3,349 research outputs found

    Max-Weight Revisited: Sequences of Non-Convex Optimisations Solving Convex Optimisations

    Get PDF
    We investigate the connections between max-weight approaches and dual subgradient methods for convex optimisation. We find that strong connections exist and we establish a clean, unifying theoretical framework that includes both max-weight and dual subgradient approaches as special cases. Our analysis uses only elementary methods, and is not asymptotic in nature. It also allows us to establish an explicit and direct connection between discrete queue occupancies and Lagrange multipliers.Comment: convex optimisation, max-weight scheduling, backpressure, subgradient method

    Quantifying Uncertainty in High Dimensional Inverse Problems by Convex Optimisation

    Full text link
    Inverse problems play a key role in modern image/signal processing methods. However, since they are generally ill-conditioned or ill-posed due to lack of observations, their solutions may have significant intrinsic uncertainty. Analysing and quantifying this uncertainty is very challenging, particularly in high-dimensional problems and problems with non-smooth objective functionals (e.g. sparsity-promoting priors). In this article, a series of strategies to visualise this uncertainty are presented, e.g. highest posterior density credible regions, and local credible intervals (cf. error bars) for individual pixels and superpixels. Our methods support non-smooth priors for inverse problems and can be scaled to high-dimensional settings. Moreover, we present strategies to automatically set regularisation parameters so that the proposed uncertainty quantification (UQ) strategies become much easier to use. Also, different kinds of dictionaries (complete and over-complete) are used to represent the image/signal and their performance in the proposed UQ methodology is investigated.Comment: 5 pages, 5 figure

    Cygnus A super-resolved via convex optimisation from VLA data

    Get PDF
    We leverage the Sparsity Averaging Reweighted Analysis (SARA) approach for interferometric imaging, that is based on convex optimisation, for the super-resolution of Cyg A from observations at the frequencies 8.422GHz and 6.678GHz with the Karl G. Jansky Very Large Array (VLA). The associated average sparsity and positivity priors enable image reconstruction beyond instrumental resolution. An adaptive Preconditioned Primal-Dual algorithmic structure is developed for imaging in the presence of unknown noise levels and calibration errors. We demonstrate the superior performance of the algorithm with respect to the conventional CLEAN-based methods, reflected in super-resolved images with high fidelity. The high resolution features of the recovered images are validated by referring to maps of Cyg A at higher frequencies, more precisely 17.324GHz and 14.252GHz. We also confirm the recent discovery of a radio transient in Cyg A, revealed in the recovered images of the investigated data sets. Our matlab code is available online on GitHub.Comment: 14 pages, 7 figures (3/7 animated figures), accepted for publication in MNRA

    Robust convex optimisation techniques for autonomous vehicle vision-based navigation

