74 research outputs found

    End-systole and end-diastole detection in short axis cine MRI using a fully convolutional neural network with dilated convolutions

    Full text link
    [EN] The correct assessment and characterization of heart anatomy and functionality is usually done through inspection of magnetic resonance image cine sequences. In the clinical setting it is especially important to determine the state of the left ventricle. This requires the measurement of its volume in the end-diastolic and end-systolic frames within the sequence trough segmentation methods. However, the first step required for this analysis before any segmentation is the detection of the end-systolic and end-diastolic frames within the image acquisition. In this work we present a fully convolutional neural network that makes use of dilated convolutions to encode and process the temporal information of the sequences in contrast to the more widespread use of recurrent networks that are usually employed for problems involving temporal information. We trained the network in two different settings employing different loss functions to train the network: the classical weighted cross-entropy, and the weighted Dice loss. We had access to a database comprising a total of 397 cases. Out of this dataset we used 98 cases as test set to validate our network performance. The final classification on the test set yielded a mean frame distance of 0 for the end-diastolic frame (i.e.: the selected frame was the correct one in all images of the test set) and 1.242 (relative frame distance of 0.036) for the end-systolic frame employing the optimum setting, which involved training the neural network with the Dice loss. Our neural network is capable of classifying each frame and enables the detection of the end-systolic and end-diastolic frames in short axis cine MRI sequences with high accuracy.Funding sources This work was partially supported by the Conselleria d'Innovació, Universitats, Ciència i Societat Digital, Generalitat Valenciana (grants AEST/2020/029 and AEST/2021/050) .Pérez-Pelegrí, M.; Monmeneu, JV.; López-Lereu, MP.; Maceira, AM.; Bodi, V.; Moratal, D. (2022). End-systole and end-diastole detection in short axis cine MRI using a fully convolutional neural network with dilated convolutions. Computerized Medical Imaging and Graphics. 99:1-8. https://doi.org/10.1016/j.compmedimag.2022.102085189

    Automated Diagnosis of Cardiovascular Diseases from Cardiac Magnetic Resonance Imaging Using Deep Learning Models: A Review

    Full text link
    In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality globally. CVDs appear with minor symptoms and progressively get worse. The majority of people experience symptoms such as exhaustion, shortness of breath, ankle swelling, fluid retention, and other symptoms when starting CVD. Coronary artery disease (CAD), arrhythmia, cardiomyopathy, congenital heart defect (CHD), mitral regurgitation, and angina are the most common CVDs. Clinical methods such as blood tests, electrocardiography (ECG) signals, and medical imaging are the most effective methods used for the detection of CVDs. Among the diagnostic methods, cardiac magnetic resonance imaging (CMR) is increasingly used to diagnose, monitor the disease, plan treatment and predict CVDs. Coupled with all the advantages of CMR data, CVDs diagnosis is challenging for physicians due to many slices of data, low contrast, etc. To address these issues, deep learning (DL) techniques have been employed to the diagnosis of CVDs using CMR data, and much research is currently being conducted in this field. This review provides an overview of the studies performed in CVDs detection using CMR images and DL techniques. The introduction section examined CVDs types, diagnostic methods, and the most important medical imaging techniques. In the following, investigations to detect CVDs using CMR images and the most significant DL methods are presented. Another section discussed the challenges in diagnosing CVDs from CMR data. Next, the discussion section discusses the results of this review, and future work in CVDs diagnosis from CMR images and DL techniques are outlined. The most important findings of this study are presented in the conclusion section

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Learning associations between clinical information and motion-based descriptors using a large scale MR-derived cardiac motion atlas

    Full text link
    The availability of large scale databases containing imaging and non-imaging data, such as the UK Biobank, represents an opportunity to improve our understanding of healthy and diseased bodily function. Cardiac motion atlases provide a space of reference in which the motion fields of a cohort of subjects can be directly compared. In this work, a cardiac motion atlas is built from cine MR data from the UK Biobank (~ 6000 subjects). Two automated quality control strategies are proposed to reject subjects with insufficient image quality. Based on the atlas, three dimensionality reduction algorithms are evaluated to learn data-driven cardiac motion descriptors, and statistical methods used to study the association between these descriptors and non-imaging data. Results show a positive correlation between the atlas motion descriptors and body fat percentage, basal metabolic rate, hypertension, smoking status and alcohol intake frequency. The proposed method outperforms the ability to identify changes in cardiac function due to these known cardiovascular risk factors compared to ejection fraction, the most commonly used descriptor of cardiac function. In conclusion, this work represents a framework for further investigation of the factors influencing cardiac health.Comment: 2018 International Workshop on Statistical Atlases and Computational Modeling of the Hear

    Computational Methods for Segmentation of Multi-Modal Multi-Dimensional Cardiac Images

