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Abstract 

Nowadays, the power system is transferring towards a smarter, cleaner, and more efficient 

system, which introduces challenges including the uncertainty in renewable generation, 

complication in customer behaviour, and applications in using the emerging technologies. In 

order to meet the challenges of the transition of the power system, the concept of energy hub 

is proposed to efficiently meet the increasing energy demand with less carbon emission by 

coordinating different energy infrastructures including electricity, gas, and heat. As a powerful 

conceptualisation, the energy hub system can increase system flexibility, reliability, and profits 

by maximally exploiting the value in each energy carrier.  

From the perspective of saving energy and reducing carbon emissions, the operations of 

domestic and community-level buildings are modelled as energy hubs in this thesis, because 

they consume 41% of total energy, indicating the huge potential of enhancing energy utilisation 

efficiency. However, the optimal operations of energy hub can be affected by the integration 

of smart grid technologies, uncertainty in renewable generation and power system, and 

robustness of the employed algorithm. Yet, traditional methods fail to find the global minimum 

in solving the complicated energy hub optimisation problem and are unable to completely 

model the randomness of uncertain parameters, such as the renewable generations and 

customer behaviour. Therefore, this thesis contributes to these in two main ways: i) 

innovatively optimise the energy hub that is capable to reach a near-global solution, effectively 

incorporate the smart grid technologies and energy management with the energy hub 

optimisation; ii) explicitly model the impact of uncertainty on energy hub optimal operations. 

Regarding the optimisation for interconnected energy hubs, which is generally formulated as a 

non-convex multi-period problem, this thesis proposes a decomposed approach of applying the 

hybridised Particle Swarm Optimisation with the interior-point method. The new approach 

overcomes the disadvantages of numerical methods and artificial intelligence algorithms that 

suffer from convergence only to a local minimum or prohibitive computation times 

respectively, thus it is capable of reaching a near-global solution, and fast enough for operating 

the energy hub system based on an online, receding time horizon implementation. The 

decomposed approach has been further applied to optimise the interconnected energy hub 

system considering the combined ground source heat pump and borehole thermal storage, 

which demonstrates high efficiency in supporting a community of residential houses. 
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Considering the uncertainty in the energy hub system, this thesis investigates the stochastic 

energy hub optimisation with two pieces of work. The first work innovatively proposes to 

employ the chance-constrained programming to optimise the energy hub, the power and gas 

flows between hubs are restricted by the chance constraints due to the fact that the temporary 

overloading is tolerable. The Cornish Fisher Expansion method is applied to transfer the chance 

constraints into deterministic constraints, and hence the deterministic optimisation approach is 

utilised to resolve the problem. Compared with the traditional methods, the proposed approach 

better captures the stochastic nature of uncertainties and avoids expensive computational costs 

of scenario generating methods. Additionally, correlations may exist among renewable 

generation. Hence, to model the effect of uncertainty with better accuracy, the second piece of 

work extends the research by considering the correlation between geographically close wind 

farms, and reflects customer response to varying energy prices and energy hub states. Chance-

constrained programming is employed to resolve the problem. 

All works are investigated on the interconnected energy hub system. Test system 

demonstrations prove the advantages of the proposed approaches in optimising energy hub 

system with better performance, and better captures the randomness of uncertainty, thus 

benefits both the system operators and customers with enhanced network security, less energy 

infrastructure cost and carbon emissions. 
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This chapter introduces the background, motivation, objectives, and 
contributions of the research. The structure of the thesis is also outlined. 
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1.1 Overview 

1.1.1 Global Climate Change and Renewable Generations 

The changing of global climate has become a disturbing issue to mankind over the last 

century. Fossil energies including coal, natural gas, and oil are largely utilised to 

generate 84% of global total energy, the gases generated along with the combustion of 

fossil energies have significantly polluted the environment [1]. According to the report 

of the Intergovernmental Panel on Climate Change in 2007 [2], the mean temperature 

of the global surface has increased by 0.74℃ ± 0.18℃ over the past 50 years. Climate 

scientists suggest that the greenhouse gas emissions, most of which is carbon dioxide 

(CO2), should achieve an immediate reduction of approximately 60% to 80% in total 

by 2100 to restrict the global temperature rising of 2℃ [3]. In 2009, most countries 

attended the Copenhagen conference, and committed to mitigating the climate change 

by achieving the low-carbon society [4, 5].    

The UK government plans to reduce the carbon emissions by approximately 80% before 

2050 compared with the 1990 baseline [6]. In order to achieve this goal, the UK 

government issued the white paper ‘The UK Low Carbon Transition Plan-National 

Strategy for Climate and Energy’ [7] in 2009 to specifically illustrate the government 

policy of reducing carbon emission from individuals, communities to businesses. The 

carbon emission is aimed to be reduced according to the trajectories from 2010 to 2050 

as indicated in Fig. 1-1. Therefore, the energy system in 2050 will be significantly 

changed compared with the current energy system. Instead of substantially applying the 

 

 Fig. 1-1. Target of reducing carbon emission of the UK 
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fossil energy, the renewable energy such as solar, wind, hydro, geothermal and bio 

energies are foreseen to be the main source of supplying the loads; some environmental 

friendly power stations such as combined heat and power plant and nuclear power 

station will be largely used in the future; and vehicles will be supplied by clean energies 

of electricity/hydrogen/biogas. 

Fig. 1-2 presents the mix of different energies to supply the electricity demand in 2014, 

and the predicted mix in 2030 [8]. As seen, fossil energy of coal and oil was the major 

source to supply the electricity demand in 2014, which accounts for 30% of the total. 

However, it is predicted to be excluded in the 2030 supply mix. The ratio of using 

renewable energy including solar and wind relative to the total is significantly enhanced 

from 11% to 50%.  

The key targets to be delivered involving the application of renewable energies are 

summarised as follows: i) 40% electricity is generated from low carbon sources by 2020, 

where the power generated from renewables take up to 30% of total; ii) reducing the 

carbon emission from new cars by 40% against 2007 baseline, where 10% of energies 

applied in transportation is from renewable sources. 

On the other hand, there are some standalone areas in practice, where the main power 

grid is difficult to be extended to such areas because building the transmission corridors 

is expensive and the system could be unreliable. However, renewable energies such as 

wind and solar are generally abundant in these areas. Hence the environmental friendly 

island micro-grid is established based on the renewable generations [5, 9] to support 

loads of the standalone area, meanwhile, the energy utilisation efficiency and quality 

are improved. 

 

Fig. 1-2.Electricity mix of the UK in 2014 and 2030 
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In conclusion, the power system benefits from the renewable generations by decreasing 

the carbon emissions and supporting standalone areas. 

1.1.2 Transition of Electrical Power Systems  

The power system nowadays is transforming towards a smarter, cleaner, and more 

efficient energy system, the changing environment and challenges are summarised in 

terms of the following aspects [10]: 

 The renewable generations (RG) are increasingly invested and utilised to reduce the 

carbon emission and mitigate the pollution to the environment. However, the 

stochastic nature could potentially threaten the safety of the power system and thus 

require stable generation support. 

 Energy Storage Systems (ESS) provides a feasible solution to integrate RG, it can 

also shave peak loads and provide reserves. Hence it is foreseen to be largely 

applied in the future power system. 

 The application of Electric Vehicle (EV) is encouraged by the government due to 

its environmentally friendly characteristics. The Vehicle-to-Grid (V2G) scheme can 

bring further flexibility and reserves to the power system. However, the load of 

residential and community-level buildings will be significantly increased due to the 

increasing application of EV and other novel technologies such as heat pump, which 

complicates the load uncertainty. 

 Consumers’ environmental awareness is increased, and they are more active to 

participate in different energy management schemes to reduce the energy cost or 

use energies more efficiently, such as the demand response scheme. Additionally, 

consumers are investing in Distributed Energy Resources (DER) such as RG, 

concepts such as Peer-to-Peer (P2P) energy trading can be established among them. 

Together with other emerging technologies such as ESS and EV, the participation 

of consumers brings further flexibility to demand side energy management, 

however, complicates the load pattern.  

 The transition of electrical energy markets is also ongoing due to the highly 

increasing energy demands, and the fast growth of distributed generations (DG) [1]. 

Specifically, DG consumes various energies such as fossil, wind, and gas from DER 

to generate power [11]. The electricity generated by DG has accounted for less than 
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10% to total electricity consumption in the UK in 2006 [12]. Comparatively, DG 

generated 50% of the total electricity in Denmark in 2006 [13]. 

In order to extend the application of DG to wider areas such as district heating and 

commercial buildings, the concept of distributed multi-energy generation (DMG) is 

proposed in [5, 14, 15]. DMG system contains a series of technologies to manage 

the cooperation between various energy infrastructures, which produces higher 

efficiency compared with conventional DG. However, the increasing of DG and 

DMG challenges the balancing and frequency regulation for transmission grid and 

brings new problems such as reverse power flows and congestion issues for 

distribution grid. 

 The emerging technologies such as Information and Communications Technology 

(ICT) and smart meter improve the functions of communication and metering in the 

power system. Based on these technologies, the paradigms of smart grids and smart 

cities can be formulated to optimise and control the micro-girds, and thus facilitate 

the evolution of the power system. 

Consequently, the transition of modern electrical power system maximise the system 

flexibility, profits, and mitigate the environment pollution by introducing advanced 

technology and operating mechanism based on smart grid technologies. However, the 

system uncertainty is increased, and the coupling between the emerging technologies 

brings further challenges. Therefore, robust and efficient energy management 

approaches should be developed to address these issues.  

1.1.3 Integration of multiple energy carriers 

As mentioned in the previous section, micro-grids have received increasing attention 

towards the decentralisation of energy systems led by restructuring the monopolistic 

frameworks of liberalized markets [16] and the deployment of renewable energy. 

Decentralized production has brought new technical challenges, such as balancing 

supply and demand within the micro-grid without compromising on safety or security 

of supply. Whether controlling the operation of micro-grid or managing access of 

renewable energy to the network, an energy management system is necessary to 

maintain system stability and reliability. Different energy infrastructures such as 

electricity, gas, and district heat work separately in the traditional energy system [17]. 

Nowadays, the co- and tri-generation enables the high efficiency of utilising various 
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energy carriers and increases system flexibility by means of exploiting every available 

energy carrier. Analysing the system from an integrated view has been proposed by 

Geidl as the Energy Hub concept [18], which couples multiple energy carriers and 

achieves the functions of input, output, converting, and storing [16].  

With the combination of different energy carriers, the energy hub system is more 

flexible and reliable since the redundant pathways through the hub increase energy 

security and offer the possibility of operational optimisation when there is more than 

one way of supplying the loads [19]. The innovation of combining different energy 

infrastructures as an integrated system reveals great opportunities and improvements. 

A typical energy hub model is shown in Fig. 1-3 as an example. This energy hub 

consumes energy carriers including electricity, natural gas, and district heat, which are 

converted and/or stored within the hub. Specifically, the combined heat and power 

system (CHP) consumes natural gas to simultaneously generate power and heat [20]; 

the gas furnace (GF) combusts gas to provide heat; the battery and water tank are 

regarded as energy storage, the energy costs can thus be reduced by storing power and 

heat at time steps when the energies prices are low, and discharge at other time steps 

when the prices are high. Additionally, the energy storage system (ESS) can buffer the 

stochastic renewable generations by storing the excessive power generations, and 

discharging when the renewable generations are inferior to the expected value. 

The system reliability is increased since the consumers’ demand does not depend on a 

single energy infrastructure. Additionally, the system becomes more flexible which 

leads to further advantages. For instance, during the peak load period, the electricity 

load could be satisfied by accordingly applying the CHP instead of buying expensive 

electricity from the grid, the battery storage can also discharge to economically meet 

the electricity load. The optimal energy management achieves the possibility of 

Electrical Transformer

CHP

Gas Furnace

Heat Exchanger

Battery

Water Tank

Electricity 
Input

Electricity 
Demand

Natural Gas

District Heat Heat Demand

 

Fig. 1-3.Typical energy hub 
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lowering the energy cost or carbon emissions. The energy hubs can be applied to model 

multiple scales of the energy system, Fig. 1-4 [21] presents an energy management and 

control system with energy hubs. 

In practice, residential houses, communities, industrial factories, and agriculture 

buildings could be regarded as the multi-carrier energy hubs with energy demand, 

conversion, and storage functionalities [22]. As shown in Fig. 1-4, a central controller 

is normally employed to control the operations of each hub based on the collected 

information such as forecasted renewable generations and loads, the optimal objectives 

can thus be achieved.  

From the prospective of economically operating the energy system, the energy costs 

could be further reduced by interconnecting heterogeneous energy carriers at a 

community level, since the local renewable generations and pooled energy storage 

systems can be better leveraged without suffering the energy loss through large distance 

transmission. Additionally, the energy redundancy in each energy hub can be 

maximally utilised with the achievement of energy interconnection between hubs, 

which systematically achieves the system optimisation [23]. 

By considering the energy transformation within the energy hub system and safety 

operations, optimising the interconnected energy hub system could be formulated as 

 

 

Fig. 1-4.Energy management system with the utilisation of energy hub 
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solving a non-convex multi-period problem. Moreover, the problem is transferred to a 

stochastic problem if uncertain variables are considered such as loads and renewable 

generations.  

1.2 Research Motivation 

Under the new circumstance of facilitating the update of the power system, coordination 

between multiple energy carriers, and the increasing adoption of renewable energies, 

the concept of energy hub is proposed to achieve the above functions. Multiple energy 

converters and energy storage system can be equipped within an energy hub, the energy 

demand of energy hub system can thus be satisfied by accordingly adjusting the 

utilisation of different energy carriers to achieve the corresponding optimisation 

objective, and hence increase the system flexibility. The system reliability is also 

improved because a specific energy demand can be satisfied by consuming various 

energies or supplied by using energy storage system. The energy hub system is well 

fitted to the modern power system by meeting the requirements of high reliability and 

flexibility, and the capability of adapting renewable generations.  

The energy hub approach can be applied to any scales of energy system [24]. Domestic 

and community-level buildings consume 41% of total energy, and it is higher than the 

consumption in industries and transportation [25], which indicates the great potential 

of energy saving by employing an efficient energy hub approach. As illustrated in the 

previous section, the energy system can be further optimised by interconnecting energy 

hubs with the consideration of energy transmission networks. Moreover, by considering 

the constraints from energy transmission networks, the operation of an energy hub 

system is more related to operating the realistic smart city. Therefore, this thesis 

investigates the optimisation of an interconnected energy hub system which operates at 

residential and community level. 

Renewable generations are generally incorporated into residential or community level 

buildings to lower energy cost and reduce carbon emissions. However, the renewable 

generations are generally stochastic and difficult to be predicted, the overestimation of 

renewables could cause the system operational cost to be extremely high, and the 

system security constraints may be violated when the impact of renewable generation 

is underestimated. Therefore, appropriate modelling for uncertain variables is a 

significant requirement when operating the energy system. Traditional methods applied 
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in energy hub optimisation to analyse uncertainty could suffer from an expensive 

computational cost or fail to fully capture the stochastic nature of uncertain variables, 

hence the development of an improved stochastic approach is an interesting research 

objective to safely operate the interconnect energy hubs under uncertainty.  

1.3 Problem Statement 

The optimisation of interconnected energy hub system has been investigated by many 

researchers, yet there are still challenges and difficulties in solving the optimisation 

problem. Three major issues are summarised as follows: 

1.3.1 Complexity of the optimisation problem 

When the renewable generations are excluded in the system or considered to be 

perfectly forecasted, the optimisation for energy hub system yields a deterministic 

problem. A typical energy hub system contains an energy storage system [26]. 

Regarding the variations of energy carriers prices, the energy storage system may 

charge during the low-tariff period, and discharge during the high-tariff period in order 

to low system costs. Therefore, the energy hub operations at current time step may 

affect the operations at other time steps and hence a multi-period optimisation is 

necessary. Additionally, distributed generators and converters within the energy hub 

system generally operate with non-constant efficiency, which can be formulated as a 

quadratic function in terms of the input energy [27]. As illustrated above, the 

deterministic optimisation problem can be formulated as a non-convex multi-period 

problem. A local minimum can be found by applying numerical methods, however, the 

global minimum is not guaranteed.  

Additionally, to achieve a further reduction of energy costs or fitting the system with 

different technologies, the energy hub optimisation is incorporated with other system 

planning and operating techniques such as demand response [28] and optimal power 

flow [29]. Some energy storage systems such as inter-seasonal borehole systems have 

raised attention in recent years due to their high efficiency. Combining a borehole 

system with energy hub optimisation yields further energy saving, but complicates the 

system configuration and the optimisation problem.   
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1.3.2 Improper Modelling of Uncertainty 

In order to optimally operate the energy hub system under the realistic circumstances, 

the uncertainty factors such as load and renewable generations should be appropriately 

modelled. The system security is threatened when uncertainties are underestimated, and 

it costs too much if uncertainties are overestimated [30]. The Monte Carlo method has 

been widely applied in energy hub optimisation to model uncertainty with an abundant 

number of scenarios [31-33], and the optimisation results are derived from each 

scenario. However, the optimisation suffers from a huge computational burden due to 

a large number of scenarios. Some scenario reduction methods or techniques such as 2 

point estimate method are proposed to reduce the number of scenarios [34-38]. 

However, the stochastic nature of uncertain variables may not be completely reflected 

with a certain number of scenarios. 

1.3.3 Neglect of Correlations between Renewable Generations 

Correlations could exist between various uncertainties. For example, the wind speeds 

in some geographically closed areas are similar to each other, hence the stochastic 

power generations from the wind turbines at these areas are dependent on each other. 

However, the renewable generations are simplified as independent in previous 

researches. Thus the influence of uncertainty on the energy system fails to be well 

considered. 

Additionally, considering the reactions of customers in response to energy hub 

optimisation and variant tariffs can further reduce the energy cost, because the 

customers can participate in the optimisation to reschedule their loads to cooperate with 

the energy hub optimisation. However, the integrated optimisation has not been 

investigated with the consideration of correlated uncertainties, and hence the 

optimisation results may be inaccurate.  

1.4 Objectives and Contributions 

In this thesis, the optimisation for interconnected energy hubs is investigated by 

combining them with other smart grid technologies. Further improvements have been 

made to better incorporate the uncertain renewable generations within the energy hub 

optimisation. The main objectives and contributions are summarised as follows: 
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 To investigate the optimal operations of interconnected energy hubs with other 

smart grid methods, where the problem is potentially formulated as a non-convex 

problem, new optimisation approached should be developed to improve the solution 

towards the global minimum.  

In doing so, a decomposed approach of applying Particle Swarm Optimisation 

hybridised with interior point method is proposed to optimise the steady-state 

energy hub system with the consideration of extending the battery lifetime. This 

approach overcomes the disadvantages of numerical methods and artificial 

intelligence algorithms that suffer from convergence only to a local minimum or 

prohibitive computation times, respectively. 

 To accurately represent the stochastic nature of renewable generations and 

investigate the effects of the uncertainties on operating the interconnected energy 

hubs, appropriate stochastic programming approach should be applied to carry out 

the optimisation problem and analyse the results. 

In doing so, the chance-constrained programming is proposed to incorporate into 

the optimisation of interconnected energy hubs in a smart city, where the energy 

flows between adjacent hubs are innovatively restricted by chance constraints, thus 

permitting the temporary overloading acceptable on real energy networks. This 

novelty not only ensures system security but also helps reduce or defer network 

investment. The random nature of uncertain renewable generations could be better 

reflected by using chance-constrained programming compared with scenario 

generation methods. 

 To better reflect the dependency between various renewable generations and 

customer interaction in optimising energy hub systems, new approaches should be 

developed to establish the relationships between uncertain renewable generations 

and monitor the effects of customer interaction within the optimisation scheme of 

energy hubs. 

In doing so, the correlations between geographically close wind farms are 

considered by establishing their relations using historical data. In addition, demand 

response is incorporated into the model to further increase the flexibility of energy 

hub systems and customers’ benefits. The optimisation problem is modelled by 

optimally scheduling the demand and operating the energy hub system over a whole 

time horizon to achieve the minimum energy cost. 
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 To examine the applications of other efficient or low-carbon-emission equipment 

within the interconnected energy hubs, and explore the benefits to customers, the 

optimal operations of such a combined system should be investigated. 

In doing so, the high-performance combined borehole and ground source heat pump 

system is incorporated into a community of residential energy hubs to support the 

thermal loads for one day, and the combined system produces zero carbon emission 

at the residential level. Unlike the traditional Finite Element model to simulate 

borehole system for inter-seasonal operation, this work proposes an equivalent 

transfer function to model the performance of the borehole system, since the error 

is negligible for 24-hour operations.  

1.5 Thesis Layout 

The rest of the thesis is organised as follows: 

Chapter two explicitly reviews the modelling for the interconnected energy hub 

system, and the optimisation approaches developed in the previous literature. The 

optimisation approaches are reviewed in terms of two aspects: optimisation under 

steady state and stochastic programming with the consideration of uncertainties. The 

challenges to current optimisation techniques are summarised, and the potential 

approaches to address these challenges are presented. Additionally, the combination of 

interconnected energy hubs with other smart grid operating approaches is reviewed. 

Chapter three considers the battery lifetime cost in the optimisation to better 

utilise the battery from the long term run. It proposes a novel decomposed optimisation 

approach by applying Particle Swarm Optimisation to solve the complicated non-

convex energy hub optimisation problem. The optimisation approach decouples the 

complicated optimization problem into sub-problems, namely the scheduling of storage 

and other elements in the energy hub system, and separately solves these by PSO and 

the numerical method ‘interior-point’. 

Chapter four proposes the optimisation for stochastic energy hub system by using 

chance-constrained programming. The power and gas flows between adjacent hubs are 

restricted by chance constraints, which follows the fact that the temporary overloading 

in the energy system is allowable.  Cornish-Fisher Expansion is utilised to incorporate 

the chance constraints into the optimization, which transforms the stochastic problem 
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into a deterministic problem. The interior-point method is then applied to resolve the 

developed model. 

Chapter five follows chapter four to take consideration of the correlations between 

geographically closed renewable generations. It proposes to utilise the Pearson 

correlation to represent the relationship between wind farms’ generations based on 

historical data. In addition, demand response is incorporated into the model to further 

increase the flexibility of energy hub systems and customers’ benefits. The optimisation 

problem is modelled by optimally scheduling the demand and operating the energy hub 

system over a whole time horizon to achieve the minimum energy cost. 

Chapter six proposes to apply the high performance of combined borehole heat 

storage with ground source heat pump (GSHP) to support the heat load of a community 

of residential users. The overall flexibility and energy cost is reduced by investigating 

the application of the combined system within the interconnected energy hub system. 

The borehole Finite Element (FE) model and an equivalent borehole transfer function 

are proposed and respectively applied to the optimisation to analyse the variation of 

GSHP performance over the entire optimisation time horizon of 24 hours. 

Chapter seven concludes the main findings of the thesis and the major 

contributions. 

Chapter eight presents some potential research topics in future work. 
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This chapter reviews the modelling of energy hub system, together with 
the related optimisation techniques under steady-state and with 
uncertainty. 

Review of Energy Hub 
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2.1 Energy Hub Modelling 

Energy hub is developed as an efficient and promising approach to optimally manage 

the multi-carrier system [1, 2]. The utilisation of energy hub benefits the optimal 

management of DER, smart grid, and facilitates the demand side energy management. 

Proposed by Geidl [3], energy hub is defined as the framework to consume, convert, 

store, and transmit various energies to meet the energy demands. The energy hub can 

be potentially applied to model the multi-carrier system and related interconnected 

systems, any scales of multi-energy systems can be optimally managed by using the 

energy hub concept [4]. 

By applying the energy hub approach, the redundancy in each energy carrier is fully 

exploited to achieve the optimisation objective, meanwhile, the system flexibility and 

reliability are increased. Many countries are encouraging the utilisation of energy hub 

at the demand side, the efforts are reviewed as follows [5]: 

 The United Kingdom 

The UK government has highly supported the research in integrating electricity and 

natural gas system [6]. In 2015, the project ‘Energy Systems Catapult’ was jointly 

sponsored by Department of Energy and Climate Change in the UK and Innovate UK 

to investigate the operations of the multi-carrier system to meet various demands of 

energy users in Birmingham.  

 Germany 

In 2008, Germany Federal Ministry proposed the ‘E-Energy project’ to design the 

future multi-carrier system, which enables the communication between energy systems 

and home appliances based on the concept of Information Communications Technology 

(ICT). The project is established in order to enhance the reliability and efficiency of 

energy users. By carrying out this project, the employment of distributed energy has 

been enhanced to take up to 50% in Germany by 2015. 

 The United States 

The National Science Foundation in the US proposed the concept of future renewable 

electric energy delivery and management (FREEDM) system in 2008 [7], enabling the 

future residential consumers to flexibly manage the utilisation of distributed renewable 
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energy and distributed energy storage devices. The energy hub optimisation is well 

developed and applied to schedule the use of home appliances.   

 China 

The Chinese government has considered the efficient utilisation of renewable and 

sustainable energy as an important national strategy. The initiative of ‘Internet + smart 

energy’ is proposed in 2015 to consider the integration of various energy infrastructures 

of electricity, natural gas, and thermal energy to establish the energy internet. The 

Chinese government has supported and issues several projects to facilitate the 

implementation of this initiative. 

One project is implemented in a high-tech industry park in Jiaxing City to design an 

active distribution network (ADN) to coordinate the operations of solar PV and energy 

storage system to meet local energy demands. Additionally, the reliability of the ADN 

is improved, and thus ensures the security of the operating distribution power system. 

Another representative multi-carrier management is implemented based on Shanghai 

Tower, which integrates electricity, gas, and thermal to meet the demands of the tower 

with the joint application of air source heat pump, ground source heat pump, CHP, gas 

furnace, and ice storage system. By optimally scheduling the internal energy 

consumption and shaving peak loads with the energy hub optimisation, the energy 

utilisation efficiency is increased by 22%.  

2.1.1 Energy Hub Elements 

 Resources 

Energy hub integrates various energy carriers, typically includes electricity, natural gas, 

district heating, and renewable energy sources (RES) to meet customers’ multiple 

demands such as power and thermal [8].  

DERs are generally located near the energy hub system, using DERs can effectively 

reduce the energy loss through the energy transmission and distribution processes, and 

hence increase the energy utilising efficiency. Therefore, DER has become the main 

generation system to supply power to the energy hub by using the technologies of gas 

turbines, renewable generations, etc. [9]. Nowadays, the fossil energy is still the major 

source to generate power. However, RES such as solar, wind, and biomass will be 

largely applied in future DER, due to their environmental-friendly characteristics. 



