488 research outputs found

    Optimal Flow for Multi-Carrier Energy System at Community Level

    Get PDF

    A sparsity-based method for fault-tolerant manipulation of a redundant robot

    Get PDF
    As an important part of the manufacturing industry, redundant robots can undertake heavy and tough tasks, which human operators are difficult to sustain. Such onerous and repetitive industrial manipulations, that is, positioning and carrying, impose heavy burdens on the load bearing for redundancy robots' joints. Under the circumstances of long-term and intense industrial operations, joints of redundant robots are conceivably to fall into functional failure, which may possibly cause abrupt joint lock or freeze at unknown time instants. Therefore, task accuracy by end-effectors tends to diminish considerably and gradually because of broken-down joints. In this paper, a sparsity-based method for fault-tolerant motion planning of redundant robots is provided for the first time. The developed fault-tolerant redundancy resolution approach is defined as L1-norm based optimization with immediate variables involved to avoid discontinuity in the dynamic solution process. Meanwhile, those potential faulty joint(s) can be located by the designed fault observer with the proposed fault-diagnosis algorithm. The proposed fault-tolerant motion planning method with fault diagnosis is dynamically optimized by resultant primal dual neural networks with provable convergence. Moreover, the sparsity of joint actuation by the proposed method can be enhanced by around 43.87% and 36.51%, respectively, for tracking circle and square paths. Simulation and experimental findings on a redundant robot (KUKA iiwa) prove the efficacy of the developed defect tolerant approach based on sparsity

    Robust economic model predictive control: recursive feasibility, stability and average performance

    Get PDF
    This thesis is mainly concerned with designing algorithms for Economic Model Predictive Control (EMPC), and analysis of its resulting recursive feasibility, stability and asymptotic average performance. In particular, firstly, in order to extend and unify the formulation and analysis of economic model predictive control for general optimal operation regimes, including steady-state or periodic operation, we propose the novel concept of a “control storage function” and introduce upper and lower bounds to the best asymptotic average performance for nonlinear control systems based on suitable notions of dissipativity and controlled dissipativity. As a special case, when the optimal operation is periodic, we present a new approach to formulate terminal cost functions. Secondly, aiming at designing a robust EMPC controller for nonlinear systems with general optimal regimes of operation, we present a tube-based robust EMPC algorithm for discrete-time nonlinear systems that are perturbed by disturbance inputs. The proposed algorithm minimizes a modified economic objective function, which considers the worst cost within a tube around the solution of the associated nominal system. Recursive feasibility and an a-priori upper bound to the closed-loop asymptotic average performance are ensured. Thanks to the use of dissipativity of the nominal system with a suitable supply rate, the closed-loop system under the proposed controller is shown to be asymptotically stable, in the sense that it is driven to an optimal robust invariant set. Thirdly, for the purpose of combining robust EMPC design with a state observer in a single pure economic optimization problem, we consider homothetic tube-based EMPC synthesis for constrained linear discrete time systems. Since, in practical systems, full state measurement is seldom available, the proposed method integrates a moving horizon estimator to achieve closed-loop stability and constraint satisfaction despite system disturbances and output measurement noise. In contrast to existing approaches, the worst cost within a single homothetic tube around the solution of the associated nominal system is minimized, which at the same time tightens the bound on the set of potential states compatible with past output and input data. We show that the designed optimization problem is recursively feasible and adoption of homothetic tubes leads to less conservative economic performance bounds. In addition, the use of strict dissipativity of the nominal system guarantees asymptotic stability of the resulting closed-loop system. Finally, to deal with the unknown nonzero mean disturbance and the presence of plant-model error, we propose a novel economic MPC algorithm aiming at achieving optimal steady-state performance despite the presence of plant-model mismatch or unmeasured nonzero mean disturbances. According to the offset-free formulation, the system's state is augmented with disturbances and transformed into a new coordinate framework. Based on the new variables, the proposed controller integrates a moving horizon estimator to determine a solution of the nominal system surrounded by a set of potential states compatible with past input and output measurements. The worst cost within a single homothetic tube around the nominal solution is chosen as the economic objective function which is minimized to provide a tightened upper bound for the accumulated real cost within the prediction horizon window. Thanks to the combined use of the nominal system and homothetic tube, the designed optimization problem is recursively feasible and less conservative economic performance bounds are achieved.Open Acces

    Twentieth conference on stochastic processes and their applications

    Get PDF

    Age Replacement and Service Rate Control of Stochastically Degrading Queues

    Get PDF
    This thesis considers the problem of optimally selecting a periodic replacement time for a multiserver queueing system in which each server is subject to degradation as a function of the mean service rate and a stochastic and dynamic environment. Also considered is the problem of optimal service rate selection for such a system. In both cases, the performance metric is the long-run average cost rate. Analytical expressions are obtained, in terms of Laplace transforms, for the nonlinear objective functions, necessitating the use of numerical Laplace transform inversion to evaluate candidate solutions in conjunction with standard numerical algorithms. Due to the convexity of the objective function, the optimal replacement time is computed using a hybrid bisection-secant method which yields globally optimal solutions. The optimal service rates are obtained via gradient search methods but are only guaranteed to provide locally optimal solutions. The analytical results are implemented on three notional examples that demonstrate the benefits of dynamically adjusting service rates under the described maintenance policy

    Mini-Workshop: Mathematics of Dissipation – Dynamics, Data and Control (hybrid meeting)

    Get PDF
    Dissipation of energy --- as well as its sibling the increase of entropy --- are fundamental facts inherent to any physical system. The concept of dissipativity has been extended to a more general system theoretic setting via port-Hamiltonian systems and this framework is a driver of innovations in many of areas of science and technology. The particular strength of the approach lies in the modularity of modeling, the strong geometric, analytic and algebraic properties and the very good approximation properties
    • …
    corecore