    Get PDF
    This thesis investigates new convex optimisation techniques for motion and pose estimation. Numerous computer vision problems can be formulated as optimisation problems. These optimisation problems are generally solved via linear techniques using the singular value decomposition or iterative methods under an L2 norm minimisation. Linear techniques have the advantage of offering a closed-form solution that is simple to implement. The quantity being minimised is, however, not geometrically or statistically meaningful. Conversely, L2 algorithms rely on iterative estimation, where a cost function is minimised using algorithms such as Levenberg-Marquardt, Gauss-Newton, gradient descent or conjugate gradient. The cost functions involved are geometrically interpretable and can statistically be optimal under an assumption of Gaussian noise. However, in addition to their sensitivity to initial conditions, these algorithms are often slow and bear a high probability of getting trapped in a local minimum or producing infeasible solutions, even for small noise levels. In light of the above, in this thesis we focus on developing new techniques for finding solutions via a convex optimisation framework that are globally optimal. Presently convex optimisation techniques in motion estimation have revealed enormous advantages. Indeed, convex optimisation ensures getting a global minimum, and the cost function is geometrically meaningful. Moreover, robust optimisation is a recent approach for optimisation under uncertain data. In recent years the need to cope with uncertain data has become especially acute, particularly where real-world applications are concerned. In such circumstances, robust optimisation aims to recover an optimal solution whose feasibility must be guaranteed for any realisation of the uncertain data. Although many researchers avoid uncertainty due to the added complexity in constructing a robust optimisation model and to lack of knowledge as to the nature of these uncertainties, and especially their propagation, in this thesis robust convex optimisation, while estimating the uncertainties at every step is investigated for the motion estimation problem. First, a solution using convex optimisation coupled to the recursive least squares (RLS) algorithm and the robust H filter is developed for motion estimation. In another solution, uncertainties and their propagation are incorporated in a robust L convex optimisation framework for monocular visual motion estimation. In this solution, robust least squares is combined with a second order cone program (SOCP). A technique to improve the accuracy and the robustness of the fundamental matrix is also investigated in this thesis. This technique uses the covariance intersection approach to fuse feature location uncertainties, which leads to more consistent motion estimates. Loop-closure detection is crucial in improving the robustness of navigation algorithms. In practice, after long navigation in an unknown environment, detecting that a vehicle is in a location it has previously visited gives the opportunity to increase the accuracy and consistency of the estimate. In this context, we have developed an efficient appearance-based method for visual loop-closure detection based on the combination of a Gaussian mixture model with the KD-tree data structure. Deploying this technique for loop-closure detection, a robust L convex posegraph optimisation solution for unmanned aerial vehicle (UAVs) monocular motion estimation is introduced as well. In the literature, most proposed solutions formulate the pose-graph optimisation as a least-squares problem by minimising a cost function using iterative methods. In this work, robust convex optimisation under the L norm is adopted, which efficiently corrects the UAV’s pose after loop-closure detection. To round out the work in this thesis, a system for cooperative monocular visual motion estimation with multiple aerial vehicles is proposed. The cooperative motion estimation employs state-of-the-art approaches for optimisation, individual motion estimation and registration. Three-view geometry algorithms in a convex optimisation framework are deployed on board the monocular vision system for each vehicle. In addition, vehicle-to-vehicle relative pose estimation is performed with a novel robust registration solution in a global optimisation framework. In parallel, and as a complementary solution for the relative pose, a robust non-linear H solution is designed as well to fuse measurements from the UAVs’ on-board inertial sensors with the visual estimates. The suggested contributions have been exhaustively evaluated over a number of real-image data experiments in the laboratory using monocular vision systems and range imaging devices. In this thesis, we propose several solutions towards the goal of robust visual motion estimation using convex optimisation. We show that the convex optimisation framework may be extended to include uncertainty information, to achieve robust and optimal solutions. We observed that convex optimisation is a practical and very appealing alternative to linear techniques and iterative methods

    Convex Optimisation for Inverse Kinematics

    Get PDF
    We consider the problem of inverse kinematics (IK), where one wants to find the parameters of a given kinematic skeleton that best explain a set of observed 3D joint locations. The kinematic skeleton has a tree structure, where each node is a joint that has an associated geometric transformation that is propagated to all its child nodes. The IK problem has various applications in vision and graphics, for example for tracking or reconstructing articulated objects, such as human hands or bodies. Most commonly, the IK problem is tackled using local optimisation methods. A major downside of these approaches is that, due to the non-convex nature of the problem, such methods are prone to converge to unwanted local optima and therefore require a good initialisation. In this paper we propose a convex optimisation approach for the IK problem based on semidefinite programming, which admits a polynomial-time algorithm that globally solves (a relaxation of) the IK problem. Experimentally, we demonstrate that the proposed method significantly outperforms local optimisation methods using different real-world skeletons

    Uncertainty quantification for radio interferometric imaging: II. MAP estimation

    Get PDF
    Uncertainty quantification is a critical missing component in radio interferometric imaging that will only become increasingly important as the big-data era of radio interferometry emerges. Statistical sampling approaches to perform Bayesian inference, like Markov Chain Monte Carlo (MCMC) sampling, can in principle recover the full posterior distribution of the image, from which uncertainties can then be quantified. However, for massive data sizes, like those anticipated from the Square Kilometre Array (SKA), it will be difficult if not impossible to apply any MCMC technique due to its inherent computational cost. We formulate Bayesian inference problems with sparsity-promoting priors (motivated by compressive sensing), for which we recover maximum a posteriori (MAP) point estimators of radio interferometric images by convex optimisation. Exploiting recent developments in the theory of probability concentration, we quantify uncertainties by post-processing the recovered MAP estimate. Three strategies to quantify uncertainties are developed: (i) highest posterior density credible regions; (ii) local credible intervals (cf. error bars) for individual pixels and superpixels; and (iii) hypothesis testing of image structure. These forms of uncertainty quantification provide rich information for analysing radio interferometric observations in a statistically robust manner. Our MAP-based methods are approximately 10510^5 times faster computationally than state-of-the-art MCMC methods and, in addition, support highly distributed and parallelised algorithmic structures. For the first time, our MAP-based techniques provide a means of quantifying uncertainties for radio interferometric imaging for realistic data volumes and practical use, and scale to the emerging big-data era of radio astronomy.Comment: 13 pages, 10 figures, see companion article in this arXiv listin
    • …
    corecore