Chapter 2  Review of Energy Hub Optimisation 

Page | 17 
 

 Conversion 

Energy hub can be regarded as the block between producers and consumers. It applies 

various energies by means of energy converters to meet the consumers’ loads. On one 

hand, the direct connections are generally contained within the energy hub. For example, 

the electricity from the grid and district heating can be directly transmitted through the 

energy hub without conversion to meet the electricity and thermal loads. On the other 

hand, the energy converters are essential for energy hub to transform the input energies 

to other forms of energies to meet the demands. 

Most of the converters convert one type of energy into another type of energy. Previous 

literature has investigated the energy hub system including mostly gas furnaces, heat 

pumps, fuel cells, transformers, heat exchangers, and renewable generations such as 

solar panels and wind turbines. Specifically, gas furnaces combust natural gas to 

generate heat; heat pumps are driven by electricity to provide cooling or heating 

depending on customer’s needs; RES could be applied to produce several energies. For 

instance, solar energy is capable of producing power and heat, wind power can be 

transformed to power, and geothermal energy can be transferred to serve the heat 

demands by means of ground source heat pumps. 

The combined heat and power (CHP) plants are increasingly applied and analysed in 

the energy hub system recently, the installed units of CHP in the US has risen from the 

number of 640 in 1980 to 5541 in 2014 [10]. CHP is a typical co-generation plant that 

simultaneously generates power and heat with the consumption of natural gas, it 

improves the overall efficiency of using conventional power plants to generate power 

and heat from 60% to 90%, meanwhile reduce the carbon emissions by 30% [11-13].  

The energy hub system benefits from the cooperation with various converters to meet 

the energy demands, the system reliability is increased because a single energy demand 

can be met upon converting various energies, the profits are also maximised by 

accordingly adjusting the use of different energy carriers against the changing energy 

tariffs. 

 Energy storage system 

The energy storage system (ESS) provides the additional reserve and flexible solution, 

and hence it is included in the energy hub system. The mostly applied ESS in energy 

hubs are the power and heat storage, they store the excessive energy at one time step, 



Chapter 2  Review of Energy Hub Optimisation 

Page | 18 
 

and release the energy when required. The advantages of using ESS can be summarised 

as [14-16]: i) The ESS can be applied to facilitate the integration of renewable 

generations with the energy hubs, it mitigates the fluctuation of RES by storing the 

excessive energy output, and discharging to supply the load when the RES is in shortage, 

the ESS, therefore, maintains the reliability between the supply and demand sides; ii) 

Similarly, the ESS can be applied to mitigate the uncertainty from consumers’ loads; 

iii) The ESS can participate in some optimisation schemes of smart grid, such as peak 

shaving, and energy management of storing energy in low-tariff periods, and 

discharging in peak-tariff period to reduce the energy cost. 

2.1.2 Energy Hub Modelling 

The optimisation for energy hub system is carried out by mathematically minimising 

the value of the objective function, hence the expressions of energy hub models are 

illustrated in this section in order to formulate the optimisation problem. A general 

modelling of a single energy hub is depicted in Fig. 2-1, where multiple inputs and 

outputs are contained. 

As seen, a series of converters are included in the energy hub to interactively transform 

the input energies (Pα, Pβ… Pω) to outputs (Lα, Lβ… Lω), and α to ω represents different 

energy carriers. The relations between energy hub outputs and inputs can be denoted 

by the form of a matrix: 

.

.

.

.

.

.

Pα

Pβ

Pω

Lα

Lβ

Lω

Converter 1

Converter 2

Converter n

.

.

.

.

.

.

.

.

.

 

 
Fig. 2-1.General energy hub model 
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[
𝐿𝛼
⋮
𝐿𝜔

] = [

𝑐𝛼𝛼 ⋯ 𝑐𝜔𝛼
⋮ ⋱ ⋮
𝑐𝛼𝜔 ⋯ 𝑐𝜔𝜔

] [
𝑃𝛼
⋮
𝑃𝜔

]                                                                                  (2-1) 

The middle matrix is defined as the coupling matrix (C), which indicates the power 

mapping from inputs to outputs.  

As indicated in the previous section, the ESS is generally equipped within the energy 

hub system. Assuming the energy exchange between the ESS and energy hub system is 

denoted as Mh, the stored energy in ESS Eh at time step t is expressed as: 

𝑀ℎ(𝑡) =
1

𝑒ℎ
(𝐸ℎ(𝑡) − 𝐸ℎ(𝑡 − 1) + 𝐸ℎ

𝑠𝑡𝑏)                  (2-2) 

Where 𝐸ℎ
𝑠𝑡𝑏 represents the ESS standby loss at each time step, and eh can be denoted as: 

𝑒ℎ = {
𝑒ℎ
+     if  𝑀ℎ(𝑡) ≥ 0    (charging/standby)
1

𝑒ℎ
−     else                                  (discharging)

                (2-3) 

Where 𝑒ℎ
+ and 𝑒ℎ

− mean the charging efficiency and discharging efficiency. Therefore, 

when the ESS is charging, (2-2) and (2-3) indicate that the energy level of ESS at current 

time step t equals to the energy level at previous time step (t-1) plus the charging energy 

multiplied by the charging efficiency, minus the standby loss. It also makes sense for 

the case when the ESS is discharging. 

2.1.3 Transmission Network Modelling for Residential Houses 

This thesis mainly studies the optimisation for interconnected energy hubs, hence the 

mathematical models of different energy carriers’ transmission networks are also 

presented in this section. Regarding the energy hub system where each residential house 

represents an energy hub, the energy transmissions between houses can be simply 

formulated by the nodal conservation law as shown in (2-4). It is because that the 

distance between the residential houses is generally close, and the optimisation for 

residential houses is carried out for 24 hours in this thesis, one hour or less time is 

regarded as a time step, the energy loss in the transmission at such short time period is 

negligible.  

𝐸𝑚 = ∑ 𝐸𝑚𝑛
𝑁
𝑛=1                     (2-4) 

(2-4) indicates that the energy injected to node m Em is equal to the sum of the energy 

flows along branch m to n Emn. N represents the number of nodes. 
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2.1.4 Electricity Network Modelling 

This thesis also investigates the optimisation for community level buildings such as 

universities and hospitals, where each of them is regarded as an energy hub, and the 

electrical loads of each hub generally contain both active and reactive loads. Hence the 

complex power transmission network should be considered to be equipped within the 

energy hub system. Additionally, the loads of community level buildings are effectively 

higher than the residential houses, the number of energy demands is therefore higher. 

Energy transmission system such as gas network needs to be appropriately modelled by 

considering both the upstream and downstream pressures within the pipelines to enable 

a certain amount of gas to be successfully transmitted to each building. In this thesis, 

the complex power and gas are considered to be transferred between interconnected 

hubs. The related mathematical models are presented as follows [2, 3, 17]. 

The nodal complex power balance at node m is established in (2-5), where Sm is the 

complex power injected to the node, Smn is the complex power flow from node m to n. 

N is the number of the nodes in the power network. 

𝑆𝑚 = ∑ 𝑆𝑚𝑛
𝑁
𝑛=1                     (2-5) 

The complex power flow Smn is expressed in (2-6) in terms of the transmission line 

parameters and complex bus voltage at bus m (Vm) and n (Vn). 

𝑆𝑚𝑛 =
|𝑉𝑚|

2

𝑍̃𝑚𝑛
∗ −

𝑉𝑚𝑉𝑛
∗

𝑍𝑚𝑛
∗                (2-6) 

All the lines between buses are assumed to be equivalent to a π-circuit in this thesis, 

hence 𝑍̃𝑚𝑛 can be expressed in (2-7) in terms of the series impedance Zmn and shunt 

admittance Ymn. 

𝑍̃𝑚𝑛 = (
1

𝑍𝑚𝑛
+
𝑌𝑚𝑛

2
)
−1

              (2-7) 

2.1.5 Gas Network Modelling 

Similar to the electricity network, the modelling of the gas network also follows the 

nodal conservation law [2, 3, 17]. The nodal gas flow balance is formulated in (2-8). 

𝑄𝑚 = ∑ 𝑄𝑚𝑛
𝑁
𝑛=1               (2-8) 
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Qm represents the gas injection to node m, N represents the total number of nodes. Qmn 

quantifies the gas flow between node m and n, which can be expressed by the upstream 

pressure pm and downstream pressure pn within the pipeline as shown in (2-9). 

𝑄𝑚𝑛 = 𝑘𝑚𝑛𝑠𝑛𝑚𝑛√𝑠𝑛𝑚𝑛(𝑝𝑚2 − 𝑝𝑛2)               (2-9a) 

𝑠𝑛𝑚𝑛 = {
+1,   if 𝑝𝑚 ≥ 𝑝𝑛 
−1,                 else

                (2-9b) 

 

Where kmn indicates the physical properties of the pipeline.  

The compressor is also needed in transmitting gas, and the gas consumed by the 

compressor is formulated in (2-10). 

𝑄𝑐𝑜𝑚 = 𝑘𝑐𝑜𝑚𝑄𝑚𝑛(𝑝𝑚 − 𝑝𝑘)                (2-10) 

As seen, kcom indicates the physical properties of the compressor, the suction and 

discharge pressures at the two sides of the compressor are represented by pm and pk 

respectively. The gas flow rate Qmn can be utilised to quantify the gas power flow 

between node m and n as shown in (2-11), where GHV means the gross heating value 

of gas. 

𝑃𝑚𝑛 = 𝐺𝐻𝑉 ∙ 𝑄𝑚𝑛                 (2-11) 

2.2 Optimisation for Steady-State Energy Hub System 

2.2.1 Energy Hub Optimisation Problem Formulation 

The energy hub system exploits the value of each available energy carrier to flexibly 

achieve the optimisation goal, it is mathematically resolved by finding the minimum of 

the objective function. The general optimisation problem formulation is shown in (2-

12). 

Minmise objective function ℱ(𝑥)              (2-12) 

Subject to {
𝑔(𝑥) = 0

ℎ(𝑥) < 0
  

The optimisation is implemented by determining the control vector x to realise the 

minimum value of the objective function ℱ, meanwhile satisfies the equality constraints 

g and inequality constraints h. In solving the energy management problem of using 

energy hub, the control vector generally contains the operations of the hub elements at 

each time step, such as the energy input to each converter and the energy exchange 

between the ESS with the system. The objective function ℱ can be defined as the energy 
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costs, carbon emission, or other factors depending on the needs of the system operator. 

The equality constraints are built according to the conservation law in the energy hub 

system, such as the energy transformation within each hub and the energy transmission 

between hubs. The inequality constraints are established by considering the safety 

issues. For example, the energy input each converter should be within a boundary to 

ensure the converter is safely operated.  

The energy hub optimisation problems investigated in previous literature are shown in 

Table 2-1 in terms of different optimisation objectives, constraints, and control 

variables. [2, 6, 17-21], [22-24], [2, 6, 17-21, 23, 24], [22, 23], [18, 24], [23], [2, 6, 17-22, 24] 

2.2.2 General Procedures of Energy Hub Optimisation 

The optimisation for energy hub system is carried out by formulating the optimisation 

as a mathematical problem based on the energy hub system parameters, the algorithm 

is then applied to solve the problem to derive the optimal operations of the energy hub 

system. The specific steps to carry out an optimisation is indicated as follows:  

 

Optimisation objectives 

Energy costs [2, 6, 17-21]  

Multi-objective containing energy costs, 
energy consumption, carbon emission 
costs, peak load charges, etc. 

[22-24] 

Constraints 

Operational restrictions of energy hub 
components and transmission networks 

[2, 6, 17-21, 23, 24] 

Residential house devices’ operational 
constraints 

[22, 23] 

Restriction of consumers’ comfort (e.g. 
room temperature) 

[18, 23, 24] 

Weather restrictions (e.g. humidity, 
carbon emission level) 

[24] 

Industrial process limitations [22] 

Controllable components 

Residential house appliances [23] 

Energy hub components [2, 6, 17-22, 24] 

 

Table 2-1.REVIEW OF ENERGY HUB OPTIMISATION PROBLEMS 
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1) For the time horizon that the energy hub to be optimised, the energy loads such as 

electricity and heat loads, and energy prices are normally simulated and forecasted 

by using historic data; 

2) Forecast the renewable generations over the time horizon, a specific value of 

generations at each time step is obtained if the optimisation is carried out for the 

steady-state energy hub system; 

3) Model the cost functions of all energy generations; 

4) Model the objective function to be optimised, and the equality and inequality 

constraints for the optimisation.  

5) Apply an appropriate optimisation technique to optimise the model. 

2.2.3 Optimisation methods 

 Linear optimisation: The energy hub optimisation problem is formulated linearly, 

where the hub elements are simply modelled and the coupling matrix is invariant at 

all of the time steps. The problem can thus be resolved by applying Linear 

Programming or Mixed Integer Linear Programming methods. Some conventional 

methods such as Newton-Raphson method can also be employed [25]. 

 Non-linear optimisation (convex case): If the energy hub optimisation problem is 

established as a non-linear and convex problem, numerical methods such as 

interior-point method are capable of solving the problem, and a global minimum 

can be reached. 

 Non-convex optimisation: The optimisation problem is formulated as a non-convex 

problem if the hub elements are modelled explicitly or the complex transmission 

network is considered. The local minimum can be found by applying the numerical 

method, however, the global minimum is not ensured. Some artificial intelligence 

algorithms such as genetic algorithm can be utilised to solve the problem to reach a 

result closer to the global minimum. However, a trade-off between computational 

burden and optimisation performance need to be made. 

2.2.4 Optimisation Techniques in previous literature 

The optimal operation of an energy hub system enables the effective utilisation of the 

elements within the system to minimise energy use, monetary cost or carbon emissions, 

or some weighted combination of these objectives. Different technologies and 
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algorithms have been applied to the multi-hub problem depending on the complexity of 

the optimisation problem as follows: 

 Linear optimisation  

Reference [23] proposes novel mathematical models for the appliances in a residential 

house, together with the solar PV and energy storage/generation systems. The 

operations of the residential house are optimally scheduled by using the energy hub 

optimisation considering end users preferences. A multi-objective function is 

established and formulated by the combinations of weighted objectives, which contain 

the energy costs, energy consumption, carbon emission costs, and peak load charges. 

The optimisation problem is linearly formulated, and Mixed Integer Linear 

Programming (MILP) is employed to resolve the problem. This research contributes to 

the energy hub optimisation at the residential level. However, the components within 

the energy hub system are simply formulated with constant efficiency, which may defer 

with the realistic operations of the converters and storages. 

The MILP method has also been applied in [26], where the authors model the energy 

hub components with the linear formulation, and approximate the complex power and 

gas transmission network as in [2, 27] to the linear formulation. The authors have 

demonstrated that the optimisation results produce high accuracy with fast computation, 

nevertheless, errors may still appear due to the simplification. 

 Non-linear convex optimisation 

Recent researches study the integration of energy hub optimisation with demand side 

management (DSM) to further maximise the system flexibility and profits. The DSM 

is implemented for the demand side of the energy system regarding the behavioural and 

technological changes. The typical DSM scheme is the demand response, which will be 

reviewed in section 2.2.5. The optimisation approaches applied in the integrated energy 

hub with DSM are reviewed as follows: 

Reference [28] introduces the “smart energy hub” system which uses a cloud computing 

platform to enable customers with must run loads to participate in a demand side 

management program. An integrated demand side management is proposed in [29] and 

[30], where a group of energy hubs is incorporated to respond to the scheme, and the 

interactions between hubs are formulated as a non-cooperative game, the existence of 

the unique Nash equilibrium is proved. The interactions between energy hubs are 
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investigated in a competitive electricity market in [31], where the performance of an 

energy management system under different energy pricing schemes for a group of 10 

hubs is studied.  

The optimisation problems in the above literature are formulated as a convex problem, 

which is resolved by using the method of exact line search is applied, and the global 

minimum can be confirmed. However, most energy hub optimisation problems are 

formulated as a non-convex problem, the proposed optimisation techniques in the 

papers can only reach a local minimum when solving the non-convex problem. 

Additionally, the ESS is not considered in the energy hub system, which simplifies the 

problem.   

 Non-convex optimisation 

The optimisation for energy hub system is generally expressed as a non-convex problem 

because the complex electricity power and gas power transmission are considered as 

the equality constraints. Different optimisation approaches are developed in literature 

and presented as follows:  

Paper [18] proposes a general modelling technique for both the economic dispatch of 

energy hub and optimal power flow between multiple hubs, a decomposed solution is 

presented by applying the multi-agent genetic algorithm (MAGA) to optimise the 

modelled framework of interconnected energy hubs.  

Paper [32] investigates the optimal energy flow problem within the context of an 

interconnected energy hub system, where the electricity, gas, and district heating 

networks are considered. The paper also models the converters with non-constant 

efficiency and adopts the quadratic function derived from the converters’ power-

efficiency curve to represent the efficiency. A modified approach of using teaching-

learning optimisation is proposed to solve the optimisation problem.  

The above two papers innovatively resolve the optimisation for interconnected energy 

hubs. However, the ESS is not considered in the energy hubs, and hence the flexibility 

and profits of the system are reduced. 

Model predictive control (MPC) is employed in [27] and [17] to optimally manage the 

operations of three interconnected energy hubs. Specifically, [27] investigates the 

effects on energy hub optimisation with different prediction horizon and energy storage 
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characteristics. Although numerical methods are applied within the MPC scheme, so a 

global minimum cannot be guaranteed in the solution. 

2.2.5 Integrated energy hub optimisation with other smart grid 

applications 

 Demand response 

To facilitate power system stability by shaving peak load and reducing energy costs, 

the demand response (DR) scheme has been employed to encourage customers to re-

allocate energy usage in response to variant energy carrier prices [21, 33, 34]. The DR 

scheme has been widely applied worldwide, especially in the United States, Europe and 

China [35]. The typical demand response programs can be classified into price-based 

DR and incentive-based DR, which are illustrated in Table 2-2 [35].  

This thesis mainly studies the integration of price-based DR to energy hub optimisation. 

 

Priced-based DR Incentive-based DR  

Time-of-use (TOU): the TOU rate 
indicates the electricity tariff variations 
over 24 hours, where each hour is 
normally regarded as a time step. The 
TOU rate represents the unit price of the 
power to customers, it is extensively 
adopted for residential and industrial 
customers. 

Direct Load Control (DLC): The DLC 
scheme is specifically designed for 
residential or small-industrial customers. 
The retailers or energy provides could 
directly terminate the use of some 
appliances of the customer with short 
notice. The DLC is operated to eliminate 
the system contingencies and maintain 
reliability.  

Real-Time-Pricing (RTP): the RTP 
represents the varying hourly electricity 
tariff caused by the change from the 
wholesale market. It is normally known in 
advance within the DR scheme before one 
day or one hour.  

Interruptible/Curtailable Service (I/C): 
The I/C is designed for large industries or 
commercial buildings. It provides 
discount or incentives to customers to 
reduce load during fault condition. 

Critical Peak Pricing (CPP): CPP is 
designed to define the high-price periods 
in advance, and it is only implemented for 
short period in case of extremely high 
demand or system faults which last long. 

Demand Bidding/Buyback: the 
consumers would propose the prices, that 
they are willing to amend their loads, to 
the utility companies; the program also 
suggest the consumers of the amount of 
loads they would amend according to the 
price given by utility companies. 

 Other schemes include Emergency DR, 
Capacity Market Programs, etc. 

 

Table 2-2.DIFFERENT TYPES OF DR SCHEMES 
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From the perspective of operating energy hub systems, energy demand could be 

satisfied by accordingly increasing the utilisation of cheaper energy carrier to reduce 

energy costs. For example, instead of inputting relatively expensive electricity from the 

grid to meet energy hub electrical demand, the Combined Heat and Power (CHP) can 

be switched on to consume gas to produce electricity and heat. Therefore, combining 

DR with the energy hub can bring further profits by responding to energy prices and 

optimising the cooperation of various energy carriers. The integrated DR with energy 

hub optimisation is proposed in [33, 36] to benefit both the customers and energy utility 

companies in real-time pricing scheme.  

As illustrated in [34], the house appliances are firstly classified into four categories 

including deferrable appliances, thermal appliance, curtailable appliances, and critical 

appliances. The demand response is then implemented depending on the characteristics 

of different appliances to reschedule the loads. Instead of classifying different 

appliances, this thesis investigates the integration of energy hub with general demand 

response scheme, where the demands are categorised into elastic and inelastic demands. 

The definitions of these terms are introduced as follows:   

Customer demand generally changes in response to the variation of energy carrier 

prices, defined as elastic demand [37]. Conversely, the demand not affected by the 

variations of energy prices is defined as inelastic demand. The sensitivity of demand in 

relation to energy price change is quantified by price elasticity, defined as [38, 39]: 

𝐿 = 𝑎 ∙ 𝑃𝜀                  (2-13) 

Where L is load, P is energy price, and ε represents the price elasticity. a is a coefficient, 

which could be formulated by a given reference load Lref and price Pref. Specifically, 

Lref indicates the customers’ load before implementing the demand response scheme, 

and L is the new load. The reference price Pref is input by customers. The price elasticity 

over the entire simulation time horizon is assumed to be constant. 

Traditional demand response considering elastic demand is carried out by optimally 

determining the demand allocation over entire simulation time in response to energy 

prices. 

 Combination of borehole and ground source heat pump system 
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In 2014, the Renewable Heat Incentive (RHI) was launched in the UK to increase the 

installation of low carbon technologies [40]. Heat pumps have lower carbon emissions 

than the conventional heating methods such as a boiler. Ground source heat pumps 

(GSHP) are widely used since they have higher and more stable coefficient of 

performance (CoP) over other heat pump types, due to ground temperatures remaining 

constant through the whole year [41]. Additionally, the efficiency of the heat pump is 

depending on the heat source temperature and indoor temperature. The application of 

the borehole storage can significantly increase the GSHP performance since the thermal 

storage provides a high temperature source, raising the GSHP coefficient of 

performance (CoP). 

Borehole thermal storage uses the ground as a heat source and storage medium. High 

temperature fluid flows through the borehole pipes and stores the heat energy into the 

surrounding ground and this process is done by heat transfer [42]. After the fluid dumps 

the heat into the borehole, the temperature settles down in the borehole wall area and 

when the heat is needed from the borehole, the fluid extracts the heat from borehole 

wall and provide high temperature source. 

The high efficiency of the combined borehole and GSHP indicates great energy saving 

for community-level buildings, the incorporation of the system to energy hub suggests 

further cost minimisation and potentially increase the flexibility to satisfy multiple 

energy demands.  

2.3 Optimisation for Energy Hub System with Uncertainty 

In reality, uncertainties always present in power systems operation or energy 

management problem. According to [43], uncertainties can be categorised as follows:  

i) Uncertainty is measured mathematically, which represents the difference 

between the estimated values and true values, indicating the errors in 

observation or calculation. 

ii) Uncertainty from sources, including transmission capacity, generation 

availability, load requirements, unplanned outages, market rules, fuel price, 

energy price, market forces, weather and other interruption, etc. 
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Uncertainty can be expressed by the probability density function (PDF). For example, 

the PDF curve of the wind speed from 9.00 AM to 10.00 AM at an observation station 

in Cardiff is shown in Fig. 2-2, which is derived by fitting historical data in the period 

between 9.00 AM to 10.00 AM over one year [44]. As seen, the possible wind speeds 

vary between 0 and 13 m/s, and the highest probability is 0.16 when the wind speed is 

approximately 5 m/s. If a wind turbine is located at this stations and accessed to the 

power system, the uncertain power output led by the uncertain wind speeds could 

significantly affect the power system operations, because the overestimate of 

uncertainty could cause the system to cost too much, and an underestimate of uncertain 

factors might threaten the secure operation of the power system.  

Therefore, in solving the energy management or power system operating problems with 

the consideration of uncertain factors, an appropriate modelling approach should be 

implemented for uncertainties. Various approaches have been developed to model the 

uncertainty, which are summarised as follows [45]: 

i) Probabilistic approach: The PDF of the uncertain variables are assumed to be 

known, which can be derived by fitting historical data of the uncertain variables. 

Stochastic programming methods such as Monte Carlo simulation are applied 

to solve the probabilistic problem. 

ii) Possibilistic approach: It is also referred to as the fuzzy approach, which assigns 

a membership function to model the uncertain variables. 

iii) Robust optimisation:  It is applied to provide optimal robust solutions based on 

the uncertain data forecasted within the confidence intervals. It should be noted 

that the solutions are also optimal to the worst-case scenario of the uncertain 

variables. 

 

 
Fig. 2-2.PDF curve of the wind speed at Cardiff observation station. 
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Some other approaches are proposed by the combinations of the above approaches. This 

thesis proposes to apply the probabilistic approach to resolve energy hub optimisation 

problem with uncertainty. The methods developed in solving probabilistic energy hub 

optimisation are reviewed in this section.  

2.3.1 Monte Carlo Simulation 

The scenario methods are widely applied to represent the uncertain variables by 

scenarios, and each of them corresponds with a probability. In applying the scenarios 

methods, the characteristics of uncertain variables including distributions, moments, 

and cumulants are firstly derived from their historical data, different scenarios are then 

generated based on the uncertain variable characteristics. The stochastic programming 

is carried out by repeatedly solving the deterministic problem for the energy hub 

problem, where each scenario is regarded as the input value of the uncertain variable. 

The final optimisation results are derived from the results from each deterministic 

programming.  

Monte Carlo Simulation (MCS) is the most common and fundamental method to 

generate scenarios according to the distribution of uncertain variables, and it has been 

broadly utilised in solving energy hub problem with uncertainty. 

Paper [46] proposes a valuating method for integrated demand side management with 

the energy hub optimisation, where the stochastic energy prices are modelled through 

the MCS. The stochastic model allows the valuation to be carried out by flexibly 

exploiting the elements of energy conversion, energy storage, and demand side energy 

management, while the uncertain prices are explicitly considered. 

A hierarchical control scheme is proposed in [20] to optimally manage the operations 

of the greenhouses with the application of energy hub optimisation. The MCS is 

employed to simulate the uncertain factors of RTP and weather parameters including 

outdoor temperature, humidity, wind speed, and solar irradiation. The energy cost of 

the greenhouses is accordingly optimised with the consideration of stochastic weather, 

electricity price, while the climate change from the greenhouses is controlled. 