    Get PDF
    Segmentation of the heart structures helps compute the cardiac contractile function quantified via the systolic and diastolic volumes, ejection fraction, and myocardial mass, representing a reliable diagnostic value. Similarly, quantification of the myocardial mechanics throughout the cardiac cycle, analysis of the activation patterns in the heart via electrocardiography (ECG) signals, serve as good cardiac diagnosis indicators. Furthermore, high quality anatomical models of the heart can be used in planning and guidance of minimally invasive interventions under the assistance of image guidance. The most crucial step for the above mentioned applications is to segment the ventricles and myocardium from the acquired cardiac image data. Although the manual delineation of the heart structures is deemed as the gold-standard approach, it requires significant time and effort, and is highly susceptible to inter- and intra-observer variability. These limitations suggest a need for fast, robust, and accurate semi- or fully-automatic segmentation algorithms. However, the complex motion and anatomy of the heart, indistinct borders due to blood flow, the presence of trabeculations, intensity inhomogeneity, and various other imaging artifacts, makes the segmentation task challenging. In this work, we present and evaluate segmentation algorithms for multi-modal, multi-dimensional cardiac image datasets. Firstly, we segment the left ventricle (LV) blood-pool from a tri-plane 2D+time trans-esophageal (TEE) ultrasound acquisition using local phase based filtering and graph-cut technique, propagate the segmentation throughout the cardiac cycle using non-rigid registration-based motion extraction, and reconstruct the 3D LV geometry. Secondly, we segment the LV blood-pool and myocardium from an open-source 4D cardiac cine Magnetic Resonance Imaging (MRI) dataset by incorporating average atlas based shape constraint into the graph-cut framework and iterative segmentation refinement. The developed fast and robust framework is further extended to perform right ventricle (RV) blood-pool segmentation from a different open-source 4D cardiac cine MRI dataset. Next, we employ convolutional neural network based multi-task learning framework to segment the myocardium and regress its area, simultaneously, and show that segmentation based computation of the myocardial area is significantly better than that regressed directly from the network, while also being more interpretable. Finally, we impose a weak shape constraint via multi-task learning framework in a fully convolutional network and show improved segmentation performance for LV, RV and myocardium across healthy and pathological cases, as well as, in the challenging apical and basal slices in two open-source 4D cardiac cine MRI datasets. We demonstrate the accuracy and robustness of the proposed segmentation methods by comparing the obtained results against the provided gold-standard manual segmentations, as well as with other competing segmentation methods

    Improved 3D MR Image Acquisition and Processing in Congenital Heart Disease

    Get PDF
    Congenital heart disease (CHD) is the most common type of birth defect, affecting about 1% of the population. MRI is an essential tool in the assessment of CHD, including diagnosis, intervention planning and follow-up. Three-dimensional MRI can provide particularly rich visualization and information. However, it is often complicated by long scan times, cardiorespiratory motion, injection of contrast agents, and complex and time-consuming postprocessing. This thesis comprises four pieces of work that attempt to respond to some of these challenges. The first piece of work aims to enable fast acquisition of 3D time-resolved cardiac imaging during free breathing. Rapid imaging was achieved using an efficient spiral sequence and a sparse parallel imaging reconstruction. The feasibility of this approach was demonstrated on a population of 10 patients with CHD, and areas of improvement were identified. The second piece of work is an integrated software tool designed to simplify and accelerate the development of machine learning (ML) applications in MRI research. It also exploits the strengths of recently developed ML libraries for efficient MR image reconstruction and processing. The third piece of work aims to reduce contrast dose in contrast-enhanced MR angiography (MRA). This would reduce risks and costs associated with contrast agents. A deep learning-based contrast enhancement technique was developed and shown to improve image quality in real low-dose MRA in a population of 40 children and adults with CHD. The fourth and final piece of work aims to simplify the creation of computational models for hemodynamic assessment of the great arteries. A deep learning technique for 3D segmentation of the aorta and the pulmonary arteries was developed and shown to enable accurate calculation of clinically relevant biomarkers in a population of 10 patients with CHD

    Novel approach for automatic mid-diastole frame detection in 2D echocardiography sequences for performing planimetry of the mitral valve orifice

    Get PDF
    The mitral valve orifice area is a reliable measure for evaluating mitral valve stenosis (MS) severity, which is obtained by the planimetry of the mid-diastole frame in the echocardiography sequences. Since the manual method for determining this frame is time-consuming and user-dependent, a novel automatic method has been proposed in this study. First, the region of interest (ROI) containing the mitral valve orifice region is detected using circular Hough transform and k-means algorithms. Then, the dimension reduction method is applied to the ROI of each frame to map it into a point in a 2D space. The performance of the local linear embedding (LLE), isometric mapping, kernel principal component analysis (PCA), and linear PCA algorithms has been evaluated in this study. Finally, a distance curve is obtained by calculating the Euclidean distance between consecutive points in 2D space, and the mid-diastole frame is determined by interpreting this curve. The proposed algorithm was validated using 2D echocardiography of the 20 MS patients. Finally, the LLE method showed the best result, and the average frame difference for 20 cases using the proposed method compared with the gold standard (the echo-cardiologist opinion) was 1.40. © The Institution of Engineering and Technology 2020

    Convolutional Neural Network for the Detection of End-Diastole and End-Systole Frames in Free-Breathing Cardiac Magnetic Resonance Imaging

    No full text
    Free-breathing cardiac magnetic resonance (CMR) imaging has short examination time with high reproducibility. Detection of the end-diastole and the end-systole frames of the free-breathing cardiac magnetic resonance, supplemented by visual identification, is time consuming and laborious. We propose a novel method for automatic identification of both the end-diastole and the end-systole frames, in the free-breathing CMR imaging. The proposed technique utilizes the convolutional neural network to locate the left ventricle and to obtain the end-diastole and the end-systole frames from the respiratory motion signal. The proposed procedure works successfully on our free-breathing CMR data, and the results demonstrate a high degree of accuracy and stability. Convolutional neural network improves the postprocessing efficiency greatly and facilitates the clinical application of the free-breathing CMR imaging
    corecore