat is transferred to the aircraft fuel system via the heat exchanger and the heat pump. The heat extracted from the coolant is utilized to power the heat pump. The heat pump has associated therewith power turbine mechanism which is also driven by the extracted heat. The power turbines are utilized to drive various aircraft subsystems, the compressor of the heat pump, and provide engine cooling

    Fill and vent quick disconnect

    Get PDF
    Hydraulic disconnect coupling on ground serving half of spacecraft refrigeration cooling system employs movable center stem for venting and closing nipple poppet. Self sealing poppet quickly connects cooling system to spacecraft without manual work. Recessed sealing surface insures open poppet when stem retracts

    Evaluation of thermal comfort conditions in a classroom equipped with radiant cooling systems and subjected to uniform convective environment

    Get PDF
    The aim of this work is to evaluate numerically the human thermal response that 24 students and 1 teacher feel in a classroom equipped with radiant cooling systems and subjected to uniform convective environments, in lightly warm conditions. The evolution of thermal comfort conditions, using the PMV index, is made by the multi-nodal human thermal comfort model. In this numerical model, that works in transient or steady-state conditions and simulates simultaneously a group of persons, the three-dimensional body is divided in 24 cylindrical and 1 spherical elements. Each element is divided in four parts (core, muscle, fat and skin), sub-divided in several layers, and protected by several clothing layers. This numerical model is divided in six parts: human body thermal system, clothing thermal system, integral equations resolution system, thermoregulatory system, heat exchange between the body and the environment and thermal comfort evaluation. Seven different radiant systems are combined to three convective environments. In the radiant systems (1) no radiant system without warmed curtain, (2) no radiant system with warmed curtain, (3) radiant floors cooling system with warmed curtain, (4) radiant panels cooling system with warmed curtain, (5) radiant ceiling cooling system with warmed curtain, (6) radiant floor and panels cooling system with warmed curtain and (7) radiant ceiling and panels cooling system with warmed curtain are analysed, while in the convective environments (1) without air velocity field and with uniform air velocity field of (2) 0.2 m/s and (3) 0.6 m/s are also analysed. The internal air temperature and internal surfaces temperature are 28 degrees C, the radiant cooling surfaces temperature are 19 degrees C and the warmed internal curtains surfaces temperatures, subjected to direct solar radiation, are 40 degrees C. The numerical model calculates the Mean Radiant Temperature field, the human bodies' temperatures field and the thermal comfort level, for the 25 occupants, for the 21 analysed situations. Without uniform air velocity field, when only one individual radiant cooling system is used, the Predicted Percentage of Dissatisfied people is lowest when the radiant floor cooling system is applied and is highest when the radiant panel cooling system is applied. When are combined the radiant ceiling or the floor cooling systems with the radiant panel cooling system the Predicted Percentage of Dissatisfied people decreases. When the uniform air velocity increases the thermal comfort level, that the occupants are subjected, increases. When the radiant floor cooling system or the combination of radiant floor and panel cooling systems without uniform air velocity field is applied, the Category C is verified for some occupants. However, with a convective uniform air velocity field of 0.2 m/s the Category B is verified and with a convective uniform air velocity field of 0.6 m/s the Category A is verify for some occupants. In the last situation the Category C is verified, in general, for all occupants. (C) 2010 Elsevier Inc. All rights reserved

    Predictive functional control for the temperature control of a chemical batch reactor

    Get PDF
    A predictive functional control (PFC) technique is applied to the temperature control of a pilot-plant batch reactor equipped with a mono-fluid heating/cooling system. A cascade control structure has been implemented according to the process sub-units reactor and heating/cooling system. Hereby differences in the sub-units dynamics are taken into consideration. PFC technique is described and its main differences with a standard model predictive control (MPC) technique are discussed. To evaluate its robustness, PFC has been applied to the temperature control of an exothermic chemical reaction. Experimental results show that PFC enables a precise tracking of the set-point temperature and that the PFC performances are mainly determined by its internal dynamic process model. Finally, results show the performance of the cascade control structure to handle different dynamics of the heating/cooling system

    Oil cooling system for a gas turbine engine

    Get PDF
    A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess fuel control requirements back to the aircraft fuel tank. This increases the fuel pump heat sink and decreases the pump temperature rise without the addition of valving other than normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. In one embodiment, a divider valve is provided to take all excess fuel from either upstream or downstream of the fuel filter and route it back to the tanks, the ratio of upstream to downstream extraction being a function of fuel pump discharge pressure
    corecore