The advantage of using the MCS is that a large number of scenarios is generated to 

represent the uncertain variables, and their stochastic nature is explicitly expressed by 

the scenarios, hence allows comparatively accurate results when solving the 
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probabilistic problem. However, the large number of scenarios also greatly increase the 

computational burden.  

2.3.2 Scenario-reduction methods 

Some scenario-reduction methods are developed to limit the number of scenarios to 

mitigate the computational burden.  

Paper [47] proposes to solve the energy hub planning problem with the consideration 

of random wind power generation, demands, and availability of components. The MCS 

is firstly applied to generate massive scenarios for the uncertain variables, a scenario-

based approximation method provided by GAMS is then applied to reduce the number 

of scenarios. The optimisation problem is resolved based on the limited number of 

scenarios.  

Paper [24] classifies the dependencies among various energy carriers into internal 

dependency and external dependency. Internal dependency represents the possible 

changes of energy supply by considering how to optimally utilise the converters and 

energy storage, which is controlled by the system operators, and the external 

dependency refers to the operations of consuming the energy depending on the 

consumers’ preferences. The integrated demand response with energy hub is 

implemented by modelling the uncertainties of internal and external dependencies. A 

scenario reduction method based on roulette wheel mechanism is utilised to model the 

uncertainties in optimising the probabilistic energy hubs. 

In addition to the scenario reduction methods, some other methods such as the two-

point estimate method (2PEM) and point estimate method (PEM) are developed to 

generate a limited number of scenarios to simulate the uncertainty. 

In [48], the PEM is employed to model the wind power generation in solving the 

probabilistic energy hub optimisation problem. Compared with the MCS, the PEM is 

more efficient and requires less computational cost. 

Paper [49] proposes the home energy management within the context of an energy hub, 

the uncertain solar power generation is considered and modelled by the 2PEM method. 

The 2PEM generates 2 concentration points at each time step, and hence 48 scenarios 

are derived for 24 time steps’ energy management. The probabilistic energy 
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management is carried out by considering home appliances, plug-in hybrid electric 

vehicle, storages, and typical energy converters such as CHP.  

An improved 2PEM is utilised in [21] to model the uncertainties from load and energy 

prices during optimally scheduling the energy hub operations. The improved approach 

referred to as the 2m+1 PEM generates 97 scenarios for 24 time steps’ optimisation. It 

is demonstrated that the 2m+1 PEM performs better in solving probabilistic energy hub 

problems compared with 2PEM and MCS. 

The limited number of scenarios can be applied to efficiently model the uncertainty and 

solved with energy hub optimisation. However, the reduced number of scenarios may 

fail to fully capture the stochastic nature of uncertain factors. 

2.3.3 Chance-constrained programming 

In contrast to scenario-based methods, chance-constrained programming (CCP) is a 

consistently robust and reliable approach to resolve uncertainty [50]. Each chance 

constraint is modelled by a boundary, the acceptable probability of constraint violation. 

The CCP optimization is then resolved to meet both normal constraints and chance 

constraints. Whilst the stochastic nature of uncertain elements can cause occasional 

system overloading, investment to meet these rare stress events could be prohibitively 

expensive. The CCP has not been applied to energy hub optimisation. However, CCP 

has been applied to power system operating problems, including demand response, 

optimal power flow, and unit commitment in [51], [52], and [53]. 

The chance-constrained optimisation problem is defined as follows [50]: 

min      𝑓(𝑥, 𝑢, 𝜉)                   (2-14) 

𝑠. 𝑡.  {

𝑔(𝑥, 𝑢, 𝜉) = 0                                      

ℎ(𝑥, 𝑢, 𝜉) ≤ 0                                      

𝑃𝑟𝑖(𝑦𝑖(𝑢, 𝜉) ≤ 𝑦𝑖
𝑆𝑃, 𝑖 = 1,… , 𝐼) ≥ 𝛼

      

Where x, u, and ξ respectively indicate the state variables, control variables, and 

uncertain variables; f, g, and h represent the objective function, equality constraints, and 

inequality constraints. Pr denotes the probability measure of chance constraints, and 

𝑦𝑖
𝑆𝑃 is the specific boundary to limit the constraints, α is the pre-defined probability 

level, a higher value of α implies a stronger desire to hold the constraints. i indicates 

the number of chance constraints.  
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By defining a probability level for the chance constraints, solving the CCP means to 

optimise the problem f with equality constraints g, inequality constraints h and chance 

constraints satisfied, under the condition that the values of uncertainty variables ξ are 

randomly distributed according to their distributions. 

In solving the CCP problem, the non-convex CCP problem is converted into a convex 

problem and linear programming is applied in [54]. The back-mapping approach is 

utilized in [50, 52], where the probability of chance constraints is derived by mapping 

them back to the uncertainty variables’ distributions. Non-linear programming is then 

applied to solve the optimization problem. A sample average approximation method is 

developed in [55] to resolve chance-constrained problems. 

2.4 Chapter summary 

This chapter firstly presents an overview of energy hub in terms of definition, modelling, 

and mathematical formulation. 

It then reviews the energy hub optimisation under steady state and with the 

consideration of uncertainty. Different optimisation approaches are developed for 

energy hub system, and the joint-optimisation of energy hubs with other smart grid 

operating methods, such as demand response, is introduced.  

The main limitations of existing methods of optimising steady-state energy hub are: the 

optimisations fail to be proved to converge to a local minimum when the optimisation 

problem is formulated as a complicated non-convex problem. The limitations to 

stochastic programming in optimising energy hub with uncertainty are: i) Monte Carlo 

Simulation requires many computational efforts in solving a large number of scenarios; 

ii) with the application of scenario-reduction methods, the limited number might fail to 

reflect the stochastic nature of uncertain variables. 
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Chapter Overview 

As illustrated in section 2.2.4, the interconnected energy hub optimisation problem can 

be expressed in a simplified form of linear problem or non-linear convex problem. 

However, the problem is frequently formulated as a non-convex problem due to the 

inclusion of complex power and gas network, and the problem is considered as a multi-

period problem if the ESS is considered within the system.  

Previous literature have utilised the numerical methods to solve the optimisation 

problem. However, only local minimum can be reached, and the global minimum is not 

guaranteed. Some researches propose to employ the artificial intelligence algorithms 

such as genetic algorithm to optimise the problem, and hence to reach the global 

minimum. Nevertheless, ESS is not considered in these researches, the system 

flexibility is reduced, and the problem is simplified, hence the robustness of the 

optimisation techniques is not proved to be capable of solving general interconnected 

energy hubs optimisation problem.   

Therefore, to address the deficiency in previous researches, this chapter explicitly 

formulates the energy hub optimisation under steady state by a non-convex and multi-

period problem. This chapter assumes the renewable power generations, energy hub 

loads, and energy prices to be perfectly known, the energy hubs are considered to be 

interconnected with electricity and heat transmission networks. In order to practically 

simulate the energy hub operations, some of the energy converters are simulated with 

non-constant efficiency based on real-time operational data. The batteries are 

considered as the ESS to be equipped within the energy hubs. To better utilise the ESS 

from the long run, the battery lifetime cost is also considered together with the system 

energy costs as the objective function to avoid unnecessary degradation.  

More importantly, this chapter proposes a novel optimisation technique to optimise the 

steady-state interconnected energy hub problem. A decomposed approach of utilising 

particle swarm optimisation (PSO) hybridised with interior-point method is 

innovatively developed to resolve the non-convex and highly-constrained optimisation 

problem. It is demonstrated that the optimisation technique performs better in terms of 

convergence and computational speed compared with the traditional PSO. The 

contributions of the chapter can be summarised as follows: 



Chapter 3                                   Optimal Operation of Interconnected Energy Hubs 

Page | 36 
 

i) The decomposed technique of applying PSO hybridised with interior-point is 

demonstrated to be capable of solving non-convex multi-period energy hub 

optimisation problem. 

ii) A group of residential house is formulated as a system of interconnected energy 

hubs, the batteries within the system are better utilised by including the battery 

lifetime cost in the objective function. 

iii) The performance of the decomposed PSO is proved to be better compared with the 

conventional PSO by solving the same 3-hub problem. 
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3.1 Abstract 

The Energy Hub has become an important concept for formally optimizing multi-carrier 

energy infrastructure to increase system flexibility and efficiency. The existence of 

energy storage within energy hubs enables the dynamic coordination of energy supply 

and demand against varying energy tariffs and local renewable generation to save 

energy cost. The battery lifetime cost may be included in the optimization objective 

function to better utilize battery for long term use. However, the operational 

optimization of an interconnected energy hub system with battery lifetime considered 

presents a highly constrained, multi-period, non-convex problem. This paper proposes 

Particle Swarm Optimization (PSO) hybridised with a numerical method, referred to 

collectively as the decomposition technique. It decouples the complicated optimization 

problem into sub-problems, namely the scheduling of storage and other elements in the 

energy hub system, and separately solves these by PSO and the numerical method 

‘interior-point’. This approach thus overcomes the disadvantages of numerical methods 

and artificial intelligence algorithms that suffer from convergence only to a local 

minimum or prohibitive computation times, respectively. The new approach is applied 

to an example two-hub system and a three-hub system over a time horizon of 24 hours. 

It is also applied to a large eleven-hub system to test the performance of the approach 

and discuss the potential applications. The results demonstrate that the method is 

capable of achieving very near the global minimum, verified by an analytical approach, 

and is fast enough to allow an online, receding time horizon implementation. 

3.2 Introduction 

Energy hub modelling relates to the utilization of co-generation or tri-generation, which 

increases system flexibility by means of exploiting every available energy carrier, such 

as electricity, gas, and heat [1, 2]. A typical energy hub contains multiple energy carriers, 

which achieves the function of importing, exporting, converting, and storing energy [3, 

4]. The energy hub approach takes advantage of existing infrastructures as much as 

possible and can be applied to various sizes of the energy system. Domestic buildings 

are modelled in this paper, which consume approximately 40% of society’s total energy 

[5] but an individual domestic load profile is fairly stochastic such that it cannot always 

be met with onsite generation. Interconnecting heterogeneous energy infrastructure at 

local level can best leverage renewable generation and pooled storage without suffering 

large distance transmission losses and enable self-sufficient energy communities. 
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The optimal operation of an energy hub system enables the effective utilization of the 

elements within the system to minimise energy use, monetary cost or emissions, or 

some weighted combination of these objectives.  Different algorithms have been 

applied to the multi-hub optimization problem. Reference [6] presents a decomposed 

solution of a multi-agent genetic algorithm to optimize the power and gas flow between 

energy hubs. Papers [7] and [8] employ model predictive control (MPC) to optimally 

control the operation of three interconnected energy hubs, although numerical methods 

are applied within the MPC scheme, so a global minimum cannot be guaranteed in the 

solution. In [9] and [10], a grid of 10 hubs is modelled, where the energy transfer 

between hubs is formulated as a non-cooperative game. The existence of the unique 

Nash equilibrium is proved. References [11, 12] propose an integrated demand response 

program and simulate the scheme on a smart grid of six energy hubs. The integrated 

demand response problem is formulated as an ordinal potential game and the Nash 

equilibrium is proven to be unique. Reference [13] investigates the performance of an 

energy management system under different energy pricing schemes for a group of 10 

hubs. Reference [14] introduces the “smart energy hub” system which uses a cloud 

computing platform to enable customers with must run loads to participate in a demand 

side management program. Reference [15] investigates the optimization performance 

between deterministic and stochastic approaches applied to multi-period optimization 

for a 3-hub system over a mixed industrial and residential area. Reference [16] 

generates a novel mathematical model for storage, general appliances, and other 

renewable components in residential houses. Mixed integer linear programming (MILP) 

is applied to optimize the control for residential energy hubs considering end-user 

preferences.  

References [9] to [15] propose the optimization for multi-hubs. However, storage is not 

considered when the problem is formulated as a non-convex problem in [9] to [12]. In 

reference [13], the storage is modelled in the energy hub optimization, but the problem 

is formulated as a convex problem. The optimal operation of multiple hubs with energy 

storage and interconnection available between hubs has hitherto been formulated as a 

highly constrained, non-linear multi-period optimization. However, the lifetime of the 

battery system suffers as its utilization increases, an aspect which has not been 

addressed in previous energy hub literature. In this paper, the battery lifetime cost is 

calculated and included in the objective function based on the method proposed by [17]. 
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Therefore, the optimization problem is formulated as a non-convex, multi-period 

problem.  

Numerical algorithms such as MILP provide fast computation times, but perform 

poorly when solving non-convex problems, because the solver can easily fall into local 

minima. Alternatively, particle swarm optimization (PSO) and related optimization 

approaches have been applied to optimize the operation of power systems due to their 

straightforward implementation and high efficiency [18]. For example, multi-pass 

iteration PSO was applied to the optimal scheduling of a battery coupled with wind 

turbine generators [19]. Co-evolutionary PSO was applied to smart home operation 

strategies [20]. A hybrid algorithm combining PSO and a bacterial foraging algorithm 

was proposed and applied to the optimal scheduling of an active distribution network 

[21]. 

Despite high robustness and accuracy compared with other algorithms [19], PSO has 

never been applied to solve energy hub optimization problems. However, conventional 

PSO is not suitable for solving highly-constrained non-linear problems with a large 

number of variables where the feasible region is narrow in hundreds of dimensions, 

meaning the time spent on finding feasible particles is considerable. Thus, improvement 

to conventional PSO is required in order to fully harness its potential for multi-hub 

optimization. This paper proposes a decomposed solution by applying a novel hybrid 

PSO and numerical optimization by combining conventional PSO with the ‘interior 

point’ method. Each particle in the PSO routine represents the storage operations over 

the whole optimization time horizon (24 hours in this paper). Based on the storage 

operation, the ‘interior-point’ algorithm is applied to optimize the operations of other 

elements in the system of energy hubs over 24 hours. The resulting energy cost over 

the full 24 hour time horizon is formulated as the fitness score. All particles then are 

updated based on the conventional PSO routine until the optimization completes. The 

decomposition technique is demonstrated to be capable of optimizing multi-energy 

hubs efficiently, and the storage operation obtained from the decomposition technique 

is benchmarked to be very close to the theoretical optimal strategy of storage. 

Additionally, the decomposed PSO yields better optimization results with less 

computation compared with the conventional PSO. The approach is applied to two 

energy hub systems to illustrate its effectiveness. The main contributions of this paper 

are illustrated as follows: 
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i) A decomposition technique of applying particle swarm optimization is proposed in 

this paper, and it is capable of solving the non-convex multi-period optimization 

problem. The decomposition technique is validated by a simple two-hub system for 

which the theoretical minimum can be derived empirically. 

ii) A group of residential houses is simulated as an interconnected energy hub system, 

an optimization problem is expressed to minimize the total cost of the energy hub 

system over 24 hours. With the battery lifetime cost considered in the optimization, the 

problem is formulated as a non-convex problem. The decomposed PSO approach is 

applied to optimally solve the problem. The optimization results indicate that the battery 

SOC varies between 60% and 90% to avoid unnecessary degradation of the battery 

lifetime for three residential hubs. 

iii) The performance of the decomposed PSO approach is compared with the 

conventional PSO being applied to solve a same three-hub problem. The decomposition 

technique achieves a 58% greater energy saving for three-hub optimization with 98% 

saving of computation time comparing with the conventional PSO. 

This paper is organized in six sections. Section II illustrates the general optimization 

problems for multi-energy hubs which the energy interconnection is enabled between 

hubs. An explicit description of the decomposition technique applying PSO is presented 

in section III. Section IV presents the case studies and related results. Section V 

concludes the paper. 

3.3 Energy Hub Optimization 

3.3.1. Energy Hub Modelling 

A typical energy hub model that enables energy sharing between hubs is shown in Fig. 

3-1.  It consumes various input resources including electricity from grid (𝑃𝑒𝑙𝑒), solar 

energy (𝑃𝑠𝑜), and gas (𝑃𝑔𝑎𝑠) to meet the electricity load (𝐿𝑒𝑙𝑒) and thermal load (𝐿𝑡ℎ). 

The energy flow between hubs is denoted by 𝐸𝑟ℎ and 𝐻𝑟ℎ , which indicate the power 

and heat exchange with other hubs. The mathematical formulation between hub inputs 

and outputs under steady state operation is shown in (3-1). 

[
𝐿𝑒𝑙𝑒(𝑡)

𝐿𝑡ℎ(𝑡) + 𝐻𝑟ℎ(𝑡)
] =

[
𝜂𝑃𝑉 ∙ (1 − 𝑣1(𝑡)) 1 − 𝑣1(𝑡) 𝑣2(𝑡) ∙ 𝜂𝑒

𝜂𝑃𝑉 ∙ 𝑣1(𝑡) ∙ 𝐶𝑜𝑃 𝑣1(𝑡) ∙ 𝐶𝑜𝑃 𝑣2(𝑡) ∙ 𝜂𝑡ℎ + 𝜂𝑏𝑜 ∙(1 − 𝑣2(𝑡))
] ×
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[

𝑃𝑠𝑜(𝑡)

𝑃𝑒𝑙𝑒(𝑡) + 𝐸𝑠ℎ(𝑡) − 𝐸ℎ𝑠(𝑡) + 𝐸𝑟ℎ(𝑡)

𝑃𝑔𝑎𝑠(𝑡)
]               (3-1) 

The first matrix on the right hand side is the coupling matrix C, which defines the 

relationship between inputs P and outputs L. The parameter 𝑡  within the brackets 

indicates that these variables are time dependent. Since the problem is considered in a 

discretized time domain, they are fixed in each time step. The coefficient 𝜈  is the 

dispatch factor between 1 and 0 which generally denotes the portion of the energy 

injected to a certain converter. For the example energy hub model, 𝜐1 is the portion of 

electricity injected to heat pump over total electricity input. 𝜐2 indicates the percentage 

of gas input to CHP over total gas input. Parameters 𝜂𝑠𝑜 and 𝜂𝑏𝑜 express the efficiency 

of the Solar PV and boiler respectively. 𝜂𝑒 and 𝜂𝑡ℎ represents the electric efficiency and 

thermal efficiency of CHP respectively. 𝐸𝑠ℎ  and 𝐸ℎ𝑠  indicate the charging and 

discharging energy.  

The assumptions for modelling the energy hub system are as follows: 
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Fig. 3-1. Two-hub system with energy sharing available between hubs. 

Fig. 3-2. An example of energy hub model 
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Assumption 1: The energy hub system modelled enables electricity and heat sharing 

between hubs. The electrical interconnection between hubs is the electricity exchange 

with the grid. For example, in Fig. 3-2 electricity transfer from hub 1 to hub 2 is 

achieved by injecting electricity to grid from hub 1, and extracting the same amount of 

electricity from grid to hub 2. For heat transfer, a district heat network must be installed 

between the hubs.  

3.3.2. Converters Modelling 

The most common residential heating in the UK, a gas boiler, is modelled within the 

energy hub. The efficiency of a gas boiler can be formulated as a nonlinear expression 

in terms of the input energy 𝑃𝑔𝑎𝑠(𝑡).  

Assumption 2: the efficiency of the boiler simulated in this paper is non-constant, and 

the characteristics of the cyclic fuel utilization efficiency with respect to cyclic input 

energy normalized by steady-state input energy is derived based on Reference [22]. The 

data points and approximated curve are shown in Fig. 3-3. 

The boiler efficiency varying with the input energy can, therefore, be represented by 

the approximated curve. The expression of boiler efficiency 𝜂𝑏𝑜 is shown in (3-2): 

𝜂𝑏𝑜(𝑡) = 0.8218646 −
0.01686

𝑃𝑔𝑎𝑠
∗ (𝑡)

                 (3-2) 

Where 𝑃𝑔𝑎𝑠
∗(𝑡) is the value of instant gas input at time step 𝑡 normalized by steady-

 

Fig. 3-3.Boiler efficiency against cyclic input energy normalized by steady-state input 

energy 
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state input. It should be noted that the value of 𝑃𝑔𝑎𝑠
∗(𝑡) is within the boundary of 0 to 

1. 

In addition, the ground source heat pump (GSHP) is selected in this paper due to its 

high efficiency and potential to decarbonise heat, and its increasing uptake in some 

European countries, America and Japan [23]. The efficiency of the heat pump is 

described as the Coefficient of Performance (𝐶𝑜𝑃) and is expressed in (3-3): 

𝐻𝑒𝑎𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐶𝑜𝑃 ∙ 𝑃𝐻𝑃(𝑡)                 (3-3) 

Where 𝑃𝐻𝑃  is the power input to the GSHP. 

Assumption 3: the CoP of GSHP is set to be constant over the whole time horizon. 

Micro-combined heat and power (micro-CHP) reduces electricity utilization from the 

grid and increases energy efficiency by simultaneously generating power and heat [24]. 

Hence it is modelled in this paper. 

Assumption 4: The micro-CHP simulated in this paper is assumed to be steady-state 

with constant electric efficiency and thermal efficiency, the values of 0.33 and 0.57 are 

respectively adopted to simulate the efficiencies. The ramp rate constraint 𝑒𝑟𝑎𝑚𝑝 to 

restrict the micro-CHP power output is considered and given by (3-4), 𝑒𝑝 is the power 

output of the micro-CHP. 

−𝑒𝑟𝑎𝑚𝑝 ≤ 𝑒𝑝(𝑡 − 1) − 𝑒𝑝(𝑡) ≤ 𝑒𝑟𝑎𝑚𝑝                (3-4) 

3.3.3. Energy Storage Modelling 

The lead-acid battery is employed as the energy storage within the energy hubs in this 

work. The battery is considered to be a simple buffering device. Since the electrical 

energy within the storage at the current time step is equal to the electricity at last time 

step plus the charging energy or minus the discharging energy, and minus the standby 

loss. The ith battery’s energy level 𝐸𝑖(𝑡) is mathematically expressed in (3-5). 

𝐸𝑖(𝑡) = 𝐸𝑖(𝑡 − 1) + 𝐸𝑠𝑡𝑏,𝑖(𝑡) + 𝐸ℎ𝑠,𝑖(𝑡) ∙ 𝜂𝑐ℎ𝑎𝑟 − 𝐸𝑠ℎ,𝑖(𝑡)/𝜂𝑑𝑖𝑠             (3-5) 

𝐸(𝑡 − 1) represents the energy within the storage in the previous time step. 𝐸𝑠𝑡𝑏 is the 

standby loss, 𝐸𝑠ℎ and 𝐸ℎ𝑠 indicate the charging and discharging energy. 𝜂𝑐ℎ𝑎𝑟 and 𝜂𝑑𝑖𝑠 
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are charging efficiency and discharging efficiency respectively. Since the battery can 

only charge, discharge, or on standby at any time step, constraint (3-6) is considered in 

the optimization problem. 

𝐸ℎ𝑠,𝑖(𝑡) ∙ 𝐸𝑠ℎ,𝑖(𝑡) = 0                   (3-6) 

In addition, the characteristic of battery lifetime is considered since the operation of the 

battery at different states of charge (SOC) result in different losses. The lifetime drops 

quicker when operating the battery during low SOCs compared to high SOCs [25]. To 

maximize the benefits of battery utilisation from the prospective of long term operation, 

the battery lifetime cost penalty is calculated and added to the objective function. 

Reference [17] suggests the method of calculating battery lifetime cost 𝐶𝑏𝑙(𝑡) and it is 

illustrated in Appendix. 

Assumption 5: During the process of optimization, the initial state of charge of each 

battery is set to be 70%, and to consistently utilize the batteries for the next day, the 

state of charge at the final time step needs to be reverted to above 70%. The SOC of the 

three batteries is assumed to be limited between 0 and 100%. 

3.3.4. Optimization Problem Description 

The objective is to minimize the system cost including the energy cost and battery 

lifetime cost over a time horizon of 24 hours. With the knowledge of electricity load, 

heat load, energy carrier price and solar energy generation, the objective is to control 

the energy hub operation at each time step to achieve a holistic 24 hour optimization. 

The system operation vector contains energy injected into each hub, the dispatch factor 

within each hub, the energy exchange between hubs, and the charging/discharging 

energy of energy storage at each time step. The control vector 𝑢(𝑡) is expressed in (3-

7): 

𝑢(𝑡) = [𝑃𝑒𝑙𝑒,𝑖(𝑡), 𝑃𝑔𝑎𝑠,𝑖(𝑡), 𝐸𝑖𝑗(𝑡), 𝐻𝑖𝑗(𝑡), 𝐸𝑠ℎ(𝑡), 𝑣𝑖(𝑡)], ∀𝑖, ∀𝑡             (3-7) 

For a system containing Ω number of interconnected energy hubs, the optimization 

problem may be formulated as equations (3-8a) to (3-8o), the variables used in problem 

(3-8) are defined thusly: 

Subscripts 𝑖 and 𝑗 denote the hub index.𝑃𝑒𝑙𝑒(𝑡) and 𝑃𝑔𝑎𝑠(𝑡) represent the electricity and 
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gas input to energy hub at time step t. 𝑣𝑖(𝑡) denotes the dispatch factor at time step t. 

The electricity and heat exchange between hubs are denoted as 𝐸𝑖𝑗(𝑡)  and  𝐻𝑖𝑗(𝑡) , 

which means the energy flow direction is from hub i to hub j at time step t. The flow 

direction is reversed when the value of 𝐸𝑖𝑗(𝑡) and 𝐻𝑖𝑗(𝑡) are negative. 𝑆𝑂𝐶(𝑡) is the 

battery state of charge. 𝐸𝑠(𝑡) represents the energy stored in the battery at time step 𝑡, 

which has to be limited within the battery capacity. 𝐸𝑠ℎ(𝑡) and 𝐸ℎ𝑠(𝑡) are the charging 

and discharging power from the battery.  Π(t) denotes the energy price.  𝑃𝐻𝑃(𝑡) and 

𝑃𝐵𝑜(𝑡) are the energy injection to heat pump and boiler respectively.  N is the number 

of total time steps.  𝑒𝑝(𝑡) represents the electricity output of Micro-CHP, and 𝑒𝑟𝑎𝑚𝑝(𝑡) 

is the Micro-CHP ramp rate at time step t. 

