1,063 research outputs found

    Convolution Kernels for Subjectivity Detection

    Get PDF
    Proceedings of the 18th Nordic Conference of Computational Linguistics NODALIDA 2011. Editors: Bolette Sandford Pedersen, Gunta Nešpore and Inguna Skadiņa. NEALT Proceedings Series, Vol. 11 (2011), 254-261. © 2011 The editors and contributors. Published by Northern European Association for Language Technology (NEALT) http://omilia.uio.no/nealt . Electronically published at Tartu University Library (Estonia) http://hdl.handle.net/10062/16955

    Basic tasks of sentiment analysis

    Full text link
    Subjectivity detection is the task of identifying objective and subjective sentences. Objective sentences are those which do not exhibit any sentiment. So, it is desired for a sentiment analysis engine to find and separate the objective sentences for further analysis, e.g., polarity detection. In subjective sentences, opinions can often be expressed on one or multiple topics. Aspect extraction is a subtask of sentiment analysis that consists in identifying opinion targets in opinionated text, i.e., in detecting the specific aspects of a product or service the opinion holder is either praising or complaining about

    Identifying high-impact sub-structures for convolution kernels in document-level sentiment classification

    Get PDF
    Convolution kernels support the modeling of complex syntactic information in machine-learning tasks. However, such models are highly sensitive to the type and size of syntactic structure used. It is therefore an important challenge to automatically identify high impact sub-structures relevant to a given task. In this paper we present a systematic study investigating (combinations of) sequence and convolution kernels using different types of substructures in document-level sentiment classification. We show that minimal sub-structures extracted from constituency and dependency trees guided by a polarity lexicon show 1.45 point absolute improvement in accuracy over a bag-of-words classifier on a widely used sentiment corpus

    A review of computer aided interpretation technology for the evaluation of radiographs of aluminum welds

    Get PDF
    Industrial radiography is a well established, reliable means of providing nondestructive structural integrity information. The majority of industrial radiographs are interpreted by trained human eyes using transmitted light and various visual aids. Hundreds of miles of radiographic information are evaluated, documented and archived annually. In many instances, there are serious considerations in terms of interpreter fatigue, subjectivity and limited archival space. Quite often it is difficult to quickly retrieve radiographic information for further analysis or investigation. Methods of improving the quality and efficiency of the radiographic process are being explored, developed and incorporated whenever feasible. High resolution cameras, digital image processing, and mass digital data storage offer interesting possibilities for improving the industrial radiographic process. A review is presented of computer aided radiographic interpretation technology in terms of how it could be used to enhance the radiographic interpretation process in evaluating radiographs of aluminum welds

    Lyapunov filtering of objectivity for Spanish sentiment model

    Get PDF
    [Abstract] Objective sentences lack sentiments and, hence, can reduce the accuracy of a sentiment classifier. Traditional methods prior to 2001 used hand-crafted templates to identify subjectivity and did not generalize well for resource-deficient languages such as Spanish. Later works published between 2002 and 2009 proposed the use of deep neural networks to automatically learn a dictionary of features (in the form of convolution kernels) that is portable to new languages. Recently, recurrent neural networks are being used to model alternating subjective and objective sentences within a single review. Such networks are difficult to train for a large vocabulary of words due to the problem of vanishing gradients. Hence, in this paper we consider use of a Lyapunov linear matrix inequality to classify Spanish text as subjective or objective by combining Spanish features and features obtained from the corresponding translated English text. The aligned features for each sentence are next evolved using multiple kernel learning. The proposed Lyapunov deep neural network outperforms baselines by over 10% and the features learned in the hidden layers improve our understanding subjective sentences in Spanish.Ministerio de Educación, Cultura y Deporte; FPU13/01180Ministerio de Economía y Competitividad; FFI2014-51978-C2-2-

    A Fully Convolutional Deep Auditory Model for Musical Chord Recognition

    Full text link
    Chord recognition systems depend on robust feature extraction pipelines. While these pipelines are traditionally hand-crafted, recent advances in end-to-end machine learning have begun to inspire researchers to explore data-driven methods for such tasks. In this paper, we present a chord recognition system that uses a fully convolutional deep auditory model for feature extraction. The extracted features are processed by a Conditional Random Field that decodes the final chord sequence. Both processing stages are trained automatically and do not require expert knowledge for optimising parameters. We show that the learned auditory system extracts musically interpretable features, and that the proposed chord recognition system achieves results on par or better than state-of-the-art algorithms.Comment: In Proceedings of the 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), Vietro sul Mare, Ital
    corecore