3 research outputs found

    Multivariate GARCH estimation via a Bregman-proximal trust-region method

    Full text link
    The estimation of multivariate GARCH time series models is a difficult task mainly due to the significant overparameterization exhibited by the problem and usually referred to as the "curse of dimensionality". For example, in the case of the VEC family, the number of parameters involved in the model grows as a polynomial of order four on the dimensionality of the problem. Moreover, these parameters are subjected to convoluted nonlinear constraints necessary to ensure, for instance, the existence of stationary solutions and the positive semidefinite character of the conditional covariance matrices used in the model design. So far, this problem has been addressed in the literature only in low dimensional cases with strong parsimony constraints. In this paper we propose a general formulation of the estimation problem in any dimension and develop a Bregman-proximal trust-region method for its solution. The Bregman-proximal approach allows us to handle the constraints in a very efficient and natural way by staying in the primal space and the Trust-Region mechanism stabilizes and speeds up the scheme. Preliminary computational experiments are presented and confirm the very good performances of the proposed approach.Comment: 35 pages, 5 figure

    Convex Perturbations for Scalable Semidefinite Programming

    Get PDF
    Many important machine learning problems are modeled and solved via semidefinite programs; examples include metric learning, nonlinear embedding, and certain clustering problems. Often, off-the-shelf software is invoked for the associated optimization, which can be inappropriate due to excessive computational and storage requirements. In this paper, we introduce the use of convex perturbations for solving semidefinite programs (SDPs), and for a specific perturbation we derive an algorithm that has several advantages over existing techniques: a) it is simple, requiring only a few lines of MATLAB, b) it is a first-order method, and thereby scalable, and c) it can easily exploit the structure of a given SDP (e.g., when the constraint matrices are low-rank, a situation common to several machine learning SDPs). A pleasant byproduct of our method is a fast, kernelized version of the large-margin nearest neighbor metric learning algorithm (Weinberger et al., 2005). We demonstrate that our algorithm is effective in finding fast approximations to large-scale SDPs arising in some machine learning applications.
    corecore