The optimization problem is described by (3-8a) – (3-8o): 

Minimize 

∑ [∑ [𝑃𝑒𝑙𝑒,𝑖(𝑡) × Π𝑒𝑙𝑒(𝑡) + 𝑃𝑔𝑎𝑠,𝑖(𝑡) × Π𝑔𝑎𝑠(𝑡) + 𝐶𝑏𝑙,𝑖(𝑡)]
Ω
𝑖=1 ]𝑁

𝑡=1           (3-8a) 

Subject to 

𝐿𝑖(𝑡) = 𝐶𝑖(𝑡) ∙ 𝑃𝑖(𝑡), ∀𝑖, ∀𝑡  (3-8b) 

0 ≤ 𝑣𝑖(𝑡) ≤ 1 ∀𝑖, ∀𝑡  (3-8c) 

Electricity  

𝑃𝑒𝑙𝑒,𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝑃𝑒𝑙𝑒,𝑖(𝑡) ≤ 𝑃𝑒𝑙𝑒,𝑖,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡  (3-8d) 

𝐸𝑖𝑗,𝑚𝑖𝑛(𝑡) ≤ 𝐸𝑖𝑗(𝑡) ≤ 𝐸𝑖𝑗,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡  (3-8e) 

Heat 

𝐻𝑖𝑗,𝑚𝑖𝑛(𝑡) ≤ 𝐻𝑖𝑗(𝑡) ≤ 𝐻𝑖𝑗,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡  (3-8f) 

Battery 

𝑆𝑂𝐶𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝑆𝑂𝐶𝑖(𝑡) ≤ 𝑆𝑂𝐶𝑖,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡  (3-8g) 

0 ≤ 𝐸𝑠ℎ,𝑖(𝑡) ≤ 𝐸𝑠ℎ,𝑖,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡  (3-8h) 
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0 ≤ 𝐸ℎ𝑠,𝑖(𝑡) ≤ 𝐸ℎ𝑠,𝑖,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡 

𝐸𝑠ℎ,𝑖(𝑡) ∙ 𝐸ℎ𝑠,𝑖(𝑡) = 0, ∀𝑖, ∀𝑡 

 (3-8i) 

 (3-8j) 

Micro-CHP 

𝑒𝑝,𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝑒𝑝,𝑖(𝑡) ≤ 𝑒𝑝,𝑖,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡  (3-8k) 

𝑒𝑟𝑎𝑚𝑝(𝑡) ≤ 𝑒𝑝,𝑖(𝑡) − 𝑒𝑝,𝑖(𝑡 − 1) ≤ 𝑒𝑟𝑎𝑚𝑝(𝑡), ∀𝑖, ∀𝑡  (3-8l) 

Gas 

𝑃𝑔𝑎𝑠,𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝑃𝑔𝑎𝑠,𝑖(𝑡) ≤ 𝑃𝑔𝑎𝑠,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡  (3-8m) 

GSHP 

𝑃𝐻𝑃,𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝑃𝐻𝑃,𝑖(𝑡) ≤ 𝑃𝐻𝑃,𝑖,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡  (3-8n) 

Boiler 

𝑃𝐵𝑜,𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝑃𝐵𝑜,𝑖(𝑡) ≤ 𝑃𝐵𝑜,𝑖,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡  (3-8o) 

As indicated by (3-8), the optimization is carried out considering the security 

constraints. (3-8b) indicates the coupling constraints between hub inputs and outputs to 

reflect equations (3-2) (3-3) and (3-5). (3-8b) is the transformation of (3-1) which 

reflects the mathematical transformation between energy hub input and output. (3-8d) 

and (3-8m) refer to the minimum and maximum energy input to a single hub. (3-8e) 

and (3-8f) suggest the adjustment of energy transmission limitation between hubs. (3-

8g) indicates the limitation of energy level within batteries. (3-8h) and (3-8i) indicate 

the limitation of charging energy and discharging energy at each time step. (3-8j) avoids 

simultaneously charging and discharging the battery. (3-8k), (3-8n), and (3-8o) 

represent the minimum and maximum energy injection to micro-CHP, GSHP, and 

boiler respectively. (3-8l) limits the ramp rate for micro-CHP electric output. 

Whilst solving the energy hub optimization problem, the control variables mentioned 

in (3-7) at each time step must satisfy all constraints illustrated above. Therefore, the 

multi-hub problem is necessarily a multi-period optimization containing a large number 

of variables and constraints. For instance, the 3-hub scenario investigated in this paper 
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contains 504 variables and 480 constraints. Clearly, the optimization problem becomes 

more complicated as the number of hubs increases. Additionally, it was concluded by 

graphing the functions associated with the battery lifetime cost ((3-A1) to (3-A6) in the 

Appendix) that these fail to satisfy the definition of a convex problem.  Therefore, the 

optimization problem is a non-convex problem. 

3.4 Decomposed PSO 

3.4.1. PSO 

Particle swarm optimization was proposed based on the behaviour of flocking birds or 

schools of fish [26]. Each particle describes a solution to a problem that can be 

quantitatively measured by its performance. At each iteration of the optimization, the 

particles trend towards the global minimum based on two factors, the best performance 

of any particle ever achieved 𝑃𝑖
𝑔

 and the best position  𝑃𝑖
𝑘  of particle i. The PSO 

working mechanism is illustrated by means of mathematical formulations in (3-9) and 

(3-10): 

The position 𝑋 of a particle 𝑖 at iteration 𝑘 + 1 is  

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1                   (3-9) 

𝑉𝑖
𝑘+1 indicates the new velocity for particle 𝑖 at 𝑘 + 1 iteration. It is derived as: 

𝑉𝑖
𝑘+1 = 𝜔𝑉𝑖

𝑘 + 𝑐1𝑟1(𝑃𝑖
𝑘 − 𝑋𝑖

𝑘) + 𝑐2𝑟2(𝑃𝑖
𝑔
− 𝑋𝑖

𝑘)             (3-10) 

𝑟1 and 𝑟2 represent two random numbers between 0 and 1. 𝑐1 and 𝑐2 are the cognitive 

parameter and social parameter, the two weighting factors that model the confidence of 

the current particle in itself and in the swarm [27]. Parameter 𝜔 is the inertia weight, a 

coefficient applied to particle velocity, which influences the PSO convergence 

behaviour by increasing the distance the particle will travel from its previous position.   

At the beginning of the optimization, the PSO algorithm firstly generates a population 

of particles randomly over the search space, where the position of each particle 

represents a solution. The particles are evaluated by applying the solution to the 

problem to obtain a fitness score for each particle. 𝑃𝑖
𝑔

 and  𝑃𝑖
𝑘 can therefore be found. 

All particles are updated using (3-9) and (3-10) at each iteration, with this process 
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repeated until the stopping criteria is met.  

When conventional PSO is used on highly constrained and non-convex optimization 

problems, the particles tend to fall into infeasible regions during initialization and 

updating. This problem can be solved by utilizing the sequential quadratic 

programming (SQP) algorithm [28]. The SQP algorithm solves an optimization 

problem by seeking the Karush-Kuhn-Tucker first order optimally condition, which can 

find a local minimum near the starting point. In other words, the position of an 

infeasible particle is taken as the starting point and then by utilizing the SQP algorithm, 

a feasible particle can be found nearby that replaces the infeasible one. 

3.4.2. Decomposition Technique 

The multi-energy hub optimization is a multi-period problem with many variables. 

Since the main purposes of storage are to time-shift renewably generated energy to meet 

loads and arbitrage against varying tariffs, its operational management must, therefore, 

consider the energy price, renewable generation, and converter working status to 

schedule its operational state in each time step, i.e. charging, discharging or on standby. 

The operation of storage in the current time step will influence the operation in other 

time steps and thus a multi-period optimization approach is necessary. The complexity 

of the problem requires significant computation time and may compromise 

optimization accuracy. However, if the optimal operation of the complex time-

dependent device (such as storage) is known in advance, other control variables in (3-

7) can then be obtained by applying numerical methods in each time step.  

The stochastic nature of PSO is capable of solving non-convex problems with non-

continuous search spaces, whilst the numerical function ‘interior-point’ can handle non-

linear constrained problems with acceptable performance and computation time, so the 

decomposition technique here harnesses advantages of both methods. In general, during 

the generating and updating of all particles, only the control information of every 

battery is included in each particle (i.e. charging and discharging energy). For the 

optimization of a three-hub system containing three batteries over 24 time steps, there 

are totally 144 variables included in each particle. Whilst the operations of remaining 

elements in the energy hub system are derived using the interior point method based on 

the information in each particle, and the fitness score of each particle can therefore be 
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calculated. The procedure is shown in Fig. 3-4 and can be described thusly:  

1) Randomly initialize a population of particles, where the position of each particle 

denotes the solution of two variables over 24 hours: charging energy and 

discharging energy. The variables should be generated within the boundary set by 

the optimization, including the maximum charging/discharging energy, minimum 

and maximum battery capacity or SOC as indicated in (8h), (8i) and (8g). The 

magnitude of charging power at each step multiplied by discharging power should 

be equal to zero, meaning the battery can only either be charging, discharging, or 

on standby. This is achieved by applying SQP algorithm to find a feasible point 

satisfying above conditions near the initial point.  

2) For each time step, the charging and discharging energy can be regarded as the extra 

output and input for energy hub system without a battery. Therefore, the operations 

of the battery between each time step can be decoupled from each other.  

Randomly initialize a 

population of particles for 

batteries related variables 

over 24 time steps 

Satisfying battery 

constraints? 
Apply SQP to force the 

particles into feasible region

No

For each particle, use ‘interior-point’ to 

optimize other hub elements operation over 

24 hours based on the state of the battery 

The total cost of the energy hub system is 

therefore derived and regarded as the 

fitness score for each particle.

Find       and       based on the 

fitness score for each particle.

g

iP
k

iP

Meeting stopping criteria?

Update velocity and position 

for each particle

Yes

Yes
End

No

 

 
  

Fig. 3-4.The working flow of the decomposition technique 
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3) The ‘interior-point’ method is then applied to optimize the operation over the whole 

time period based on electricity load, heat load, renewable energy generation, extra 

input, and extra output. The optimized total system cost over 24 time steps is then 

derived. Meanwhile, the battery lifetime cost related to the battery working status 

over 24 time steps is calculated. The fitness score of each particle is thus the total 

operational cost from both battery operation and optimized overall hub 

management. 

4) Find 𝑃𝑖
𝑔

 and 𝑃𝑖
𝑘, see if the best particle satisfies the stopping criteria. If the stopping 

criteria is met, then the solution of the best particle is the final solution to the 

optimization. If not, update the velocities and positions for particles based on (9) 

and (10). 

5) Repeat steps 2 to 4 until the stopping criteria is met. 

The decomposition technique decouples the optimization for batteries and other hub 

elements. The optimal operations of batteries are derived based on the PSO, the 

optimization for other hub elements is obtained by applying the interior-point method. 

The efficiency of the algorithm is increased, and the computation time is therefore 

reduced. 

The decomposed-PSO algorithm is achieved based on modification of the open source 

PSO MATLAB routine developed by ETH Zurich [28]. The decomposed method is 

illustrated in terms of the optimization for the two-hub system in next section. 

3.5 Demonstration 

This section applies the novel PSO algorithm to two multi energy-hub systems across 

two use scenarios. The first part introduces a two-hub system, which is simple enough 

such that a theoretical minimum may be analytically calculated for benchmarking the 

performance of the PSO algorithm. The second part investigates a three-hub system 

with converters and batteries illustrated in section II. The potential application of the 

decomposition technique is discussed based on the computation speed and operation 

results in the third part. 
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3.5.1. Two-hub system 

To demonstrate the effectiveness of the decomposed-optimization in finding the global 

minimum, a 2-hub system optimization problem is proposed and investigated. The 

battery lifetime cost is excluded in the problem, hence the theoretical minimum can be 

derived analytically, and the performance of the decomposition technique can be 

evaluated. The 2-hub system with energy sharing is shown in Fig. 3-2. 

Each of the two hubs represents a residential house. The load and generation profile is 

assumed to be a winter day in the UK based on [29] and [30]. A battery is equipped in 

hub 1, with charging efficiency and discharging efficiency assumed to be 95%, and 

standby losses assumed to be negligible (justified because the self-discharge rate on 

diurnal timescales is very small). The battery minimum and maximum capacities are 4 

kWh and 17.376 kWh. To verify that the redundant energy within each hub is 

adequately utilized by the energy sharing between hubs, the different performance of 

converters is assumed in each hub. A ground source heat pump with CoP of 3.0 and 

another heat pump with CoP of 4.2 are included in hub 1 and hub 2 respectively. Time-

of-use electricity tariffs (derived from [31]) are assumed, in this case shown in Fig. 3-

5. The optimization problem statements refer to (3-8). 

1) Validation 

The benchmark approach to calculate the global minimum of the two-hub system over 

24 hours is shown in this section. The total energy cost, TC, for the two hubs is given 

in (3-11). 

𝑇𝐶 = ∑ [𝑃𝑒𝑙𝑒,1(𝑡) + 𝑃𝑒𝑙𝑒,2(𝑡) + 𝐸𝑠ℎ(𝑡)]
24
𝑡=1 ∙ Π𝑒𝑙𝑒(𝑡)            (3-11) 

 

 Fig. 3-5.The time-of-use tariffs against 24 hours. 
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𝑃𝑒𝑙𝑒,1(𝑡) and 𝑃𝑒𝑙𝑒,2(𝑡) indicate the electricity consumption including the power input to 

the heat pump and electricity load of hub 1 and hub 2 respectively. 𝐸𝑠ℎ(𝑡) represents 

the electricity exchange between hubs and energy storage. The optimization strategy is 

as follows: the consumed electricity is utilized to support the ground source heat pump 

to generate heat, and meet the electricity load. According to equation (3-3), the 

electricity requirement for heat can be reduced by exploiting the high CoP of heat 

pumps. Since heat between hubs is transferable, the heat pump in hub 2 (CoP of 4.2) is 

applied to support the heat load for two hubs at each time step. 

In addition to selecting high performance heating converters, storage can also be 

utilized to reduce energy cost. Based on achieving the objective of reducing the energy 

cost for the whole system, the operation of the battery should follow the broad strategy 

of charging during low tariffs and discharging during high tariffs. The battery needs to 

be fully charged during periods 1-7 since the electricity prices at these times are lowest. 

For periods 17-19, the prices are the highest, hence the storage needs to discharge within 

the maximum discharging power. The price from 15-16 is the lowest, hence some 

energy could be charged during 8-14 and recharge during 15-16 only if the remaining 

power at the end of 16 is capable of meeting the demand during 17-19. After 

considering the maximum discharging/charging power (3kW), the battery operation at 

each time step can be derived and indicated in table 3-1. Based on the operation of 

storage and heat pump, the total energy cost, TC, can be calculated as £6.73 from (3-

11). 

2) First scenario 

The 2-hub system optimization problem is solved by the decomposed PSO method on 

Table 3-1.THE OPTIMAL OPERATIONS FOR BATTERY 

 

Period Charging 

energy(kWh) 

Discharging 
energy(kWh) 

Battery state 
of charge(kWh) 

1-7 14.08 0 17.376 

8-14 0 6 11.376 

15-16 6 0 17.076 

17 0 2.646 14.429 

18-19 0 5.78 8.649 

20-21 0 4.6494 4 

22-24 0 0 4 
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Matlab, which is running on a 3.40 GHz Intel i5 quad core desktop with 8 GB of RAM. 

The procedures of implementing decomposed PSO is illustrated as follows: 

1) A group of particles is generated, each particle contains each battery’s charging 

and discharging energy over 24 time steps, which is randomly generated within 

the boundary set by optimization. Hence there are totally 48 variables contained 

in one particle. The charging and discharging energy in first three steps in the first 

particle is shown for example: 2.65 and 0.21, 1.24 and 0.11, 2.15, 0.02. 

2) The SQP method is then applied to find a feasible point near the randomly 

generated point based on the battery constraints, in this case a feasible point 

indicates that the battery has to be either charging, discharging, or standby. The 6 

variables in procedure 1 turns to be: 2.71 and 0, 1.21 and 0, 2.10 and 0. 

3) The battery scheduling is then abstracted from the individual time step 

optimization, in that the charging and discharging power of the battery at each 

time step are regarded as extra energy exported/imported from/to the hub. Given 

the battery information and the constraints within the energy hub system, the 

‘interior-point’ method is applied to optimally decide the variables over 24 time 

steps, such as the value of energy carrier injection to the hub, dispatch factor, etc. 

The total energy cost over whole time horizon can therefore be calculated, and 

regarded as the fitness score of the related particle. 

4) The speed of each particle is generated based on equation (10), the PSO keeps 

updating particles’ positions and speeds until the stopping criteria is met. 

The optimization results of total energy cost over 24 hours are shown in table 3-2 over 

a range of different particle population sizes.  

 

Particle 
population 

Optimization 

results(£) 

Computation 
time(s) 

10 6.783 106 

20 6.776 250 

30 6.737 271 

40 6.733 260 

50 6.752 419 

 

 

Table 3-2.OPTIMIZATION RESULTS FOR 2-HUB SYSTEM 



Chapter 3                                   Optimal Operation of Interconnected Energy Hubs 

Page | 54 
 

As shown from table 3-2, the performance of the algorithm improves when the particle 

population increases. However, the optimization results do not consistently increase 

with increasing particle population due to the stochastic nature of PSO. The best result 

is £6.73, which demonstrates that the algorithm is capable of reaching very close to the 

global minimum for a highly-constrained, non-linear problem.  

For comparison, when the storage is not present and energy sharing is unavailable 

between hubs, the energy demand for each hub can only be met with its own converters, 

and the total minimum energy cost is calculated as £7.84. When storage is not equipped 

with the system and energy sharing is available between hubs, the optimization problem 

is transformed to an optimal flow problem at each time step. The optimization can be 

solved by applying the ‘interior-point’ method, and the theoretical minimum energy 

cost is derived as £7.32. Compared with the 2-hub system without energy sharing and 

storage, the optimization achieves an energy cost saving of 14.14%. 

To demonstrate the accuracy of decomposed-PSO, the optimal operation of the battery 

at each time step derived from a 30 particle optimization is compared with the battery 

operation derived from the benchmark approach, and is shown in Fig. 3-6. It can be 

observed that the optimized battery operations derived from the decomposition 

technique closely approximate to the operations obtained from the benchmark 

theoretical minimum. 

 

 Fig. 3-6.The battery operations against 24 hours. 
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3.5.2. Three-hub system 

A three-hub system is presented and shown in Fig. 3-7. The three hubs respectively 

contain a battery with sizes of 5.3 kWh, 10.5 kWh and 21 kWh, the related battery 

parameters can be found in [25]. Different heating converters including GSHP, micro-

CHP, and gas boiler are equipped in the three hubs. The CoP of GSHP is selected as 4, 

the constraint parameters of micro-CHP are adopted from [24, 32], where the electric 

efficiency is 0.33, the thermal efficiency is 0.57, the ramp rate is 0.06 kW/min. The 

efficiency of the gas boiler is non-linear against the gas input, and is illustrated in 

section II. The electricity load 𝐿𝑒𝑙𝑒(𝑡) and heat load 𝐿𝑡ℎ(𝑡) for each hub are satisfied 

by optimally scheduling the utilization of all heating converters and batteries.  

The gas price is assumed to be constant at £0.03 per kWh over all 24 time steps. The 

electricity price is varied every hour in this case to reflect the time-of-use electricity 

tariffs all retailers will likely adopt in the near future. The variant electricity price 

against 24 hours is derived from [31] and shown in Fig. 3-8, with average half hourly 

tariffs used to produce an hourly pricing granularity. (These energy costs are typical in 

the UK at time of writing, but future prices will clearly yield different overall costs than 

the results shown in this paper.) The same method of modelling electricity demand and 
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Fig. 3-7.Three-hub system with energy sharing available between hubs. 
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heat demand used in [31] is employed here. Additionally, the solar PV generations 

𝑃𝑆𝑂(𝑡) are simulated with the Photovoltaic Geographical Information System [33]. To 

demonstrate the superiority of the decomposition technique, the conventional PSO is 

applied to solve this optimization problem.  The comparison between the 

decomposition technique and conventional PSO is illustrated by convergence behaviour 

and computation time.  

1) Second Scenario 

In this scenario, the performance between the conventional PSO and the decomposition 

technique in solving the optimization problem above is compared. 

Since the time spent on conventional PSO increases massively with rising particle 

population size, a modest population of 10 particles was applied to both conventional 

PSO and decomposition technique to observe the convergence behaviour, and the 

 

 

 

 

Fig. 3-8.The variant tariffs of electricity against 24 hours. 

Fig. 3-9.Convergence behaviours of conventional PSO and decomposition technique 
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comparison is shown in Fig. 3-9. The blue circles and the orange crosses represent the 

performance of applying conventional PSO and the decomposition technique 

respectively. 

As indicated in Fig. 3-9, the objective function value by applying decomposed PSO 

plateaus from between 15 and 20 iterations onwards, for conventional PSO, the 

objective function value trends to flat around 35 iterations. Under the conservative stall 

generations (50) and stall tolerance settings (£0.000001), the conventional PSO 

optimization converges at the 162nd iteration after 8970 s, and the optimization result is 

£22.61. The decomposition technique converges at 143rd iteration after 121 s, and 

achieves a much improved optimization result of £9.30.  

The optimized battery operations for hub 2, derived from two optimization methods, 

are shown in Fig. 3-10 in terms of battery SOC. The pink circles and orange crosses 

represent the battery SOC at each time step optimized by conventional PSO and 

decomposed PSO, and the blue dotted line indicates the electricity price variation over 

24 time steps. From the perspective of optimally exploiting the storage to save energy 

cost, both of the two methods achieve the optimization by charging storage during the 

low tariff period and recharging during the high tariff period. It could be concluded 

from Fig. 3-10 that the electricity tariff experiences two peak values over 24 time steps. 

The two peak values appear at step 11 and step 18. Both of the optimization methods 

indicate that the storage is discharging since the first peak electricity price from step 9 

to 10. Nevertheless, the storage operation derived from the decomposition technique 

 

 Fig. 3-10.The optimized battery operations by applying conventional PSO and 

decomposition technique. 
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discharges around the first peak electricity price from step 10 to 11, and then rapidly 

charges from step 11 to 18 to prepare for the second peak electricity price. With 

conventional PSO, the storage barely discharges at the first peak electricity price. Thus 

comparing with the conventional PSO, the decomposition technique can better optimize 

the storage operation and further reach the optimum. However, it could be derived from 

Fig. 3-10 that the battery scheduling operations derived from both optimization 

methods fail to fully discharge around the peak tariff period, which may lead to further 

cost saving. This is due to the low number of particles that degrades the performance 

of the optimization. 

2) Impact of Battery Lifetime Cost 

To investigate the influence of battery lifetime cost in the objective function on battery 

scheduling, the optimization is run when considering battery lifetime and compared to 

when the battery lifetime consideration is omitted. 30 to 50 particles used in 

decomposed PSO reach a result very close to the global minimum for the 3-hub 

optimization based on extensive experimentation. Hence 50 particles are applied in the 

optimization. The SOC of three batteries over 24 time steps when considering battery 

lifetime and compared with excluding the battery lifetime in the objective function are 

shown in Fig. 3-11 and Fig. 3-12 respectively. The green, blue, and red lines represent 

the variation of SOC of battery in hub 1, 2, and 3 over 24 hours respectively.  

The total energy costs for these two optimizations are £9.0268 and £9.0070, the battery 

lifetime costs are £0.0331 and £0.0728. Clearly when omitting the battery lifetime cost 

 

 
Fig. 3-11.Battery state of charge over 24 time steps derived from the optimization 

with the battery lifetime cost considered 
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the batteries are exploited to yield more energy saving. However, the battery lifetime 

cost is higher, and thus the system total cost is higher (sum of energy cost and battery 

lifetime cost) at £9.0798, compared to £9.0599 when battery lifetime is considered. 

When the battery lifetime is not optimized, the variation of SOC is broader, for example, 

the battery in hub 1 even varies between 50% and 100%. When the battery lifetime is 

considered in the objective function, the SOC of three batteries all varies from 

approximately 60% to 90%. It may be concluded from the calculation of battery lifetime 

cost that the cost increases when the battery is operated during lower SOCs. Hence the 

battery is better operated at high SOCs to avoid unnecessary degradation of battery 

lifetime.  

3) Applications 

The optimization problem uses a fixed time step of one hour. To allow an online, 

receding time horizon implementation, the optimization for scheduling the system of 

energy hubs must be completed within the time step. Therefore, the size of the system 

of energy hubs that the decomposition technique is capable of optimizing within one 

hour is investigated. With the same modelling method applied, a 5-hub system and an 

11-hub system are simulated with the same level of complexity to the 3-hub system 

investigated in section V. The decomposition technique is applied with 30 particles to 

3, 5, and 11 hub systems. The computation time for solving these three cases are 270 s, 

779 s, and 1011 s respectively.  

 

 Fig. 3-12.Battery state of charge over 24 time steps derived from the optimization 

without considering the battery lifetime cost 
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The decomposition technique was tested with different numbers of particles, for the 11-

hub system, and the optimization results and computation time are shown in Fig. 3-13 

and Fig. 3-14 respectively. In Fig. 3-14 ‘y=3600 s’ was drawn as a reference which 

indicates the time budget for a receding time horizon implementation with a time step 

of 1 hour.  

It could be observed from Fig. 3-13 that the optimization results generally plateau at 

approximately £46.89 when the population of particles applied in PSO is 40. Increasing 

population size beyond this does not increase system benefit. In contrast, the 

computation time increases approximately linearly as the number of particles increases. 

The computation time of implementing PSO with 60 particles on this problem is 3421 

s representing the best trade-off between computation time and performance for this 

particular system.  

 

Fig. 3-14. Optimization results against different amount of particles 

 

 
 

 

Fig. 3-13. Computation time against different amount of particles 
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With a receding time horizon implementation, operations are calculated up to a certain 

time horizon, for which all load data is predicted in advance, but only the optimized 

operation for the next time step is implemented. In the next time step the time horizon 

is increased by one and the process is repeated. This makes the best use of load 

prediction data on the basis that the predicated data closer to the current time step is 

likely to be more accurate. On the other hand, a fixed time horizon approach may be 

used for larger multi-hub systems that are more computationally intensive to solve. 

3.6 Conclusion 

This paper presents a decomposed method that hybridises particle swarm optimization 

and the ‘interior point’ method to solve the optimal scheduling problem for a multi-

energy hub system with the consideration of battery lifetime. For a 3 residential energy 

hub system, the utilization of battery varies from 60% to 90% to avoid unnecessary 

degradation of the battery lifetime, and the system thus benefits long term through 

increased battery lifetimes. The optimization demonstrably achieves very near the 

global minimum. This method can be applied in a receding time horizon approach for 

solving a practical system of size around 10 hubs, always leveraging the most up to date 

load prediction. For a larger system with more storage technologies, a fixed time 

horizon approach can be used, or the time step may be increased or the time horizon 

reduced. From the view of energy management, the storage operation is more accurate 

when the predicted horizon is longer and generally speaking, the time step smaller, 

necessitating a trade-off between optimization performance and computation time. 

