19,784 research outputs found

    Robust control of uncertain systems: H2/H∞ control and computation of invariant sets

    Get PDF
    This thesis is mainly concerned with robust analysis and control synthesis of linear time-invariant systems with polytopic uncertainties. This topic has received considerable attention during the past decades since it offers the possibility to analyze and design controllers to cope with uncertainties. The most common and simplest approach to establish convex optimization procedures for robust analysis and synthesis problems is based on quadratic stability results, which use a single (parameter-independent) Lyapunov function for the entire uncertainty polytope. In recent years, many researchers have used parameter-dependent Lyapunov functions to provide less conservative results than the quadratic stability condition by working with parameterized Linear Matrix Inequalities (LMIs), where auxiliary scalar parameters are introduced. However, treating the scalar parameters as optimization variables leads to large computational complexity since the scalar parameters belong to an unbounded domain in general. To address this problem, we propose three distinct iterative procedures for H2 and H∞state feedback control, which are all based on true LMIs (without any scalar parameter). The first and second procedures are proposed for continuous-time and discrete-time uncertain systems, respectively. In particular, quadratic stability results can be used as a starting point for these two iterative procedures. This property ensures that the solutions obtained by our iterative procedures with one step update are no more conservative than the quadratic stability results. It is important to emphasize that, to date, for continuous-time systems, all existing methods have to introduce extra scalar parameters into their conditions in order to include the quadratic stability conditions as a special case, while our proposed iterative procedure solves a convex/LMI problem at each update. The third approach deals with the design of robust controllers for both continuous-time and discrete-time cases. It is proved that the proposed conditions contain the many existing conditions as special cases. Therefore, the third iterative procedure can compute a solution, in one step, which is at least as good as the optimal solution obtained using existing methods. All three iterative procedures can compute a sequence of non-increasing upper bounds for H2-norm and H∞-norm. In addition, if no feasible initial solution for the iterative procedures is found for some uncertain systems, we also propose two algorithms based on iterative procedures that offer the possibility of obtaining a feasible initial solution for continuous-time and discrete-time systems, respectively. Furthermore, to address the problem of analysis of H∞-norm guaranteed cost computation, a generalized problem is firstly proposed that includes both the continuous-time and discrete-time problems as special cases. A novel description of polytopic uncertainties is then derived and used to develop a relaxation approach based on the S-procedure to lift the uncertainties, which yields an LMI approach to compute H∞-norm guaranteed cost by incorporating slack variables. In this thesis, one of the main contributions is to develop convex iterative procedures for the original non-convex H2 and H∞ synthesis problems based on the novel separation result. Nonlinear and non-convex problems are general in nature and occur in other control problems; for example, the computation of tightened invariant tubes for output feedback Model Predictive Control (MPC). We consider discrete-time linear time-invariant systems with bounded state and input constraints and subject to bounded disturbances. In contrast to existing approaches which either use pre-defined control and observer gains or optimize the volume of the invariant sets for the estimation and control errors separately, we consider the problem of optimizing the volume of these two sets simultaneously to give a less conservative design.Open Acces

    A Data-driven Approach to Robust Control of Multivariable Systems by Convex Optimization

    Get PDF
    The frequency-domain data of a multivariable system in different operating points is used to design a robust controller with respect to the measurement noise and multimodel uncertainty. The controller is fully parametrized in terms of matrix polynomial functions and can be formulated as a centralized, decentralized or distributed controller. All standard performance specifications like H2H_2, H∞H_\infty and loop shaping are considered in a unified framework for continuous- and discrete-time systems. The control problem is formulated as a convex-concave optimization problem and then convexified by linearization of the concave part around an initial controller. The performance criterion converges monotonically to a local optimal solution in an iterative algorithm. The effectiveness of the method is compared with fixed-structure controllers using non-smooth optimization and with full-order optimal controllers via simulation examples. Finally, the experimental data of a gyroscope is used to design a data-driven controller that is successfully applied on the real system

    Robust â„‹2 Performance: Guaranteeing Margins for LQG Regulators

    Get PDF
    This paper shows that ℋ2 (LQG) performance specifications can be combined with structured uncertainty in the system, yielding robustness analysis conditions of the same nature and computational complexity as the corresponding conditions for ℋ∞ performance. These conditions are convex feasibility tests in terms of Linear Matrix Inequalities, and can be proven to be necessary and sufficient under the same conditions as in the ℋ∞ case. With these results, the tools of robust control can be viewed as coming full circle to treat the problem where it all began: guaranteeing margins for LQG regulators

    Design of parameter-scheduled state-feedback controllers using shifting specifications

    Get PDF
    In this paper,the problem of designing aparameter-scheduled state-feedback controller is investigated. The paper presents an extension of the classical regional pole placement, H2 control and H1 control problems, so as to satisfy new specifications, that will be referred to as shifting pole placement control, shifting H2 control and shifting H1 control, respectively. By introducing some parameters, or using the existing ones, the controller can be designed in such away that different values of the separameters imply different regions where the closed-loop poles are situated, or different performances in the H2 or H1 sense. The proposed approach is derived within the so-called Lyapunov Shaping Paradigm, where a single quadratic Lyapunov function is used for ensuring stability and desired performances in spite of arbitrary parameter time variation. The problem is analyzed in the continuous-time LPV case, oventhough the developed theory could be applied to LTI systems in cases when it is desired to vary the control system performances online. Results obtained in simulation demonstrate the effectiveness and the relevant features of the proposed approach.Peer ReviewedPostprint (published version
    • …
    corecore