Alternatively, the computation time could be shortened using high performance 

hardware or cloud computing. 

3.7 Appendix 

3.7.1 Calculation of Battery Lifetime Cost 

The life loss of a battery 𝐿𝑙𝑜𝑠𝑠(𝑡) over a certain time period t can be expressed as: 

𝐿𝑙𝑜𝑠𝑠(𝑡) =
𝐴𝑐(𝑡)

𝐴𝑡𝑜𝑡𝑎𝑙
 (3-A1) 

Where 𝐴𝑐(𝑡) is the effective cumulative Ah throughput during the use of battery and 

𝐴𝑡𝑜𝑡𝑎𝑙 is the total cumulative Ah throughput in the life cycle. The value of 𝐴𝑡𝑜𝑡𝑎𝑙 is 
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selected as 390Q effective Ah over its lifetime [25], which Q Ah is the capacity of a 

battery. 𝐴𝑐(𝑡) is formulated in (3-A2). 

𝐴𝑐(𝑡) = 𝜆𝑠𝑜𝑐 ∙ 𝐴𝑐
′ (𝑡) (3-A2) 

𝜆𝑠𝑜𝑐 is the effective weighting factor. The relation between 𝜆𝑠𝑜𝑐 and battery state of 

charge (SOC) is estimated as a linear formulation based on [25] and expressed in (3-

A3). 

𝜆𝑠𝑜𝑐 = {
−1.5 ∙ 𝑆𝑂𝐶 + 2.05        𝑖𝑓 𝑆𝑂𝐶 ≥ 50%
1.3                                   𝑖𝑓 𝑆𝑂𝐶 < 50%

 (3-A3) 

𝐴𝑐
′ (𝑡) indicates the actual Ah throughput. Assuming the SOC of the battery varies from 

a to b in a certain time period, 𝐴𝑐
′ (𝑡) and 𝐴𝑐(𝑡) can be expressed in terms of a and b 

shown in (3-A4) and (3-A5) respectively. 

𝐴𝑐
′ (𝑡) = (𝑎 − 𝑏) ∙ 𝑄 (3-A4) 

𝐴𝑐(𝑡) = {
∫ 𝜆𝑠𝑜𝑐𝑑𝑠𝑜𝑐
𝑎

𝑏

∙ 𝐴𝑐
′ (𝑡)            𝑖𝑓 𝑎 ≥ 𝑏

0                                              𝑖𝑓 𝑎 < 𝑏

 (3-A5) 

The life loss cost 𝐶𝑏𝑙(𝑡) is calculated with (3-A6). 

𝐶𝑏𝑙(𝑡) = 𝐿𝑙𝑜𝑠𝑠(𝑡) ∙ 𝐶𝑖𝑛𝑖𝑡−𝑏𝑎𝑡 (3-A6) 

𝐶𝑖𝑛𝑖𝑡−𝑏𝑎𝑡 represents the initial investment cost of battery, and it is assumed to be 0.534 

£/Ah [34] multiply by the battery capacity. The life loss cost can thus be calculated with 

(3-A1) to (3-A6). 

3.8 Chapter Summary  

This chapter illustrates the mathematical formulation of the optimisation problem for 

energy hub system under steady state. It presents the mathematical formulations for 

energy hub system elements including energy converters, energy storages, and 

transmission networks. Moreover, it also considers the non-constant efficiency of some 

energy converters, hence allows a more practical optimal operations compared with 

previous researches where the converter efficiency is assumed to be constant. The 

battery lifetime cost accounts for the battery lifetime loss in each time’s charging and 

discharging, and it is included in the objective function in order to utilise the battery for 

a long term use and avoid the unnecessary degradation.  
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Most importantly, a novel decomposed technique is proposed to optimise the 

interconnected energy hub system, which is formulated as a multi-period non-convex 

problem. The optimisation algorithm is hybridised by PSO and interior-point method, 

it decouples the complicated energy hub problem into sub-problem and separately 

resolved by PSO and interior-point method. The optimisation technique effectively 

improves the optimisation results and computational speed compared with the 

conventional PSO. Additionally, the method is demonstrated to be fast enough to allow 

an online, receding time horizon implementation.  
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This chapter proposes to utilise chance-constrained programming to 
analyse and resolve the energy hub optimisation problem with uncertain 
renewable generation, the energy flows between adjacent hubs are 
innovatively restricted by chance constraints. 

Chance-Constrained 
Optimization for Multi 

Energy Hub Systems in a 
Smart City 
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Chapter Overview 

Chapter 3 presents the optimal energy management within the context of interconnected 

energy hub system. The optimisation is assumed to be carry out for steady-state 

operation, where the renewable power generations, loads, and energy prices are 

assumed to be perfectly known over the optimisation horizon. However, uncertainty 

always existed among them, the renewable power generations such as solar PV and 

wind turbine can be easily affected by the weather conditions, the energy hub loads are 

significantly dependent on the customer behaviour. The uncertain weather conditions 

and customer behaviour could lead to the mathematical difference between the forecast 

values and realistic values. The overestimate of uncertain variables causes prohibitively 

high operational cost, and the underestimate of uncertain variables can cause the 

violation of safety constraints, which potentially damages the power system. Therefore, 

appropriate modelling techniques should be employed to simulate the effects of 

uncertain variables to the energy management problem. 

As illustrated in Section 2.3, probabilistic approaches have been applied in previous 

energy hub optimisation problem to simulate the uncertainties. Monte Carlo methods 

and other scenario generation methods are applied to generate scenarios for uncertain 

variables, the probabilistic energy hub optimisation problem can therefore be resolved 

by deterministically optimising each scenario and integrating the results. However, the 

probabilistic programming suffers from the huge computational burden due to the large 

number of scenarios generated by MCS, the scenario reduction methods can mitigate 

the computational burden, but may fail to completely reflect the stochastic nature of 

uncertain variables. 

To address the above issues, this chapter proposes to apply chance-constrained 

programming to optimise the probabilistic interconnected energy hub system. Based on 

the fact that the temporary overloading is tolerable for real energy networks, the power 

and gas flows between adjacent hubs are restricted by chance constraints with a given 

probability level. Chance-constrained programming can then be solved by satisfying 

both the deterministic and chance constraints. In contrast to scenario-based methods, 

the effects of uncertain elements are reflected by chance constraints, and the stochastic 

characteristics of uncertainty can be fully considered. The contributions of this chapter 

are summarised as follows: 
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iv) Chance-constrained programming is applied to resolve the energy hub optimisation 

problem with uncertainty for the first time. 

v) Cornish Fisher Expansion method is employed to mathematically convert chance 

constraints into deterministic constraints. 

vi) The impact of chance constraints is extensively investigated, the results from 

chance-constrained programming are compared with the results from using 

deterministic approach and scenario-based method. 
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4.1 Abstract 

The Energy Hub is a powerful conceptualisation of how to acquire, convert, and 

distribute energy resources in the smart city. However, uncertainties such as 

intermittent renewable energy injection present challenges to energy hub optimization. 

This paper solves the optimal energy flow of adjacent energy hubs to minimize the 

energy costs by utilizing the flexibility of energy resources in a smart city with uncertain 

renewable generation. It innovatively models the power and gas flows between hubs 

using chance constraints, thus permitting the temporary overloading acceptable on real 

energy networks. This novelty not only ensures system security but also helps reduce 

or defer network investment. By restricting the probability of chance constraints over a 

specific level, the energy hub optimization is formulated as a multi-period stochastic 

problem with the total generation cost as the objective. Cornish-Fisher Expansion is 

utilized to incorporate the chance constraints into the optimization, which transforms 

the stochastic problem into a deterministic problem. The interior-point method is then 

applied to resolve the developed model. The proposed chance-constrained optimization 

is demonstrated on a 3-hub system and results extensively illustrate the impact of 

chance constraints on power and gas flows. This work can benefit energy hub operators 

by maximizing renewable energy penetration at the lowest cost in a smart city. 

4.2 Introduction 

A smart energy city enables flexible management of energy infrastructure to efficiently 

meet demand. Within a smart energy city, the energy hub concept can coordinate 

multiple energy carriers to optimally satisfy demand [1-5]. Energy hubs could increase 

energy system flexibility and exploit the unused capacity of various energy carriers. 

Energy hubs have been applied to many energy system planning and operation 

problems in smart energy cities, such as demand response [6], system operations [7], 

and optimal power flows [8]. Buildings or communities in the smart energy city can be 

treated as energy hubs [1, 9] and the energy flows between them can be optimally 

scheduled to minimize energy transportation and exploitation costs, minimizing the 

energy costs of a smart energy city. The optimal energy flow of energy hub involves 

optimizing electricity and other carriers, such as natural gas and heat, which can be 

formulated as a multi-period problem. In [10-13], the optimization for multi-carrier 

systems including adjustment of the energy flows between hubs is investigated. 
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In the aforementioned literature, the steady-state model of energy hub systems is 

utilized and optimization problems are all formulated as deterministic models. In reality, 

uncertainties always present in energy management, due to customer load and 

renewable energy. System thermal and voltage constraints may be temporarily violated 

if uncertain variables are underestimated, otherwise system operational cost will be 

prohibitively high when the impact of uncertain variables is overestimated [14]. 

Therefore, modelling and estimation of uncertain variables are important in optimizing 

energy hubs. 

Uncertainty has been included in energy hub optimization in previous research. In [5, 

15, 16], Monte Carlo simulation is applied to model the uncertain inputs but the 

optimization requires much computational effort due to the large number of scenarios. 

A scenario reduction method is applied to minimise the number of scenarios in [17, 18]. 

Other methods including two-point estimate method (2PEM), the point estimate method, 

and the improved 2PEM method have been applied in [19-21] respectively to model 

renewable generation in energy hub systems. The reality is that a certain number of 

scenarios may not completely represent the stochastic nature of uncertain variables, 

causing the results to be inaccurate.  

In contrast to scenario-based methods, chance-constrained programming (CCP) is a 

consistently robust and reliable approach to resolve uncertainty [22]. Each chance 

constraint is modelled by a boundary, the acceptable probability of constraint violation. 

The CCP optimization is then resolved to meet both normal constraints and chance 

constraints. Whilst the stochastic nature of uncertain elements can cause occasional 

system overloading, investment to meet these rare stress events could be prohibitively 

expensive. However, in reality, some temporary overloading is tolerable in both gas 

and electricity networks, and CCP is, therefore, a promising approach to this problem. 

CCP has been applied to power system operating problems, including demand response, 

optimal power flow, and unit commitment [23], [24], and [25]. However, it has not been 

applied to the energy hub optimization problem.  

This paper formulates a novel, chance-constrained approach to solve the optimal energy 

flows for multiple energy hubs with uncertain renewable generation. The uncertain 

elements of solar and wind generations are simulated by fitting historical data to 

specific distributions. The power and gas flows along branches between adjacent hubs 

are modelled as chance constraints at specific probability levels. The optimization thus 
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becomes a non-convex stochastic problem. In solving the CCP problem, the non-

convex CCP problem is converted into a convex problem and linear programming is 

applied in [26]. The back-mapping approach is utilized in [22, 24], where the 

probability of chance constraints is derived by mapping them back to the uncertainty 

variables’ distributions. Non-linear programming is then applied to solve the 

optimization problem. A sample average approximation method is developed in [27] to 

resolve chance-constrained problems.  

This paper utilizes the Cornish-Fisher Expansion method to translate chance constraints 

into deterministic constraints so that deterministic programming can be applied. 

Because of its flexibility and robustness [1], the interior point method is thus used to 

solve the developed model. The CCP enables energy hub system reliability to be 

realized above a specific level with low costs by restricting the probability of the chance 

constraints over the predefined level. This work can benefit energy hub operators by 

maximizing renewable energy penetration at the lowest cost in a smart city. 

The main contributions of the paper are as follows: i) compared with [24] where the 

load uncertainties are modelled as random inputs in multiple hub optimization, the 

uncertainty of renewable generation is considered in multi-hub optimization; ii) in 

contrast to only treating the power flows between buses as chance constraints [24], both 

power and gas flows between adjacent hubs are restricted by chance constraints; iii) the 

CCP is incorporated into the energy hub optimization, which can better model the 

uncertainty characteristics compared with the scenario generation methods in [17-21] 

and reduce the huge computational burden caused in [5, 15, 16]; iv) in contrast to the 

approaches in [22, 24, 26, 27] for solving CCP, the chance constraints are 

mathematically converted into deterministic constraints through Cornish Fisher 

Expansion, and thus the deterministic programming is applied to solve CCP; v) the 

impact of chance constraints on energy hub system optimization is extensively 

investigated; vi) the comparison between CCP and deterministic approaches is 

quantified by using the value of expected value of perfect information (EVPI) and value 

of the stochastic solution (VSS) .  

The remainder of the paper is organised as follows: the mathematical formulations of 

the energy hub system with the power and gas network are illustrated in section II. The 

CCP problem formulation and the methodology of implementing the CCP for the 

system optimization are introduced in section III. Section IV introduces the concepts of 
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EVPI and VSS. Section V discusses different case studies and related results, and 

section VI concludes the paper. 

4.3 Energy Hub System Modelling 

The mathematical model of the energy hub system is illustrated in this section. The 

equality constraints are based on the law of energy conservation between hubs. The 

inequality constraints arise from safe operational limits such as maximum converter 

output and maximum power injection to a single hub. 

4.3.1. Energy Hub  

Both electricity and heat demand can be satisfied by adjusting different energy 

converters in hubs according to optimization objectives. The energy hub used in this 

paper is equipped with energy converters, namely Combined Heat and Power (CHP), 

Ground Source Heat Pump (GSHP), and Gas Furnace (GF). CHP simultaneously 

generates heat and power, GF combusts gas to generate heat. GSHP coverts power to 

heat by extracting heat from the ground, and it is widely used in Europe and American 

due to its high efficiency. 

The relations between converter inputs and outputs for CHP, GSHP, and GF are shown 

in (4-1), (4-2), and (4-3) respectively. ηe and ηgh indicate the electric and thermal 

efficiency of CHP. The efficiency of GSHP is the coefficient of performance (COP). ηF 

is the efficiency of GF. PCHP, PHP, and PGF represent the energy injection to CHP, GSHP, 

and GF. The electric output 𝑃𝐶𝐻𝑃,𝐸𝑜𝑢𝑡 and heat output 𝑃𝐶𝐻𝑃,𝐻𝑜𝑢𝑡 of CHP are quantified 

by (4-1a) and (4-1b), the outputs of GSHP 𝑃𝐻𝑃,𝑜𝑢𝑡(𝑡) and GF 𝑃𝐺𝐹,𝑜𝑢𝑡(𝑡) are calculated 

by (4-2) and (4-3). 

𝑃𝐶𝐻𝑃,𝐸𝑜𝑢𝑡(𝑡) = 𝜂𝑒 ∙ 𝑃𝐶𝐻𝑃(𝑡)                            (4-1a) 

𝑃𝐶𝐻𝑃,𝐻𝑜𝑢𝑡(𝑡) = 𝜂𝑡ℎ ∙ 𝑃𝐶𝐻𝑃(𝑡)                 (4-1b) 

𝑃𝐻𝑃,𝑜𝑢𝑡(𝑡) = 𝐶𝑂𝑃 ∙ 𝑃𝐻𝑃(𝑡)                   (4-2) 

𝑃𝐺𝐹,𝑜𝑢𝑡(𝑡) = 𝜂𝐹 ∙ 𝑃𝐺𝐹(𝑡)                   (4-3) 

Heat storage is also considered to store excessive heat, which can be utilized later when 

the heat load is exorbitant. Heat storage is formulated in (4-4) [28], where Mh specifies 

the energy exchange between the hub and heat storage, Eh indicates the stored energy, 

and Eh
stb is the standby thermal loss through the water tank wall at the current time 
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interval. eh
+ and eh

- are the charging and discharging efficiency respectively. These 

variables are a function of t, denoting the time step within a discretized time domain.   

𝑀ℎ(𝑡) =
1

𝑒ℎ
(𝐸ℎ(𝑡) − 𝐸ℎ(𝑡 − 1) + 𝐸ℎ

𝑠𝑡𝑏)                (4-4a) 

𝑒ℎ = {
𝑒ℎ
+     if  𝑀ℎ(𝑡) ≥ 0    (charging/standby)
1

𝑒ℎ
−     else                                  (discharging)

              (4-4b) 

Because the storage charges when Mh is greater than 0, the above equation means: the 

stored energy at current time step t equals the stored energy at previous time step (t-1) 

plus the charging energy multiplied by the charging efficiency, minus the standby loss. 

This explanation also applies when the storage discharges. 

Additionally, renewable generation including solar photovoltaics and wind generation 

cooperates with other hub elements to meet demand. The output of the solar 

photovoltaic system Pso,out is quantified by multiplying solar irradiance Pso,in with the 

efficiency ηso. 

𝑃𝑠𝑜,𝑜𝑢𝑡 = 𝑃𝑠𝑜,𝑖𝑛 ∙ 𝜂𝑠𝑜                    (4-5) 

The power output Pwi from wind turbines is expressed in terms of the wind speed vw 

(m/s) as shown in (4-6) [29], where vci, vrs, and vco represents the cut-in, rated, and cut-

out wind speed, Prated indicates the rated power. 

𝑃𝑤𝑖 = {

0,                                    if 0 < 𝑣𝑤 < 𝑣𝑐𝑖 , or 𝑣𝑤 > 𝑣𝑐𝑜

𝑃𝑟𝑎𝑡𝑒𝑑 ∙ (
𝑣𝑤−𝑣𝑐𝑖

𝑣𝑟𝑠−𝑣𝑐𝑖
) ,        if 𝑣𝑐𝑖 ≤ 𝑣𝑤 ≤ 𝑣𝑟𝑠                     

𝑃𝑟𝑎𝑡𝑒𝑑 ,                            if  𝑣𝑟𝑠 ≤ 𝑣𝑤 ≤ 𝑣𝑐𝑜                    

               (4-6) 

The energy hub modelled represents a community such as a university or hospital in a 

smart energy city. The schematic diagram of a single energy hub is shown in Fig. 1.  

As indicated in Fig. 4-1, the demand including electricity Lele and heat Lth is satisfied 

by electricity input Pele, gas input Pgas, energy exchange with the storage Mh, and 

renewable generation Pre,in. The energy hub system presents multiple inputs and outputs, 

hence the coupling between hub outputs (represented as L) and inputs (represented as 

P) is formulated with a matrix of converter efficiencies (representing as C). The 

mathematical transformation of the energy hub in Fig. 4-1 is formulated in (4-7).  
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[
𝐿𝑒𝑙𝑒(𝑡)

𝐿𝑡ℎ(𝑡) + 𝑀ℎ(𝑡)
] =

[
1 − 𝑣𝑒(𝑡) 𝜂𝑟𝑒(1 − 𝑣𝑒(𝑡)) 𝑣𝑔(𝑡)𝜂𝑒(1 − 𝑣𝑒(𝑡))

𝑣𝑒(𝑡)𝐶𝑂𝑃 𝑣𝑒(𝑡)𝜂𝑟𝑒𝐶𝑂𝑃 𝑣𝑔(𝑡)(𝜂𝑡ℎ + 𝜂𝑒𝑣𝑒(𝑡)𝐶𝑂𝑃) + 𝜂𝐹 − 𝑣𝑔(𝑡)𝜂𝐹
] ×

[

𝑃𝑒𝑙𝑒(𝑡)
𝑃𝑟𝑒,𝑖𝑛(𝑡)

𝑃𝑔𝑎𝑠(𝑡)
]                    (4-7) 

As indicated in (4-7), νe and νg are the dispatch factors of electricity and gas. 

Specifically for this hub, νe indicates the portion of electricity injection to GSHP relative 

to the total electricity input. Similarly, νg is the proportion of gas injected to CHP 

relative to the total gas input. 

4.3.2. Electricity Networks  

The mathematical formulations of electricity networks are indicated as follows [8]. The 

complex nodal power balance for node m is in (4-8), where Sm is the complex power 

injected to node, Smn is the complex power flow from node m to n, and N is the number 

of nodes in the power network. 

𝑆𝑚 = ∑ 𝑆𝑚𝑛
𝑁
𝑛=1                     (4-8) 

The complex power flow Smn is expressed in (4-9) in terms of the complex nodal voltage 

Vm and Vn, and the line parameters. 

𝑆𝑚𝑛 =
|𝑉𝑚|

2

𝑍̃𝑚𝑛
∗ −

𝑉𝑚𝑉𝑛
∗

𝑍𝑚𝑛
∗                     (4-9) 

CHP

Gas Furnace

GSHP

Water Tank

Pele

Pgas

Pre,in Lele

Lth

 

 Fig. 4-1.Single energy hub 



Chapter 4              Chance-Constrained Optimisation for Multi Energy Hub Systems 

Page | 73 
 

Assuming that the line between two nodes is represented by a π equivalent circuit, Zmn 

and Ymn respectively indicate the series impedance and shunt admittance. Therefore, 

𝑍̃𝑚𝑛 is  

𝑍̃𝑚𝑛 = (
1

𝑍𝑚𝑛
+
𝑌𝑚𝑛

2
)
−1

                (4-10) 

4.3.3. Gas Networks  

The gas injection to each node follows the conservation law of nodal gas flow balance. 

The mathematical formulations of the gas network are illustrated as follows [8], where 

the nodal gas flow balance for node m is  

𝑄𝑚 = ∑ 𝑄𝑚𝑛
𝑁
𝑛=1                   (4-11) 

Where Qm indicates gas injection to node m. Qmn in (4-12) represents the gas flow 

between nodes m and n, which is expressed in terms of the upstream pressure pm, 

downstream pressure pn and kmn depend on the pipeline's physical properties. 

𝑄𝑚𝑛 = 𝑘𝑚𝑛𝑠𝑛𝑚𝑛√𝑠𝑛𝑚𝑛(𝑝𝑚2 − 𝑝𝑛2)             (4-12a) 

𝑠𝑛𝑚𝑛 = {
+1,   if 𝑝𝑚 ≥ 𝑝𝑛 
−1,                 else

              (4-12b) 

The gas consumed by compressors Qcom is formulated as  

𝑄𝑐𝑜𝑚 = 𝑘𝑐𝑜𝑚𝑄𝑚𝑛(𝑝𝑚 − 𝑝𝑘)                (4-13) 

Where kcom characterizes the properties of the compressor, pm and pk indicate the suction 

and discharge pressures at the two sides of the compressor. Specifically, gas power flow 

Pmn can be quantified by gas flow rate Qmn and the gross heating value of gas 

(represented as GHV) as shown in (4-14). 

𝑃𝑚𝑛 = 𝐺𝐻𝑉 ∙ 𝑄𝑚𝑛                 (4-14) 

4.4 Problem Formulation and Methodology 

In a systematic way, the optimal operation normally consists of the following steps [7, 

8, 11-13]:  

i) the electricity load, heat load, and energy prices are normally forecasted by using 

historic data;  
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ii) the energy output of different generation is forecast, where the key uncertainties 

are the renewable generation;  

iii) model the cost functions of all energy generation;  

iv) model the operation objective function, and equality and inequality constraints 

for the optimization;  

v) find an appropriate optimization approach to solve the model. 

However, traditional deterministic methods fail to provide a reliable optimal solution 

because the renewable generation is assumed to be accurately forecasted. Chance-

constrained programming enables the optimization of the system with the distributions 

of uncertain variables explicitly represented. By defining a probability level for the 

chance constraints, solving the CCP means to optimize the system with safety 

constraints and chance constraints satisfied, under the condition that the values of 

uncertainty variables are randomly distributed according to their distributions. 

The impact of uncertain renewable generation on the energy hub system is modelled by 

chance constraints and the formulation of the optimization is presented in this section. 

Additionally, this section introduces the concept of Cornish-Fisher Expansion to 

convert chance constraints into deterministic constraints. The steps of the CCP 

implementation are at the end of this section. 

4.4.1. CCP Energy Hub Optimization Problem Formulation  

A system of three interconnected energy hubs in Fig. 4-2 is to illustrate the problem 

formulation. The electricity and gas networks supported by G1, G2, and N are 

embedded in the system to satisfy electricity and heat demand. G1 and G2 are 

generation power outputs, and N is the gas injection to the energy hub system. As shown 

in Fig. 4-2, heating converters including CHP, GSHP, and GF are installed within each 

hub, and a water tank is also contained in each hub as heat storage. A solar photovoltaic 

system and a wind farm are installed at hubs 1 and 2 respectively.  

The objective is to minimize the total system cost by optimally determining the power 

flow, gas flow, and the operation of each hub element over the whole operation time 

horizon with uncertain renewable. Meanwhile, the chance constraints on power and gas 

flows between adjacent hubs should be above the predefined probability level of 

confidence.  
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The optimal solution is denoted as the control vector u(t), which contains the power and 

gas injection to the network and each hub, the voltage and pressure at each bus, the 

pressure of compressor, the power and gas flows between adjacent hubs, the energy 

exchange with the heat storage in each hub, and the dispatch factors for each hub. All 

these variables at all time-steps are included in the control vector u(t).  

𝑢(𝑡) = [𝑃𝑒𝑙𝑒,𝑖(𝑡), 𝑃𝑔𝑎𝑠,𝑖(𝑡), 𝑉𝑖(𝑡), 𝑃𝐺𝑖(𝑡), 𝑃𝑁(𝑡), 𝑆𝑖,𝑗(𝑡), 𝑝𝑖(𝑡),   

𝑄𝑖,𝑗(𝑡), 𝑝𝑐𝑜𝑚,𝑖(𝑡),𝑀ℎ𝑖(𝑡), 𝐸ℎ𝑖(𝑡), 𝑣𝑒,𝑖(𝑡), 𝑣𝑔,𝑖(𝑡)]  ∀𝑡, ∀𝑖                 (4-15) 

In (4-15), ‘i’ is the index number related to hubs, buses, nodes, and compressors. The 

definitions of other variables are in previous sections. The total cost (TC) of the 

electricity and gas generation is the objective to be minimized in terms of a quadratic 

function over whole time horizon T. It should be noticed that snmn in (4-12a) and (4-

12b) is a binary variable, but it is temporarily used to calculate the gas flow Qmn in (4-

15). Hence snmn is not mentioned in the decision variables. The stochastic programming 

problem is formulated in (4-16). 

Objective: 
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Fig. 4-2.The three-hub interconnected system. 
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 Min 𝑇𝐶 = ∑ ∑ (𝑎𝑖,𝑡 + 𝑏𝑖,𝑡𝑃𝑖,𝑡 + 𝑐𝑖𝑡𝑃𝑖,𝑡
2

𝑖∈{𝐺1 ,𝐺2,𝑁}
𝑇
𝑡=1 )            (4-16a) 

Subject to: 

{
 
 
 
 
 
 

 
 
 
 
 
 
Equality constraints: (4 − 1) − (4 − 14)                                                     
Inequality constraints:                                                                                       

0 ≤ 𝑣𝑒,𝑖(𝑡) ≤ 1   0 ≤ 𝑣𝑔,𝑖(𝑡) ≤ 1                                                   (4 − 16b)

0 ≤ 𝑃𝐺,𝑖(𝑡) ≤ 𝑃𝐺,𝑖,𝑚𝑎𝑥(𝑡)      0 ≤ 𝑃𝑁(𝑡) ≤ 𝑃𝑁,𝑚𝑎𝑥(𝑡)                (4 − 16c)

0 ≤ 𝑃𝑒𝑙𝑒,𝑖(𝑡) ≤ 𝑃𝑒𝑙𝑒,𝑖,𝑚𝑎𝑥(𝑡)   0 ≤ 𝑃𝑔𝑎𝑠,𝑖(𝑡) ≤ 𝑃𝑔𝑎𝑠,𝑖,𝑚𝑎𝑥(𝑡)   (4 − 16d)

0 ≤ 𝑝𝑖(𝑡) ≤ 𝑝𝑖,𝑚𝑎𝑥(𝑡)   0 ≤ 𝑉𝑖(𝑡) ≤ 𝑉𝑖,𝑚𝑎𝑥(𝑡)                           (4 − 16e)

𝑀ℎ,𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝑀ℎ,𝑖(𝑡) ≤ 𝑀ℎ,𝑖,𝑚𝑎𝑥(𝑡)                                             (4 − 16f)

𝐸ℎ,𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝐸ℎ,𝑖(𝑡) ≤ 𝐸ℎ𝑖,𝑚𝑎𝑥(𝑡)                                                (4 − 16g)

𝑝𝑐𝑜𝑚,𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝑝𝑐𝑜𝑚,𝑖(𝑡) ≤ 𝑝𝑐𝑜𝑚,𝑖,𝑚𝑎𝑥(𝑡)                                  (4 − 16h)

Chance constraints:                                                                                            
Pr{𝑄𝑖,𝑗(𝑡) ≤ 𝑄𝑖,𝑗

𝑚𝑎𝑥} ≥ 𝛼   Pr{𝑆𝑖,𝑗(𝑡) ≤ 𝑆𝑖,𝑗
𝑚𝑎𝑥} ≥ 𝛼                   (4 − 16i)

  

The objective function in (4-16a) indicates the total cost on the network to be minimized 

over the whole time horizon, where a, b, and c represent the coefficient of generation 

cost. (4-16b) specifies the constraint on dispatch factors, which should be within the 

boundary between 0 and 1. (4-16c) indicates the constraint for total power and gas 

injection to the networks. (4-16d) reflects the minimum and maximum power and gas 

input to each hub. (4-16e) refers to the limitations of the pressure and voltage at each 

bus. (4-16f) denotes the limitation of heat energy exchange with the storage, the 

minimum and maximum heat energy that can be stored in the storage are defined in (4-

16g). (4-16h) represents the limitation of compressor’s pressure.  

In addition to equality and inequality constraints, the chance constraints are also 

established with a confidence level of α. The power flows Sij and gas flows Qij between 

adjacent hubs are constrained by chance constraints in this paper, and they are specified 

in (4-16i), where Pr means the probability of chance constraints.   

Equation (4-16i) indicates that the problem is formulated as a stochastic problem. To 

transform the stochastic problem to a deterministic problem, the quantile of chance 

constraints is calculated by Cornish-Fisher Expansion to fit the optimization, and (4-16) 

is thus solvable with the interior-point method. 

4.4.2. Transforming Chance Constraints to Deterministic Constraints  

In order to incorporate chance constraints into the optimization, the probability level of 

chance constraints is transferred by quantile, which reflects the inverse function of a 
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stochastic variable’s Cumulative Distribution Function (CDF). Because of the 

monotone relation between the quantile and its inverse CDF, (4-16i) could be expressed 

by (4-17). 

𝑞𝑄𝑖,𝑗(𝛼𝑖) ≤ 𝑄𝑖,𝑗,𝑚𝑎𝑥         𝑞𝑆𝑖,𝑗(𝛼𝑖) ≤ 𝑆𝑖,𝑗,𝑚𝑎𝑥               (4-17) 

Where q is the quantile function formulated by the Cornish-Fisher Expansion with the 

utilization of cumulants. Five orders of cumulants are applied in this paper. The quantile 

function q in terms of probability level of α is indicated in (4-18) [30]. 

𝑞(𝛼) = 𝐴(𝛼) +
𝐴2(𝛼)−1

6
𝜅3 +

𝐴3(𝛼)−3𝐴(𝛼)

24
𝜅4 −

𝐴3(𝛼)−5𝐴(𝛼)

36
𝜅3
2 +

𝐴4(𝛼)−6𝐴2(𝛼)+3

120
𝜅5 −

𝐴4(𝛼)−5𝐴2(𝛼)+2

24
𝜅3𝜅4 +

12𝐴4(𝛼)−53𝐴2(𝛼)+17

324
𝜅3
2               (4-18) 

The symbol A in (4-18) indicates the quantile of standard normal distribution, κv 

represents the cumulants with order v. It should be noted that the quantile q and 

cumulants κv follow the form of standard measure. For a variable q with a mean value 

of µ and standard deviation of σ, the normalized form of the variable and the cumulants 

are denoted as 𝑞∗ = (𝑞 − 𝜇) 𝜎⁄  and 𝜅𝑣
∗ = 𝜅𝑣/𝜎

𝑣 respectively. 

In order to calculate the quantile, the chance constraints need to be expressed in terms 

of uncertainty variables and other variables. Taking the chance constraint Q12 restricting 

the gas flow between hub 1 and 2 as an example, at each time step they are expressed 

by the composition of control variables x and uncertainty variables ξ, derived from (4-

1)-(4-14). The chance constraint of Q12 at time step t is  

𝑄1,2(𝑡) = 𝑎1𝜉𝑠𝑜𝑙𝑎𝑟(𝑡) + 𝑎2𝜉𝑤𝑖𝑛𝑑(𝑡) + 𝐶𝑜(𝑡)               (4-19) 

Where, ζsolar and ζwind stand for the uncertainty inputs of solar and wind energy 

respectively, a1 and a2 represent the coefficient related to ζsolar and ζwind. Hence the two 

uncertain inputs perform linear relations with the variable gas flow between hub 1 and 

2. Because the uncertain inputs to the energy hub system are linearly related to the 

chance constraints (power and gas flow between hubs), it is straightforward to obtain 

the linear relation in (4-19) through (4-1) - (4-14). Co(t) represents the polynomials 

containing control variables x, and it is irrelevant to the calculation of quantile. The first 

part in (4-19) related to the uncertainty inputs is expanded by the Cornish-Fisher 

Expansion to convert it to a deterministic formulation [30]. Assuming the uncertainty 

is abbreviated as Un(t), the cumulant for Un(t) with order v is formulated in 
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𝜅𝑈𝑛(𝑡),𝑣 = 𝑎1
𝑣𝜅𝜉𝑠𝑜𝑙𝑎𝑟,𝑣(𝑡) + 𝑎2

𝑣𝜅𝜉𝑤𝑖𝑛𝑑,𝑣(𝑡)               (4-20) 

Where 𝜅𝜉𝑠𝑜𝑙𝑎𝑟,𝑣(𝑡)and 𝜅𝜉𝑤𝑖𝑛𝑑,𝑣(𝑡)represent the cumulants of variables ξsolar(t) and ξwind(t) 

with vth order at time step t. The quantile of chance constraints can, therefore, be 

calculated through (4-18)-(4-20), and applied as the deterministic form in (4-17). The 

formulation of other chance constraints in (4-16i) can be accordingly transferred to 

deterministic constraints by the similar expressions shown in (4-18) to (4-20). 

4.4.3. Overall Methodology  

The methodology developed to solve the chance-constrained energy hub optimization 

is described by the following steps: 

 Step 1. Acquire data: energy hub load, distributions of renewable generations, and 

system parameters. 

 Step 2. Build the optimization problem with the given constraints, and chance 

constraints formulated in (4-16). 

 Step 3. Initialize the control vector u(t) within the predefined boundary. 

 Step 4. Convert the chance constraints into deterministic constraints through (4-17)-

(4-20). 

 Step 5. Apply the interior-point method to optimize the energy hub system with 

deterministic constraints. 

 Step 6. Determine whether the solution from step 5 satisfies the stopping criteria, 

and if not, update the control vector u(t) and repeat steps 4 to 5 until the stopping 

criterion is met. 

The optimization follows the general procedures of a heuristic algorithm, which is to 

update the optimal solution for the problem until the stopping criteria are met. However, 

as indicated in the previous section, the quantile of chance constraints not only depends 

on the probability level but also correlates with other control variables. Therefore, in 

updating the control variables, the chance constraints need to be circularly transferred 

to deterministic constraints at each iteration. The interior-point approach is then 

implemented to solve the deterministic problem to find the best solutions. 

4.5 EVPI and VSS Model 

To evaluate the effect of applying stochastic programming to solve the optimization 

problem, the results from the CCP are compared with those from the expected value of 
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perfect information (EVPI) and value of the stochastic solution (VSS), both of which 

use deterministic programming to solve the optimization. The EVPI calculates the 

maximum amount a decision maker is willing to pay when uncertain information is 

perfectly known [31]. By assuming the uncertainty is modelled by various scenarios 

each with a known probability, the wait-and-see solution (WS) is derived by summing 

the optimal solution from each scenario multiplied by probability. The EVPI is 

calculated by (4-21), and SS is the solution from the CCP. 

𝐸𝑉𝑃𝐼 = 𝑆𝑆 −𝑊𝑆                  (4-21) 

The VSS reflects the benefits from explicitly modelling the uncertain distributions. It 

is mathematically formulated as the difference between the expected value (EV) of the 

optimal solution where uncertain variables are replaced by their mean values and the 

stochastic solutions [31]. 

𝑉𝑆𝑆 = 𝐸𝑉 − 𝑆𝑆                  (4-22) 

4.6 Case Study 

The approaches of deriving PDF and CDF curves are illustrated in this section, and the 

convergence behaviour of the optimization technique is obtained and analysed by 

implementing the CCP on an example sample. Additionally, two cases are 

demonstrated and discussed in this section to validate the proposed model. The energy 

hub system in Fig. 4-2 is applied and the simulated time horizon is set as T=24. The 

chance constraints on gas and power flows between adjacent hubs are separately applied 

to the optimization problem in the first and second cases to investigate the impact of 

different chance constraints on system optimization performance. The system setup and 

data acquisition are indicated as follows.  

4.6.1. Data Setup 

The uncertainty in renewable energy generation, including solar energy and wind 

energy, are modelled in this paper. The CCP is used in this paper because a short period 

of overloading is tolerable for energy networks between communities, and hence a 

slight error is permissible.  

Literature suggests that the characteristics of solar and wind energy generally follow 

Beta [30] and Weibull distributions [20]. Thus, the probability density functions of solar 

and wind energy injection at each time step are derived by fitting the historical data into 
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Beta and Weibull distributions respectively, the shape factors of these distributions are 

then estimated. The cumulants are calculated based on the shape factors. The 

probability density function (PDF) curves and CDF curves of the solar and wind energy 

 

(a)                                                                         (b) 

 

  (c)                                                      (d) 

 
 

 

System parameters 

Line 1-2 Z12=0.3+j0.9 p.u., Y12=j1.5∙10-6 p.u. 
Line 1-3 Z13=0.2+j0.6 p.u., Y12=j2.5∙10-6 p.u. 

Line 2-3 Z23=0.1+j0.4 p.u., Y12=j3.5∙10-6 p.u. 
G1 V1=1∠0o, aG1=0, bG1=10 £/p.u., cG1=0.001 £/p.u.2 

G2 aG2=0 bG2=12 £/p.u., cG2=0.0012 £/p.u.2 
Pipe lines GHV∙k12=4.5   GHV∙k13=3.0   GHV∙k23=2.0 
Compressor GHV∙kcom=0.5 
N p1=1 p.u., aN=0, bN=5 £/p.u., cN=0 £/p.u.2 
CHP ηe=0.33, ηgh=0.57 
GF 
Storage 

ηF=0.75 
Eh

stb=0.5, eh
+= eh

-=0.9 
Renewables ηso=0.117,  vci=4m/s,  vco=25m/s,  vrs=16m/s,  

Prated=0.3p.u. 

Constraints 
Nodes  
m=1, 2, 3 

0.8 ≤ |Vm| ≤ 1.2 p.u. 
pm ≤ 1.2 p.u. 

G2 0 ≤  PG2 ≤4 p.u., 0 ≤ | QG2 | ≤ 4 p.u., 0 ≤ | PG2+jQG2 

| ≤ 5 p.u. 
Compressor 1.2 ≤ pm/ pk ≤ 1.8 
Storage 0 ≤ Eh ≤ 6 p.u.   -3 ≤ Mh ≤ 3 p.u. 
CHP input 0 ≤ PCHP,input ≤ 1 p.u. 
GF/GSHP 0 ≤ PGSHP/GF_input ≤ 1.5 p.u. 

 

Fig. 4-3. PDF and CDF curves of renewable energies inputs at step 9 
Table 4-1.ENERGY HUB SYSTEM PARAMETERS AND CONSTRAINTS 
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inputs at time step 9 are shown in Fig. 4-3 as an example. Here, figures (a) and (b) 

denote the characteristics of solar input, figures (c) and (d) indicate the wind input’s 

PDF and CDF.  

In addition to renewable uncertainties, the load profiles for the energy hub system are 

modelled by the electricity and thermal load profile simulation models [32] and [33]. 

The parameters and constraints for other elements in the energy hub system are taken 

from [8, 13, 28], which are described in Table 4-1. The system is considered as in a per 

unit (p.u.) system and the monetary unit is assumed to be GBP (£). 

4.6.2. Derivation of PDF and CDF Curves 

The results of CCP on the 3-hub system are analyzed with their PDF and CDF curves. 

All curves are sufficiently accurate to observe their characteristics when 500 samples 

are applied. The change to the curves are imperceptible when more samples are 

implemented, but the computational burden is exponentially heavy. Therefore, 500 

samples are analyzed to acquire the PDF and CDFs plots. Generally, the two functions 

can be obtained by the following key procedures as shown in Fig. 4-4.  

 Step 1: Implement the CCP optimization for the 3-hub system in terms of 500 

samples, where each sample represents the CCP with different probabilities of 

Start

For samples n=1:500

Implement the CCP scheme for the 3-hub 

system with the probability of chance 

constraints equals to 80%+(n-1)*0.04%

Record the results including the optimal 

operations and objective value for sample n  

Another n ?

No

Yes

Acquiring the PDF and CDF diagrams by 

sampling the results of the 500 samples

End
 

 Fig. 4-4.Flowchart of obtaining PDF and CDF curves from CCP 
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chance constraints. For example, to acquire the PDF and CDF curves with chance 

constraint probability higher than 80%, the corresponding probability level of chance 

constraints equals to 80%+(n-1) *0.04% with n growing from 1 to 500. 

 Step 2: Record the optimization results, including the optimal operations and 

objective value of each sample. 

 Step 3: Build PDF and CDF curves by running 500 samples. 

4.6.3. Case 1-Gas Flows with Chance Constraints 

1) Convergence analysis of CCP 

The optimization problem (4-16) is formulated as a multi-period problem, which is non-

convex. Due to the high complexity of the problem, the global minimum is not 

guaranteed with the used interior-point method. However, the interior-point method is 

capable of resolving the non-linear problem compared with the linear programming 

methods. To demonstrate that the algorithm is capable of achieving a local minimum 

when applied to CCP, a single run of the 3-hub system is analyzed with the probability 

level of the chance constraints set as 80%, and the convergence behaviour of the 

optimization is derived and shown in Fig. 4-5. The algorithm stopping criteria is 

specified as follows: the maximum iterations are 3000, both the constraints and function 

tolerances are 10-6, and the maximum function evaluations are 3000000. It can be seen 

that the value of the objective function dramatically declines from iteration 1 to 5. It 

then slightly increases until iteration 23, the curve continually drops from iteration 23 

to 30, and remains stable thereafter. It demonstrates that the optimization converges 

around iteration 41 and achieves the minimum value of £522.33. It is, therefore, 

reasonable to conclude a local minimum has been met. In fact, the optimization 

converges for each sample after approximately 40 iterations. Additionally, previous 

 

Fig. 4-5.The convergence of CCP implementing on the 3-hub system 
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literature has proved that the interior-point method applied to CCP is capable of 

converging to a minimum solution when solving problems with similar complexity [1, 

8, 34]. 

2) Different probability levels of chance constraints 

The maximum value of the chance constraint (i.e. the gas flow between adjacent hubs) 

is set as 0.8 p.u., and different probability levels of 80%, 85%, 90%, and 95% are 

applied to investigate how chance constraints affect the optimization.  

The CDF curves of the optimized total cost are shown in Fig. 4-6, which are derived by 

optimizing 500 samples for the 3-hub system with the chance constraints level higher 

than the above probability levels. The optimized total costs of the three-hub system vary 

from approximately £521.5 to £527 with the cumulative probability changing from 0 to 

1. All CDF curves perform similar characteristics with the optimization results derived 

from different chance constraint probability levels.  

Since the load is relatively high at time step 9 compared to other time steps, the optimal 

operation for the energy hub at this time step is of interest for further investigation. The 

CDF curves of the total gas injection to the network at time step 9 with different chance 

constraints probability levels are in Fig. 4-7.   

Fig. 4-7 indicates that all of the CDF curves gradually rising until the cumulative 

probability reaches 0.2, and then the curves rapidly increase to the cumulative 

probability of 1. The CDF curves with different probability levels of chance constraints 

present similar variation. The CDF curves in Fig. 4-7 present completely different 

characteristics with the CDF curves in Fig. 4-6. This is mainly due to the non-linearity 

 

 
Fig. 4-6.Case 1-CDF curve of the optimized total cost 
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between gas flow and the total system cost.  Additionally, since the hub system presents 

high flexibility, the change of gas flows between hubs could lead to an unpredictable 

impact on the total cost. For example, the constraints on the quantity of gas flows could 

lead to less gas injection into the energy hub. The demand could be satisfied by 

accordingly adjusting the operations of other elements within the energy hub system 

such as discharging the storage or switching on other converters. Since the problem is 

a multi-period problem with high complexity, the cost of the adjustments is not 

predictable. Therefore, the CDF curves of the optimized total cost perform differently 

with the CDF curve of the gas flows between hubs. 

4.6.4. Case 2-Power Flows with Chance Constraints 

1) Different probability levels of chance constraints 

The power flows between adjacent hubs are restricted by the chance constraints for the 

second case. Considering system safety limits, the maximum power flows between hubs 

are assumed to be 50% of branch capacity. With the different chance constraints 

probability levels of 80%, 85%, 90% and 95 %, the CDF curves of the total gas injection 

 

 
 

Fig. 4-7.Case 1-CDF curve of the total gas injection at time step 9 

Fig. 4-8.Case 2-CDF curve of the total gas injection at time step 9 
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to the network at time step 9 are shown in Fig. 4-8, and the CDF curves of the optimized 

total cost are depicted in Fig. 4-9. 500 optimization results are sampled to derive the 

curves.  

As seen from Fig. 4-8, the total gas injection at time step 9 varies from approximately 

2.32 p.u. to 2.82 p.u.. The CDF curve generally spans wider when the chance constraints 

probability level is lower, and the optimal operations tend to be more stable with fewer 

variations when the probability level of chance constraints is higher.  

The characteristics of the CDF curves in Fig. 4-8 are different from the CDF curves in 

Fig. 4-7 in terms of shape and gradient. Additionally, the abscissa of the CDF curves in 

Fig. 4-7 spans from approximately 2 to 3, spanning greater distance compared with the 

CDF curves in Fig. 4-8. Hence the total gas injection to the network is more affected 

when the gas flows between hubs are restricted by the chance constraints.  

Conversely, the CDF curves of the optimized total cost in Fig. 4-9 present similar 

characteristics with the curves in Fig. 4-6. However, the abscissa of the CDF curves in 

Fig. 4-9 spans wider than the curves in Fig. 4-6, which means that the optimized total 

cost is more sensitive when the power flows between hubs are constrained by chance 

constraints. Therefore, when the restriction of chance constraints on gas flows change 

to power flows, the impacts to the optimal operations of every element within the 

energy hub system are completely different. 

2) The optimal strategy for energy hub system 

The optimal operation of hub 1 in terms of electrical load over 24 hours is shown in Fig. 

4-10, where the probability levels of chance constraints are set higher than 80%. As 

seen, the total electrical load represented by the histogram and power injection to GSHP 

 

 
Fig. 4-9.Case 2-CDF curve of the optimized total cost 
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(denoted by stars) are met by the grid power (denoted by crosses), CHP output (denoted 

by squares), and solar PV output (denoted by circles). The peak loads are 1.21 p.u. and 

0.92 p.u., which appear at time steps of 8 and 20;  the power injections to the hub over 

24 hours approximately follow the same variations as the load, and the maximum power 

injections are at time steps of 8 and 20 with the values of 1.55 p.u. and 1.30 p.u. 

respectively. The electric output from CHP generally remains at 0.33 p.u. over 24 hours, 

which is close to the maximum CHP power output. Since the energy efficiency of the 

CHP is higher than those of other converters and the CHP is thus more profitable, it is 

operated at the maximum power over the whole time horizon.  

3) Sensitivity analysis  

By assuming that the power flows between hubs are restricted by chance constraints, 

the probability levels of chance constraints are set to be 80%, 82%… to 99.9%. The 

optimal dispatch factors of the three hubs at time step 9 under these probability levels 

are shown in Fig. 4-11. Figures (a) and (b) indicate the variations of νe and νg under 

different chance constraint probabilities, with the horizontal and vertical axis 

 

         (a)                                                         (b) 

 
 

 

 
Fig. 4-10.Optimal operations of hub 1 over 24 hours 

Fig. 4-11.Dispatch factors under different chance constraints probability 
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representing the chance constraint probability and the value of dispatch factors. The 

diamonds, stars, and circles represent the dispatch factors of hubs 1, 2, and 3 

respectively. As seen, the dispatch factors νe of hubs 1 and 3 remain flat when the 

probability changes and the dispatch factor of hub 2 shows irregular variations. 

Moreover, the changing probability levels hardly affect the dispatch factors νg of the 

three hubs because the profits from the CHP are higher than those of the GF. 

4) Importance of CCP 

To highlight the importance of CCP and compare its results with those from 

deterministic approaches, EVPI and VSS are calculated by solving the same 3-hub 

system optimization with deterministic constraints. In other words, the maximum 

power flows between hubs are restricted to be lower than 50% of the capacity with 100% 

certainty. The value of WS is calculated by using scenario methods, where the 

probability of each scenario is assumed to be perfectly known. Scenario-generating 

methods are used in [5, 15-21], and hence the EVPI can be used to measure the impact 

between using CCP and scenario methods to solve an energy hub optimization problem 

with uncertainties. 

In this paper, WS is derived by applying the 2PEM in [19, 20] to solve the energy hub 

optimization with uncertainties. In terms of system total cost, WS and EV are calculated 

as £524.02 and £522.92 respectively. The solution of CCP (SS) is £527.96 when the 

probability level of chance constraints is set at 99.99% (100% is not possible because 

the quantile derived through Cornish-Fisher Expansion will be infinite).  The EVPI and 

VSS are £3.94 and £5.04 by using (4-21) and (4-22). The EVPI indicates that the 

difference between optimized system costs from CCP and 2PEM is £3.94, and the VSS 

suggests that there is an extra cost of £5.04 due to uncertainties. 

4.6.5. Comparison between the Two Cases 

The PDF diagrams of the optimized objective derived from the two cases are shown in 

Fig. 4-12, where both the probability levels of chance constraints are set as 80%. The 

upper and lower diagrams represent the distributions of probability densities for case 1 

and 2 respectively. The possible optimized total cost varies from £521.31 to £527.45 in 

case 1, and £522.39 to £528.10 in case 2. The span of the possible optimization results 

in case 1 is wider compared with the results derived from case 2. Additionally, the 

expense derived from case 2 is holistically higher than the expense in case 1.  
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It is observed from the lower diagram in Fig. 4-12 that, the PDF curve derived from 

case 2 presents relatively high fluctuations around £524 and £528 in addition to the high 

probability density around the total cost of £523. On the other hand, the probability 

density for the upper PDF curve is generally centralized around the total cost of £523, 

which shows stabilized characteristics. Therefore, by comparing the total costs of the 

two cases, it suggests that the energy hub system tends to be more unstable and system 

cost is comparatively high when the power flows between hubs are restricted by chance 

constraints. Thus, the system should be carefully operated with the electricity power 

flows limited by chance constraints.  

Since the heat storage is equipped within the energy hub system and optimized by CCP, 

the impacts of chance constraints to the operations of heat storages are investigated. 

The optimal operation of the heat storage in hub 1 is studied as an example. The energy 

level of heat storage quantifies the percentage of energy stored in it divided by its 

capacity, and the CDF curves of the maximum energy level of heat storage in hub 1 

with different chance constraints probability levels are shown in Fig. 4-13. The upper 

and lower CDF curves are derived from case 1 and 2 respectively. As seen in Fig. 4-13, 

the CDF curves perform similar variation tendency for each individual case. However, 

the differences between the CDF curves in case 2 are more distinct compared to case 1, 

and the CDF curves have a broader span in case 2. It could be seen that the energy hub 

Fig. 4-12.PDF diagrams of the optimized total cost with the probability of chance 

constraints higher than 80% derived from the two cases 
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system tends to be more unstable when the chance constraints limit the power flows 

between hubs.  

The results also suggest that the capacity of heat storage should be accordingly extended 

when the power flows between hubs are restricted by chance constraints since the 

maximum energy level in case 2 is higher than case 1. 

4.7 Conclusion 

To model the intelligent operations of smart energy city with uncertainties, this paper 

applies the energy hub concept to optimize community renewable energy resources 

with uncertainty parameters. Chance-constrained programming is applied in this paper 

to solve the optimal energy flow problem for the energy hub system. The main findings 

are as follows: 

 The uncertain elements of the energy hub system should be appropriately 

modelled since the stochastic nature can significantly affect energy hub system 

operations and costs. 

 Chance-constrained programming is effective in optimizing energy hubs with 

uncertain factors, enabling the realistic operation of the energy hub system with 

minimum costs.  

Fig. 4-13.CDF curves of Maximum energy level for two cases 
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 Results demonstrate that chance constraints on power flows have a relatively 

high impact on energy hub system optimization. The results could be more unstable 

compared with the case of modelling gas flows with chance constraints. 

Future work will incorporate other optimization schemes existing in smart energy cities, 

such as demand response and unit commitment by chance-constrained programming 

into the energy hub optimization. Additionally, the correlations of input random 

variables, such as wind outputs, will be considered as well by joint distributions in 

energy hub optimization.  

4.8 Chapter Summary 

Based on the work of chapter 3, where the interconnected energy hubs are optimised 

under steady state, this chapter extends the work by considering the access of uncertain 

renewable generations to the energy hub system. The wind farm and solar panel are 

considered to be equipped within the system, and their stochastic characteristics and 

probability density function curves are obtained by fitting historic data. The effect of 

uncertainty on the interconnected energy hub system is analysed through the chance 

constraint, which restricts the normal constraint by a pre-defined probability. Compared 

with scenario-based methods, which have been widely applied in previous literature, 

the chance-constrained programming mitigates the computational burden in contrast to 

Monte Carlo Simulation, and better captures the stochastic nature of uncertain variables 

compared with scenario-reduction methods. 

To model the uncertainty more accurately, the correlations between uncertain 

renewable generations are of interest to investigate, and the related effects on energy 

hub system should be studied. The chance-constrained programming on energy hub 

system is improved by considering the renewable generations’ correlations, which is 

illustrated in next chapter.  
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This chapter proposes to apply chance-constrained programming to 
analyse and resolve the integrated energy hub optimisation with demand 
response, the correlated wind power generations is also modelled and 
investigated within the optimisation scheme. 

Chance-Constrained Multi 
Energy System Optimisation 

with Correlated Wind 
Generation 
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Chapter Overview 

Chapter 4 proposes to employ chance-constrained programming to optimise the 

probabilistic energy hub problem by restricting the energy flows between hubs with 

chance constraints. To enrich the research of stochastic energy hub optimisation and 

model the uncertainty more accurately, the correlations between renewable power 

generations are explicitly considered in this chapter. In fact, the renewable power 

generations are very likely to depend on each other, especially for interconnected 

energy hubs which are locally distributed, the dependent uncertain variables can be 

formulated by joint distributions. However, the correlations have not been investigated 

within the energy hub system, and hence the effects of uncertainty on energy hub 

operations analysed from previous literature may be inaccurate. Some expansion 

methods can be applied to estimate the probability density function of the joint 

distribution, however requires prohibitively high computational efforts when the joint 

distribution is formulated for multiple uncertain variables, thus not suitable for multi-

hub optimisation. 

In order to address this issue, this chapter proposes to model the relation between 

geographically close wind farms’ power generations by fitting historical data, and 

models the correlations with Pearson correlation. Strong linear relationship between the 

wind farm outputs could be observed, thus this chapter proposes to approximate the 

relation between wind farm outputs with linear formulation, hence the distribution of 

one farm output can be derived by other farm’s power generation and their correlation.   

Additionally, this chapter considers the customers’ response to probabilistic energy hub 

optimisation and varying energy prices, it is implemented by integrating the demand 

response scheme into the energy hub optimisation with the objective of reducing total 

energy costs. This research thus benefits both the system operators and customers by 

advising them with optimal operations under uncertain renewable generations. 

Conclusively, the contributions of this chapter can be summarised as follows: 

i) Chance-constrained programming is implemented for the interconnected energy 

hub optimisation by considering both the customer demand response and correlated 

wind farms’ generations. 

ii) The correlated wind farm outputs indicates strong dependency from historical data, 

and are thus modelled by Pearson correlation. 



Chapter 5      Chance-Constrained Optimisation with Correlated Wind Generation 

Page | 93 
 

iii) The chance constraints are applied to restrict the energy flows between energy hubs, 

which are solved by Cornish-Fisher Expansion. 
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5.1 Abstract 

Energy hubs can exploit the value of multi energy carriers by coupling them to benefit 

both system operators and customers with increased flexibility and reduced energy 

costs, but uncertain renewable generation and customer interaction with the carriers 

complicate the modelling and operation. 

This paper develops chance-constrained optimisation for energy hub systems by 

restricting energy flows between hubs with relaxing overloading constraints. The 

correlations between geographically close wind farms in energy hubs are considered by 

establishing their relations using historical data. In addition, demand response is 

incorporated to further increase the flexibility of energy hub systems and customers’ 

benefits. The model optimally schedules demand and the energy hub system over a 

whole time horizon to achieve the minimum energy cost.  Cornish-Fisher Expansion is 

employed to translate chance constraints into deterministic constraints to formulate a 

multi-period problem. The proposed chance-constrained optimisation model is 

demonstrated on an interconnected 2-hub system where each hub is assumed to equip 

with a wind farm. Results illustrate that it can maximally exploit the capability of the 

interconnected hubs to increase the energy supply flexibility, incorporate customer 

interaction, and capture wind power correlation. The method can thus benefit the hub 

system operators and customers with reduced energy infrastructure investment costs 

and energy bills. 

5.2 Introduction 

The energy hub can coordinate various energy vectors and infrastructure to satisfy 

demand, hence significantly improves the efficiency [1, 2]. Communities such as 

universities or hospitals can be modelled as energy hubs, where the benefits of both the 

system operators and customers can be maximised by optimally scheduling the energy 

flows between them [1, 3].  

On the other hand, demand response (DR) scheme has been employed to encourage 

customers to re-allocate energy usage in response to variant energy carrier prices [4-6]. 

From the perspective of operating energy hub systems, energy demand could be 

satisfied by consuming cheaper energy to reduce costs. For example, instead of using 

relatively expensive electricity from the grid to meet the energy hub electricity demand, 

the Combined Heat and Power (CHP) can be switched on to consume gas to produce 
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electricity and heat. Therefore, combining DR with energy hub can bring further profits 

by responding to energy prices. Instead of solely altering the load pattern, the integrated 

DR with energy hub can also vary energy conversion patterns between energy vectors 

[7, 8]. In [4], the electric and thermal loads of an energy hub are assumed to be 

responsive to the day-ahead market to minimise the energy cost. [5] proposes to 

implement the integrated DR to benefit both customers and utility companies in real-

time pricing scheme.   

However, the DR program and energy hub operations are highly affected by 

uncertainties, such as the renewable generation. Inappropriate modelling approaches 

may cause damage to system components or exorbitantly high costs [9]. Additionally, 

renewable generation of each hub such as wind turbines may have correlations when 

they are geographically close [10]. This characteristic challenges the multi-carrier 

system operations when the wind power generation is rich. Therefore, the modelling of 

correlated uncertainties is essential for energy hubs. The dependent uncertain variables 

can be formulated by joint distributions, but they could complicate the optimisation. 

Some expansion methods introduced in [11] can estimate the probability density 

function of the joint distributions with joint moments and cumulants. However, the 

calculation of joint cumulants is complex when uncertain variables number increases, 

hence the expansion methods are improper to solve the optimisation problem with 

multiple correlated uncertain variables. In [10, 12], the Cholesky decomposition is 

adopted to convert the correlated variables to uncorrelated variables to simplify the 

computation. 

In solving the energy hub optimisation problem with uncertainty, Monte Carlo 

simulation has been applied in [13, 14] to model the uncertain inputs to energy hubs but 

heavy computational burden is required due to a large number of scenarios. The 

scenario-reduction methods are also applied in [4, 7, 8, 15, 16], but the reduced 

scenarios may fail to completely reflect the randomness of uncertainties. Furthermore, 

the correlated uncertain variables are not considered in the work reported in the above 

literature. The chance-constrained programming (CCP) is more flexible for optimising 

energy hub systems with uncertainties compared to scenario-generation methods. CCP 

is a promising approach for system optimisation since temporary overloading is 

tolerable on some transmission networks, such as electricity and natural gas. Given the 

distributions of uncertain variables, chance constraints are restricted by the boundaries 
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of acceptable probability levels and the CCP is then implemented by satisfying both the 

deterministic and chance constraints [17, 18].  

In this paper, a CCP for multi-energy hub optimisation is proposed, considering 

customer interaction with the multi-carrier system and the correlation of renewable 

energy at different hubs. The CCP is implemented to reduce the energy costs by 

optimally determining the energy hub operations with regard to the correlated wind 

farms’ generations. It restricts the energy flows between hubs by chance constraints 

because temporary power system overloading is allowable. The correlation of outputs 

of multi-wind generation is also considered, approximated by the linear Pearson 

Correlation. Additionally, customer demand response responding to various energy 

carriers and hub operation conditions is considered via demand elasticity. The Cornish-

Fisher Expansion (CF) is applied to convert the chance constraints into deterministic 

constraints with given uncertainty distributions and confidence levels. The problem is 

therefore formulated as a multi-period non-linear deterministic problem, solved by the 

interior-point method in this paper. The CCP is demonstrated on an interconnected 2-

hub system, where two adjacent wind farms located in the 2 hubs are included. 

Optimisation results are modelled by its cumulative distribution function (CDF) curves 

derived from different chance constraints probability levels. 

The main contributions of the paper are: i) it develops the energy hub system 

optimisation considering customer DR and the output correlation of wind farms; ii) it 

models the correlations between uncertain wind farm output across various hubs that 

are geographically close with Pearson Correlation; iii) it uses chance constraints to 

restrict energy flows between hubs in the optimisation, solved by Cornish-Fisher 

Expansion. 

The rest of the paper is organised as follows: the energy hub system with the power and 

gas networks are mathematically illustrated in section II. The demand response with 

price elasticity and renewable correlation are presented in section III, The optimisation 

problem is formulated in section IV, and the methodology is introduced. Case studies 

are presented and discussed in section V. Section VI concludes the paper. 

5.3 Energy Hub System Modelling 

5.3.1. Energy Hub  

The energy hub system investigated in this paper utilises electricity, gas, and wind 
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energy to meet electrical and thermal load with energy converters, including the Gas 

Furnace (GF), Combined Heat and Power (CHP), Ground Source Heat Pump (GSHP), 

and Wind Turbine (WT). GF is a widely-used converter to generate heat by combusting 

natural gas; CHP simultaneously generates electricity and heat by consuming natural 

gas, which has a higher overall efficiency compared to GF [19]; GSHP consumes 

electricity to produce heat by extracting heat from the ground, which has been 

extensively applied in Europe and America; WT converts kinetic wind energy into 

electricity power.  

The outputs of GSHP (PHP_out) and GF (PGF_out) at time step t are in (5-1) and (5-2) 

𝑃𝐻𝑃_𝑜𝑢𝑡(𝑡) = 𝐶𝑂𝑃 ∙ 𝑃𝐻𝑃(𝑡)                   (5-1) 

𝑃𝐺𝐹_𝑜𝑢𝑡(𝑡) = 𝜂𝐹 ∙ 𝑃𝐺𝐹(𝑡)                   (5-2) 

where, ηGF is the GF efficiency, and COP denotes the Coefficient of Performance of 

the GSHP. PHP and PGF respectively are the power and gas inputs to GSHP and GF. 

The electrical output (PCHP,E) and heat output (PCHP,H) of the CHP at time step t are 

formulated by the natural gas injection (PCHP) in (5-3) 

𝑃𝐶𝐻𝑃,𝐸(𝑡) = 𝜂𝑒 ∙ 𝑃𝐶𝐻𝑃(𝑡)                 (5-3a) 

𝑃𝐶𝐻𝑃,𝐻(𝑡) = 𝜂𝑡ℎ ∙ 𝑃𝐶𝐻𝑃(𝑡)                 (5-3b) 

Where, ηe and ηth are the electric efficiency and thermal efficiency. 

All converters need to be safely operated by limiting their outputs within rated capacity. 

Additionally, the output of the CHP is also constrained by its ramp rate eramp: 

−𝑒𝑟𝑎𝑚𝑝 ≤ 𝑃𝐶𝐻𝑃,𝐸(𝑡) − 𝑃𝐶𝐻𝑃,𝐸(𝑡 − 1) ≤ 𝑒𝑟𝑎𝑚𝑝               (5-4) 

The wind generation is expressed in terms of the wind speed 𝑣𝑤 by piecewise function 

in (5-5) [20, 21], where Prated is the wind turbine rated power. vci, vrd, vct respectively 

represent the cut-in, rated, and cut-out wind speeds. 
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𝑃𝑤 = {

0,                                            (𝑣𝑤 < 𝑣𝑐𝑖, 𝑣𝑤 > 𝑣𝑐𝑡)

𝑃𝑟𝑎𝑡𝑒𝑑 ∙ (
𝑣𝑤−𝑣𝑐𝑖

𝑣𝑟𝑑−𝑣𝑐𝑖
),                     (𝑣𝑐𝑖 ≤ 𝑣𝑤 ≤ 𝑣𝑟𝑑)

𝑃𝑟𝑎𝑡𝑒𝑑,                                         (𝑣𝑟𝑑 < 𝑣𝑤 < 𝑣𝑐𝑡)

                (5-5) 

An example of a single energy hub is depicted in Fig. 5-1 with the above converters 

equipped. The energy transformation through the energy hub system at time step t can 

be expressed in (5-6), where the output matrix (L) is equal to the converter coupling 

matrix (C) multiplied by the input matrix (P). 

[
𝐿𝑒𝑙𝑒(𝑡)

𝐿𝑡ℎ(𝑡)
] =

[
1 − 𝑣𝑒(𝑡) 𝜂𝑊𝑇(1 − 𝑣𝑒(𝑡)) 𝑣𝑔(𝑡)𝜂𝑒(1 − 𝑣𝑒(𝑡))

𝑣𝑒(𝑡)𝐶𝑂𝑃 𝑣𝑒(𝑡)𝜂𝑊𝑇𝐶𝑂𝑃 𝑣𝑔(𝑡)(𝜂𝑔ℎ + 𝜂𝑒𝑣𝑒(𝑡)𝐶𝑂𝑃) + (1 − 𝑣𝑔(𝑡))𝜂𝐹
] ×

[

𝑃𝑒𝑙𝑒(𝑡)
𝑃𝑤𝑖(𝑡)
𝑃𝑔𝑎𝑠(𝑡)

]                     (5-6) 

Equation (5-6) shows that the electrical demand (Lele) and thermal demand (Lth) at time 

step t are satisfied by utilising electricity (Pele), natural gas (Pgas), and wind energy (Pwi) 

with the converters. νe and νg are dispatch factors. νe is the percent of electricity input 

into the GSHP over the total electricity consumption, and νg is the proportion of gas 

injected to the CHP relative to the total gas input. 

5.3.2. Electricity Network Modelling 

The electricity network connects energy hubs for power transmission. The equilibrium 

of complex power at bus m is in (5-7) [1, 2], where Smn represents the complex power 

between buses m and n, Sm is the total complex power injected at bus m, and N denotes 

the total number of buses in the system. 

CHP

Gas Furnace

GSHP

WT

Pele 

Pwi 

Pgas 

Lele 

Lth 

 

 
Fig. 5-1.A single energy hub 
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𝑆𝑚 = ∑ 𝑆𝑚𝑛
𝑁
𝑛=1                     (5-7) 

The complex power flow Smn is formulated in (5-8) in terms of bus voltages Vm and Vn, 

and line parameters. 

𝑆𝑚𝑛 =
|𝑉𝑚|

2

𝑍̃𝑚𝑛
∗ −

𝑉𝑚𝑉𝑛
∗

𝑍𝑚𝑛
∗                     (5-8) 

The line between buses are assumed to follow the π equivalent circuit, and hence 𝑍̃𝑚𝑛 

is formulated in (5-9) 

𝑍̃𝑚𝑛 = (
1

𝑍𝑚𝑛
+
𝑌𝑚𝑛

2
)
−1

                   (5-9) 

where Zmn and Ymn respectively represent the series impedance and shunt admittance. 

5.3.3. Gas Network Modelling 

Gas networks also connect energy hubs to transmit gas with compressors to regulate 

pressures. Similar to electricity networks, the gas flow balance at node m is in (5-10) 

[1, 2],  

𝑄𝑚 = ∑ 𝑄𝑚𝑛
𝑁
𝑛=1                   (5-10) 

where Qm is the total gas injection to node m, and Qmn represents the gas flow between 

nodes m and n. 

Specifically, Qmn is expressed in terms of the upstream pressure pm and downstream 

pressure pn: 

𝑄𝑚𝑛 = 𝑘𝑚𝑛𝑠𝑛𝑚𝑛√𝑠𝑛𝑚𝑛(𝑝𝑚2 − 𝑝𝑛2)             (5-11a) 

𝑠𝑛𝑚𝑛 = {
+1,   if 𝑝𝑚 ≥ 𝑝𝑛 
−1,                 else

              (5-11b) 

Where kmn is the coefficient to reflect pipeline’s physical properties.  

The energy consumed by the compressor is  

𝑄𝑐𝑜𝑚 = 𝑘𝑐𝑜𝑚𝑄𝑚𝑛(𝑝𝑚 − 𝑝𝑘)                          (5-12) 
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where pm and pk are the suction and discharge pressures at the two sides of the 

compressor. kcom is the coefficient measuring its characteristics. 

Additionally, Qmn can be utilised to express the gas power flow Pmn by multiplying the 

gross heating value of gas (GHV): 

𝑃𝑚𝑛 = 𝐺𝐻𝑉 ∙ 𝑄𝑚𝑛                  (5-13) 

5.4 Demand Response and Renewable Correlation 

5.4.1. Demand Response with Price Elasticity 

Customers can change demand in response to the variation of energy carrier prices, 

defined as demand elasticity [22], so as to save costs. The elastic demand is considered 

in energy hub optimisation to increase system flexibility. The sensitivity of demand in 

relation to the changing of energy price is quantified by price elasticity [23, 24]: 

𝐿 = 𝑎 ∙ 𝑃𝜀                  (5-14) 

Where L is load, P is energy price, and ε represents the price elasticity. a is a coefficient, 

formulated by a given reference load Lref and price Pref as shown in (5-15).  

𝑎 =
𝐿𝑟𝑒𝑓

𝑃𝑟𝑒𝑓
𝜀                   (5-15) 

Specifically, the reference price Pref is input by customers, and P represents the real 

time energy price for DR. Lref is customers’ load before implementing the DR scheme, 

and L is the new load after response. The price elasticity over the entire simulation time 

horizon is assumed to be constant. 

For the energy hubs, the demand of one energy carrier can be satisfied from other 

energy carriers with energy converters. For example, CHP can be switched on to meet 

the electricity load to avoid importing expensive electricity from the grid during high-

tariff periods. Therefore, the DR should be operated in response to energy prices, while 

considering energy hub operation conditions to achieve the minimum energy cost. The 

problem is therefore defined as optimally scheduling the load by considering both the 

variations of energy prices and energy hub operations to achieve the minimum cost. 
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5.4.2. Correlated Wind Generation 

Energy hubs are normally geographically close, as they mainly model adjacent 

buildings, communities, etc. Hence, a wind farm located in each hub is close to the 

other in another hub, which yields strong correlations between their power outputs. To 

observe the output correlation between graphically closed wind farms, historical data 

of hourly wind speed over a year is derived from two close observation stations in 

Cardiff [25].  Assuming there are two wind farms separately located at the two 

observation points with same parameters including rated power, cut-in, cut-out, and 

rated wind speed, the hourly power outputs are accordingly derived by (5-5). The hourly 

wind farm outputs from 00:00 to 04:00 over one year are plotted in Fig. 5-2. The x-axis 

represents the power generation at wind farm 1, and the y-axis is the power generation 

at wind farm 2.  

As seen, the power outputs of farms 1 and 2 show approximately linearly, which can 

be expressed by correlation to indicate the intensity and orientation of the relationship. 

The correlation is modelled through the Pearson correlation coefficient because it 

measures the linearity of two random variables, and a value nearer to 1 indicates a 

stronger linear relation. The coefficient ρ between two random variables α and β is  

𝜌(𝛼, 𝛽) =
cov(𝛼,𝛽)

𝜎(𝛼)𝜎(𝛽)
                 (5-16) 

 
     Time step 1                                           Time step 2 

 
     Time step 3                                          Time step 4 

 

Fig. 5-2.Power outputs from wind turbines at farm 1 and 2 
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Where cov(α,β) is the covariance matrix between α and β, and σ is the standard 

deviation.  

It is observed from Fig. 5-2 that Pearson correlation over all time steps is higher than 

0.9. Hence this paper proposes to approximate the relation between wind generations 

at each time step t by the linear formulation shown in (5-17). 

𝜉2(𝑡) = 𝑓1(𝑡) ∙ 𝜉1(𝑡) + 𝑓2(𝑡)                (5-17) 

Where ξ1 and ξ2 are the power outputs of farm 1 and 2, f1 and f2 are factors expressing 

the linear relations.  

The values of f1 and f2 at all time steps can be derived by accordingly fitting the 

historical data. Therefore, the power distribution of one farm can be derived by 

modelling the other farm’s power generation and correlation, by using (5-17). 

5.5 Problem Formulation and Methodology 

By modelling the energy flows between hubs with chance constraints due to uncertain 

renewable generation, the proposed DR scheme is formulated through the chance-

constrained programming. The optimisation problem is mathematically presented in 

this section, together with the method of converting chance constraints into 

deterministic constraints. The overall flowchart of the method is also presented. 

5.5.1. CCP Optimisation Formulation 

An interconnected 2-hub system in Fig. 5-3 is used to illustrate the concept. Each hub 

represents a community-level building. The power injection and gas injection to the 

Wind Farm

CHP

Gas Furnace

GSHP

Wind Farm

CHP

Gas Furnace

GSHP

G

N

Electricity

Gas

Wind energy Wind energy

1eleL

1thL

2eleL

2thL

Hub 1 Hub 2  

 
  
Fig. 5-3.The two-hub interconnected system. 
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system are at the bus/node near hub 1, where hubs 1 and 2 are connected by the 

electricity and gas networks. Each hub contains a wind farm, and heating converters, 

including CHP, GF, and GSHP. The electrical and thermal demand of each hub is 

satisfied by the cooperation of all converters by consuming electricity and gas.  

The objective is to minimise the energy hub system total cost over the whole time 

horizon. The control variables include: the real-time electricity price, scheduled 

electricity load, power and gas input to each hub, power and gas flows between hubs, 

voltage at each bus, gas pressure at each node, compressor pressure, and the dispatch 

factors of each hub. The above variables are included in the control vector u(t)  

𝑢(𝑡) = [𝑃𝑒𝑙𝑒,𝑖(𝑡), 𝑃𝑔𝑎𝑠,𝑖(𝑡), 𝑉𝑖(𝑡), 𝑃𝐺(𝑡), 𝑃𝑁(𝑡), 𝑆𝑖,𝑗(𝑡), 𝑝𝑖(𝑡), 

𝑄𝑖,𝑗(𝑡), 𝑝𝑐𝑜𝑚,𝑖(𝑡), 𝑣𝑒,𝑖(𝑡), 𝑣𝑔,𝑖(𝑡), Π𝑒𝑙𝑒(𝑡), 𝐿𝑒𝑙𝑒,𝑖(𝑡)]    ∀𝑖, ∀𝑡                                    (5-18) 

In (5-18), the subscript i and j denote the indexes of energy hubs and t is the time step. 

𝑃𝐺(𝑡) and 𝑃𝑁(𝑡) are the complex power and gas injections at time step t. Π𝑒𝑙𝑒(𝑡) is the 

real-time electricity price at time step t. The definitions of other variables are in 

previous section. 

The optimisation objective is to minimise the total system cost (TC), quantified by 

adding electricity and gas costs together over the whole time horizon. The variant tariffs 

are applied to the electricity demand, and a constant price rate is assumed for gas. The 

CCP objective problem is 

Objective: 

Min 𝑇𝐶 = ∑ (𝑃𝐺(𝑡) ∙ Π𝑒𝑙𝑒(𝑡)
𝑇
𝑡=1 + 𝑃𝑁(𝑡) ∙ Π𝑔𝑎𝑠(𝑡)     (5-19a) 

Subject to:

{
 
 
 
 
 
 

 
 
 
 
 
 
Equality constraints: (5 − 1) − (5 − 3), (5 − 5) − (5 − 15)                     

Inequality constraints: (5 − 4),                                                                          

0 ≤ 𝑣𝑒,𝑖(𝑡) ≤ 1   0 ≤ 𝑣𝑔,𝑖(𝑡) ≤ 1                                                     (5 − 19b)

0 ≤ 𝑃𝐺(𝑡) ≤ 𝑃𝐺,𝑚𝑎𝑥(𝑡)    0 ≤ 𝑃𝑁(𝑡) ≤ 𝑃𝑁,𝑚𝑎𝑥(𝑡)                       (5 − 19c)

0 ≤ 𝑃𝑒𝑙𝑒,𝑖(𝑡) ≤ 𝑃𝑒𝑙𝑒,𝑖,𝑚𝑎𝑥(𝑡)   0 ≤ 𝑃𝑔𝑎𝑠,𝑖(𝑡) ≤ 𝑃𝑔𝑎𝑠,𝑖,𝑚𝑎𝑥(𝑡)     (5 − 19d)

0 ≤ 𝑝𝑖(𝑡) ≤ 𝑝𝑖,𝑚𝑎𝑥(𝑡)   0 ≤ 𝑉𝑖(𝑡) ≤ 𝑉𝑖,𝑚𝑎𝑥(𝑡)                             (5 − 19e)

𝑝𝑐𝑜𝑚,𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝑝𝑐𝑜𝑚,𝑖(𝑡) ≤ 𝑝𝑐𝑜𝑚,𝑖,𝑚𝑎𝑥(𝑡)                                    (5 − 19f)

0 ≤ 𝑃𝐶𝐻𝑃,𝑖(𝑡) ≤ 𝑃𝐶𝐻𝑃,𝑖,𝑚𝑎𝑥(𝑡)    0 ≤ 𝑃𝐺𝐹,𝑖(𝑡) ≤ 𝑃𝐺𝐹,𝑖,𝑚𝑎𝑥(𝑡)   (5 − 19𝑔)

0 ≤ 𝑃𝐺𝑆𝐻𝑃,𝑖(𝑡) ≤ 𝑃𝐺𝑆𝐻𝑃,𝑖,𝑚𝑎𝑥(𝑡)                                                      (5 − 19ℎ)

Chance constraints:                                                                                               
Pr{𝑄𝑖,𝑗(𝑡) ≤ 𝑄𝑖,𝑗

𝑚𝑎𝑥} ≥ 𝛼   Pr{𝑆𝑖,𝑗(𝑡) ≤ 𝑆𝑖,𝑗
𝑚𝑎𝑥} ≥ 𝛼                     (5 − 19i)
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Equation (5-19a) indicates that the total cost is the objective to be minimised, where 

Π𝑒𝑙𝑒(𝑡) and Π𝑔𝑎𝑠(𝑡) represent the electricity and gas prices at time step t with the units 

of m.u. (monetary units)/p.u. (power units). T is the number of total time steps. The 

inequality constraints are to consider the safety of operating the energy hub system. (5-

19b) indicates that the value of dispatch factors should be within the boundary of 0 and 

1. (5-19c) specifies the minimum and maximum power and gas input to the energy hub 

system. (5-19d) is the limitations of the energy inputs to each hub. (5-19e) reflects the 

voltage and pressure constraints at each bus and node. (5-19f) is the constraint on gas 

pressures. (5-19g) and (5-19h) are the minimum and maximum power outputs for 

converters.  

Because temporary overloading along branches is tolerable, the chance constraints are 

applied to restrict the power and gas flows between hubs in (5-19i). Pr is the probability 

of the chance constraint, where a probability level α is established to restrict the 

deterministic constraints. Equation (5-19i) means that the probability of energy flows 

less than the maximum allowable energy flows should be higher than α. Therefore, 

solving problem (5-19) is to optimise the energy hub systems while considering the 

safety and chance constraints, with renewable energy randomly generated according to 

the distributions. 

5.5.2. Cornish-Fisher Expansion 

The problem (5-19) is a stochastic problem with chance constraints. To properly solve 

it, this paper proposes to apply the Cornish-Fisher Expansion (CF) method to convert 

the chance constraints into deterministic constraints so that deterministic optimisation 

approaches can be applied.   

Equation (5-19i) could be converted into (5-20) because the quantile presents monotone 

relation with its inverse CDF [26]. 

𝑞𝑄𝑖,𝑗(𝛼) ≤ 𝑄𝑖,𝑗,𝑚𝑎𝑥         𝑞𝑆𝑖,𝑗(𝛼) ≤ 𝑆𝑖,𝑗,𝑚𝑎𝑥              (5-20) 

In (5-20), q is defined as the quantile, which quantifies the inverse function of the 

random variable’s Cumulative Distribution Function (CDF) with the given probability 

level α. The CF is expressed as a function to calculate the quantile of a random variable 

in terms of its cumulants, and it is formulated in (5-21) in terms of α with five orders of 
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cumulants [11]. 

𝑞(𝛼) = 𝐴(𝛼) +
𝐴2(𝛼)−1

6
𝜅3 +

𝐴3(𝛼)−3𝐴(𝛼)

24
𝜅4 −

𝐴3(𝛼)−5𝐴(𝛼)

36
𝜅3
2 +

𝐴4(𝛼)−6𝐴2(𝛼)+3

120
𝜅5 −

𝐴4(𝛼)−5𝐴2(𝛼)+2

24
𝜅3𝜅4 +

12𝐴4(𝛼)−53𝐴2(𝛼)+17

324
𝜅3
2               (5-21) 

Where A is the quantile of the standard normal distribution when the probability is α, 

and κv is the cumulants with order v. 

To calculate the quantiles of chance constraints by CF, they need to be firstly converted 

into the formulation in terms of the uncertain variables and other control variables. The 

polynomials containing uncertain variables can then be expressed with the CF to derive 

the quantile. The process of deriving the quantiles of chance constraints Q12 is 

illustrated as an example through (5-22) and (5-23). By combining all constraints in (5-

1)-(5-14), Q12 at each time step t can be expressed by the outputs of two wind farms ξ1 

and ξ2 and other control variables x in (5-22). 

𝑄1,2(𝑡) = 𝑎1𝜉1(𝑡) + 𝑎2𝜉2(𝑡) + 𝐶𝑜(𝑡)                  (5-22)  

In (5-22), Co(t) represents the function comprising the polynomials of control variables. 

a1 and a2 are the coefficients related to the two uncertain variables. With the linear 

relation between the outputs of two wind farms as illustrated in (5-17), (5-22) could be 

converted into: 

𝑄1,2(𝑡) = (𝑎1 + 𝑎2 ∙ 𝑓1(𝑡))𝜉1(𝑡) + 𝑓2(𝑡) + 𝐶𝑜(𝑡)                                     (5-23) 

With CF, the uncertain variable ξ1(t) can be expanded by (5-21) when the probability 

level is α. The quantile of Q12 can be calculated via (5-21)-(5-23), modelled as a 

deterministic value in (5-20). When the same method is applied to other chance 

constraints, the stochastic problem of CCP can be converted into a deterministic 

problem. 

5.5.3. Overall Flowchart of the Methodology 

The flowchart of implementing the CCP on energy hub system optimisation is shown 

in Fig. 5-4. Firstly, data including energy hub load, distributions of renewable 

generations, and system parameters are acquired, and the optimisation problem is built. 
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Then, the control vector u(t) is initialised based on the lower and upper boundaries. The 

chance constraints are then transformed into deterministic constraints by using CF. The 

interior-point method is heuristically applied to solve the model.  

It should be noted that the quantiles of chance constraints depend on both the control 

variables and uncertain variables with given probability levels. Hence the chance 

constraints need to be iteratively translated into deterministic constraints when the 

control variables are updated at each iteration.  

5.6 Case Study 

Two cases studies are presented in this section for demonstration, where chance 

constraints are separately applied to restrict the power flow and gas flow between hubs. 

The CCP is applied to investigate the effects of uncertainties on integrated DR with 

energy hub optimisation. 

5.6.1. Data Setup 

According to [15, 27], the wind speed generally follows the Weibull distribution. 

Therefore, the historic data of wind speed at each time step is fitted through the Weibull 

distribution to derive the probability density function (PDF) at each time step. By using 

Transfer the chance constraints to 

deterministic constraints through (19)-(22)

Apply the interior-point method to optimise 

the problem

Solution from optimising u(t) 

meeting stopping criteria?
End

Update the control 

variables

Yes

No

Acquire data for energy hub system

Build the optimisation problem as shown in (18)

Initialise the control vector u(t) within 

the predefined boundary

 

 
 Fig. 5-4.Flowchart of CCP-based energy hub optimisation 
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the random numbers generated from the distributions of wind speeds, Monte Carlo 

method is applied to evaluate the distributions of wind farms in the 2-hub 

interconnected system, shown in Fig. 5-3. As an example, Fig. 5-5 (a) shows wind speed 

distribution observed at wind farm 1 at time step 9, Fig. 5-5 (b) presents the related 

distribution of power output from wind farm 1. The cumulants with different orders 

could then be calculated by the samples of wind farm generations. As the correlation 

between the two wind farms’ outputs is established, the distribution of power output 

from wind farm 2 at each time step and related cumulants can be accordingly derived 

by (5-17).  

The reference electricity price Pref input by customers over 24 hours is adopted from 

[28], shown in Fig. 5-6. The electricity load of hubs 1 and 2 are assumed to be price 

elastic, the price elasticities of hub 1 and 2 are adopted from [24] as -0.8 and -1.4. The 

gas price is assumed to be constant with 0.04 m.u./p.u. over the whole time period. The 

electrical load and thermal load of the energy hub system over 24 hours are modelled 

according to [29] and [30] respectively. The constraints and system parameters required 

for the optimisation are given in Table 5-1, which are derived from [1, 3, 13, 21, 31]. 

 

       (a)                                             (b) 

 
 

 

 
  

Fig. 5-5.PDF of wind speed and power generation derived at wind farm 1 at time step 

9 

Fig. 5-6.Electricity price over 24 hours. 
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5.6.2. Case 1-Power Flow Restricted by Chance Constraints 

1) Optimisation under Different Probability Levels of Chance Constraints 

The optimisation is carried out with different probability levels of chance constraints to 

investigate how the CCP influences the DR scheme and energy hub system operations. 

The maximum power flow between hubs are assumed to be 1.6 p.u. and restricted by 

chance constraints for case 1. Four probability levels 80%, 85%, 90%, 95% are 

separately applied to limit the chance constraints.  

All results are analysed through their cumulative distribution function (CDF) curves, 

obtained by sampling the optimisation results of 200 different samples. Between the 

probability of 80% and 99.99%, 200 probability levels are uniformly adopted and 

applied to each sample to restrict the chance constraints.  

The CDF curves of the optimisation results in terms of system total costs are shown in 

Fig. 5-7, where the chance constraints’ probability levels are higher than 80%, 85%, 

90%, and 95% respectively. As seen, the optimised total costs vary between 5.47 m.u. 

and 6.26 m.u for all probability levels, and the CDF curves vary with similar gradients. 

 

System parameters 

Line 1-2 Z12=0.3+j0.9 p.u., Y12=j1.5∙10-6 p.u. 

Line 1-3 Z13=0.2+j0.6 p.u., Y12=j2.5∙10-6 p.u. 

Pipe lines GHV∙k12=4.5   GHV∙k13=3.0   

Compressor GHV∙kcom=0.5 

CHP ηe=0.33, ηgh=0.57 

GF 

Storage 

ηF=0.75 

Eh
stb=0.5, eh

+= eh
-=0.9 

WT vci=4m/s,  vco=25m/s,  vrs=16m/s,  Prated=3p.u. 

Constraints 

Nodes  

m=1, 2, 3 

0.8 ≤ |Vm| ≤ 1.2 p.u. 

pm ≤ 1.2 p.u. 

Compressor 1.2 ≤ pm/ pk ≤ 1.8 

CHP input 0 ≤ PCHP,input ≤ 1 p.u. 

GF/GSHP 0 ≤ PGSHP/GF_input ≤ 1.5 p.u. 

 

Table 5-1.ENERGY HUB SYSTEM PARAMETERS AND CONSTRAINTS 
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It can be observed that all CDF curves have two major increases when the possible 

optimised total costs vary from 5.47 m.u. to 5.56 m.u., and 5.68 m.u. to 5.74 m.u.. It 

indicates high probability density and the possible optimised costs are centralised in 

these intervals.  

The electrical and thermal loads are relatively high at time step 9, hence the optimal 

operations at this time step are of interest to investigate. The CDF curves of the active 

power injection to hub 2 at time step 9 are shown in Fig. 5-8. With the chance 

constraints restricted by different probability levels, the CDF curves of total active 

power injection present similar characteristics. All CDF curves dramatically increase 

from 0.02 p.u. to approximately 0.21 p.u. with the cumulative probability increase to 

the boundary between 80% and 95%, and gradually increase from 0.21 p.u. to 1.89 p.u. 

with the cumulative probability reaches 100%. Since the power flow between hubs is 

restricted by chance constraint, and the CHP can be switched on to supply the electricity 

load, the magnitudes of active power input to hub 2 are therefore less, which concentrate 

on the interval between 0.02 p.u. and 0.21 p.u..  

 

 
  Fig. 5-7.CDF curves of optimised total cost. 

 
 
  Fig. 5-8.CDF curves of the active power input to hub 2 at time step 9. 
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Because the relationship between the energy hub active power injection and total cost 

is non-linear, the CDF curves in Fig. 5-8 show completely different characteristics with 

the CDF curves in Fig. 5-7 in terms of shape and gradient. The value of active power 

injection could be non-linearly affected by the gas injection, re-scheduled load, and 

possible wind power, leading to an unpredictable variation in system total cost. 

Additionally, the optimisation problem is formulated as a complicated multi-period 

problem, the operations at current time step could non-linearly affect the operations of 

following steps. Hence, the high flexibility could result in a random change in system 

total cost when the total active power input changes. 

2) Variation of Load Pattern 

After implementing the optimisation with the chance constraints restricted by 80%, 

most of the optimal electricity prices during high tariff period from 17 to 24 are 

increased compared with the reference prices, the majority of prices at other time steps 

are decreased. The comparison between the optimised electricity loads (dotted line) of 

hub 1 and 2 with their original loads (solid line) are depicted in Fig. 5-9 and 5-10. 

Regarding to the same amount of change of electricity price, the loads in hub 2 vary 

 

 

 

 
  
Fig. 5-10.Electrical demand of hub 2 over 24 hours. 

Fig. 5-9.Electricity demand of hub 1 over 24 hours 
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more broadly compared with hub 1 due to different price elasticities considered in each 

hub.  

If the effect of energy hub is excluded, it can be derived from (5-14) and (5-15) that the 

electricity consumption cost is monotonically decreasing with electrical load if the 

elasticity is greater than -1, and monotonically increasing with load if the elasticity is 

less than -1. The price elasticities of hub 1 and 2 are -0.8 and -1.4 respectively, and the 

holistic load of hub 1 is higher than hub 2, hence reducing electricity price and 

enhancing load would be relatively cheaper.  

When the effect of energy hub is considered, it can be observed from Fig. 5-9 and 5-10 

that the majority of re-scheduled loads are increased compared with the reference load, 

and the loads over high-tariff period are slightly decreased. It is because that the energy 

cost can thus be reduced by increasing the electricity load as aforementioned. 

Additionally, the electricity load can also be satisfied by consuming relatively cheaper 

natural gas with CHP or importing the free wind power generation, which further 

decreases the energy cost. 

The optimal operations of converters in hub 2 to satisfy the electrical demands are 

shown in Fig. 5-11. The power injection to hub 2 (denoted by crosses), the power output 

from CHP (denoted by diamonds), and the average power output from WT (denoted by 

circles) are co-ordinately operated to meet the electrical load (denoted by histograms) 

and the power input to GSHP (denoted by stars).  

It could be observed from Fig. 5-11 that the power inputs to hub 2 are zero at most time 

steps. It is because the WT and CHP are substantially generating power, since the cost 

of consuming gas to generate power is relatively low, and the wind energy is free. 

 

 
  Fig. 5-11.Optimal operations of hub 2 over 24 hours 
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Therefore, not only responding to the varying electricity price, the demand also varies 

according to the operations of renewable generators and other converters. 

5.6.3. Case 2-Gas Flow Restricted by Chance Constraints 

The gas flow between energy hubs is restricted by chance constraints in this case. By 

setting the maximum gas flow between hubs as 1.8 p.u., the probability levels of 80%, 

85%, 90%, 95% are separately applied to restrict the chance constraints of maximum 

gas flow. Similar to case 1, 200 samples are optimised to acquire the CDF curves to 

examine the effects of CCP. The CDF curves of the optimisation results in terms of the 

system total cost are shown in Fig. 5-12.  

As seen, for the probability levels of chance constraints higher than 80%, 85%, and 

90%, the CDF curves of optimised total costs vary between 5.48 p.u. and 5.57 p.u. with 

the cumulative probability increase from 0 to 1. When the probability of chance 

constraint is higher than 95%, the possible total costs change from 5.48 p.u. to 5.55 p.u..  

Compared with the CDF curves in Fig. 5-7, the CDF curves are more similar to each 

other in Fig. 5-12 when different probability levels are applied to restrict chance 

constraints. Moreover, the possible optimised total cost of all CDF curves in Fig. 5-12 

span narrower than the curves in Fig. 5-7. The above phenomena suggest that the 

optimisation for carrying out DR scheme on energy hub system may be more affected 

when the power flow between hubs are restricted by chance constraints.  

The CDF curves of the active power injection to hub 2 at time step 9 with different 

chance constraints probabilities are presented in Fig. 5-13. The possible values of the 

active power injection change from 3.39 p.u. to 3.41 p.u. with the cumulative 

 

 
  
Fig. 5-12.CDF curves of optimised total cost. 
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probability increase from 0 to 1. Most of the values of active power input concentrate 

on the interval between 3.40 p.u. and 3.406 p.u., which are significantly improved 

compared with Fig. 5-8. It is because the gas flow between hubs is restricted by chance 

constraints, and the power generation from CHP is limited, hence more power should 

be imported from the grid.  

The values of total active power input are changing within the boundary of 0.019 p.u., 

which is much less than the value changed on the abscissa in Fig. 5-8. It also 

demonstrates that the optimisation is less influenced when the gas flow between hubs 

is restricted by chance constraints. 

5.7 Conclusion 

The chance-constrained programming is proposed in this paper to solve the energy hub 

optimisation considering both demand response and the correlation between the outputs 

of different wind power through extensive demonstrations, the main findings are as 

follows: 

 Chance-constrained programming is capable to solve energy hub optimisation with 

DR and correlation of wind power, considering temporary overloading is permitted. 

 Customer load pattern is significantly affected in response to the variations of 

energy prices and energy hub operations. The holistic loads are increased, and the 

loads over high-tariff periods are slightly decreased. 

 The effects of chance-constrained programming on energy hub optimisation are 

relatively high when the chance constraints are restricting power flow between hubs. 

  
 

  Fig. 5-13.CDF curves of the active power input to hub 2 at time step 9. 
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The optimal operation is more stable when gas flow between hubs is restricted by 

chance constraints. 

The proposed chance-constrained programming is useful for hub operators to 

efficiently operate the hubs and make the best of system capacity for benefiting 

themselves and customers with reduced investment and bill costs. The model is easy to 

expand to energy hub systems with more smart appliances, such as storage and solar 

power. 

5.8 Chapter Summary 

By explicitly modelling the correlations between geographically close wind farms with 

Pearson correlation, this chapter improves the chance-constrained programming for 

interconnected energy hubs optimisation developed in chapter 4. Additionally, the 

customers’ reaction to smart scheduling is also reflected by considering elastic demand, 

and incorporating demand response into energy hub optimisation. The optimisation 

scheme benefits both the operators and end customers with reduced investments and 

energy costs by maximally utilise the flexibility of energy hub system.
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This chapter investigates the optimal operations of borehole thermal 
storage within the interconnected energy hubs, by respectively adopting 
the Finite Element and transfer function to model the performance of 
borehole thermal storage. 
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Chapter Overview 

Previous chapters investigate the optimisation for interconnected energy hub system 

under steady state or considering uncertainty. From the prospect of operating future 

smart grids, the energy hub system is foreseen to be cooperative with other system 

operating or smart technologies to increase power system flexibility or achieve some 

optimisation objectives. Therefore, the optimisation of energy hub system with other 

technologies are of interest to research.  

As indicated in section 2.2.5, the combined ground source heat pump and borehole 

thermal storage raised researchers’ attention in recent years due to their high efficiency 

and stable performance. The energy hub system can benefit from the combined system 

to efficiently satisfy the thermal load, the mixture of power and thermal of the system 

can also well fit into the energy hub modelling. Therefore, the optimal operations of 

combined ground source heat pump and borehole thermal storage are investigated 

within the interconnected energy hubs in this chapter. The main contributions of this 

chapter is summarised as follows: 

i) The borehole thermal storage is assumed to be equipped to support a residential 

community, which is modelled by an interconnected energy hub system. The 

optimisation for the community is investigated. 

ii) The Finite Element model is employed to model the performance of the 

borehole thermal storage in response to the varying input boundary conditions. 

An equivalent transfer function model is proposed to model the borehole storage 

in order to reduce the computational time. 

iii) The optimisation problem is formulated as a multi-period, non-convex problem, 

which is resolved by applying the decomposed Particle Swarm Optimisation 

approach proposed in chapter 3. 
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6.1 Abstract 

Ground source heat pumps (GSHP) give zero-carbon emission heating at a residential 

level. However, as the heat is discharged, the temperature of the ground drops, leading 

to a poorer efficiency. Borehole inter-seasonal thermal storage coupled with GSHP 

maintains the efficiency at a high level. To adequately utilize the high performance of 

combined GSHP and the borehole system to further increase system efficiency and 

reduce cost, such a combined heating system is incorporated into the interconnected 

multi-carrier system to support the heat load of a community. The borehole finite 

element (FE) model and an equivalent borehole transfer function are proposed and 

respectively applied to the optimisation to analyze the variation of GSHP performance 

over the entire optimisation time horizon of 24 h. The results validate the borehole 

transfer function, and the optimisation computation time is reduced by 17 times 

compared with the optimisation using the FE model. 

6.2 Introduction 

In order to reduce the pollution caused by utilizing fossil fuels and adopt a sustainable 

economy, the UK government aims to reduce carbon emissions by 80% before 2050 

compared with the 1990 baseline [1]. Domestic buildings consume 40% of the total 

energy of the society [2], which implies that there is a great potential for saving energy 

and increasing energy efficiency at domestic level. The energy hub modelling approach 

could, therefore, be employed to adequately exploit renewable energy, increasing 

energy efficiency and sustainability without compromising on energy security. The 

energy hub modelling framework provides an effective way to holistically harness 

different energy infrastructures by considering them as an integrated system. The 

corresponding co-generation or tri-generation technology enables flexible energy 

management among all available energy carriers [3].  

A typical energy hub provides the functions of importing, exporting, converting, and 

storing energy. Conventional converters such as gas furnace and micro-turbine have 

been analysed within the energy hub system [4, 5]. Recently, research efforts have been 

made to address the application of low-carbon and high efficiency converters in energy 

hub systems, such as combined heat and power plant (CHP) [6, 7] and heat pumps [8]. 

The efficiency of the heat pump is dependent on the heat source temperature and indoor 

temperature. The application of the borehole storage can significantly increase the 
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GSHP performance since the thermal storage provides a high temperature source, 

raising the coefficient of performance (CoP) of ground source heat pumps (GSHP). 

Therefore, the combination of GSHP and borehole thermal storage is studied in this 

paper.  

Energy storage system is a viable solution for the multi-carrier system to stabilise and 

balance system equilibrium [9, 10]. Borehole thermal storage uses the ground as a heat 

source and storage medium. High temperature fluid flows through the borehole pipes 

and stores the heat energy into the surrounding ground and this process is done by heat 

transfer [11]. After the fluid dumps the heat into the borehole, the temperature settles 

down in the borehole wall area and when the heat is needed from the borehole, the fluid 

extracts the heat from borehole wall and provides high temperature source. The 

relationship between borehole wall temperature and charging/discharging energy is 

analysed by applying the finite element method which is used to synthesise an 

equivalent borehole wall temperature transfer function. In the FE model, the mesh 

number is enormous, which wastes more time. As a result, it is significant to simplify 

the borehole model. Borehole transfer function model uses the borehole wall 

temperature response to the input heat flux to create a simplified borehole model. 

To sufficiently utilize the high performance of combined GSHP and borehole system 

to further decrease the overall system cost, the combined GSHP and borehole system 

operations are optimised within the context of the energy hub in this paper. 

In addition to the traditional optimisation of the single energy hub, the interconnecting 

heterogeneous energy infrastructure at a local level can best leverage renewable 

generation and pooled storage without suffering from large distance transmission losses 

and enable self-sufficient energy communities. Additionally, the energy management 

between buildings enables adequate utilization of energy redundancy in each building, 

which comprehensively achieves the system optimisation. Hence the interconnected 

energy hub approach at the residential level has a huge potential for reducing the energy 

costs and increasing the energy efficiency. The optimisation considering both the power 

flow and energy hub operations within the interconnected energy hub system has been 

implemented in Refs. [4, 7, 12–14]. However, when the mathematical model of heat 

storage such as borehole is explicitly considered, the coordination of GSHP and heat 

storage within the context of energy hub optimisation has not been studied. This paper 

investigates the optimisation of an interconnected energy hub system with different 



Chapter 6      Optimisation with Combined GSHP and Borehole Thermal Storage 

Page | 120 
 

heating converters equipped within each hubs. Such a heating network considers the 

effective cooperation between the conventional gas heating, CHP and a combined 

GSHP and borehole storage system. 

To effectively reduce the cost of the energy hub system, an optimal policy needs to be 

determined against the time-varying energy tariffs, converter efficiency etc. The 

performance of GSHP at each time step is related to the wall temperature of the borehole, 

which is derived by analysing the heat flux input/output from the borehole over the 

whole time horizon. Besides, due to the ramp rate restriction for CHP, the operations 

of a CHP between each time step are interdependent. Therefore, the optimisation of the 

interconnected energy hub system is formulated as a non-convex multi-period 

optimisation problem. Different approaches have been implemented to solve energy 

hub optimisation problems with similar complexity. In Refs. [12, 15], the model 

predictive control scheme is applied to optimally control the operations of three 

interconnected energy hub systems. The multi-agent genetic algorithm is utilized to 

optimise the power and gas flows between energy hubs in Refs. [4, 16]. The multiagent-

based consensus algorithm and the event-triggered control scheme are respectively 

applied in Refs. [17, 18] to optimise the multi-carrier system within the context of 

energy internet. The existence of Nash equilibrium is researched for the optimisation 

of multiple energy hub systems in Refs. [19–22]. A modified version of the teaching-

learning-based optimisation is proposed and carried out in [5] for the energy hub system 

where the converters present a non-constant efficiency. Among the above optimisation 

techniques, the global minimum cannot be guaranteed when solving the highly-

complex problem, and the mathematical problem is relatively easy when the global 

minimum could be found. A decomposed approach for implementing particle swarm 

optimisation (PSO) [23] is proposed in [14], which presents a high performance with a 

fast converging speed when solving the highly-constrained interconnected energy hub 

problem. The decomposed technique is, therefore, utilized in this paper to optimise the 

operations of the energy hub system together with the borehole system.  

To sum up, in this paper, the optimal operations of combined GSHP and borehole 

system is investigated within the optimisation scheme of energy hub, an equivalent 

transfer function of the borehole model is presented, and the decomposed technique of 

applying PSO is incorporated to the interconnected energy hub optimisation. 
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6.3 Modelling 

Since domestic buildings consume approximately 40% of the total energy, in which the 

electricity consumption accounts for around 68% [2], the power system can 

significantly benefit from optimally dispatching the application of various energy 

carriers among residential houses. As any scale of energy systems can be modelled by 

energy hub [24], and different energy infrastructures such as electricity, gas, and heat 

are generally equipped within domestic houses, the energy hub is, therefore, applied to 

model the residential house. In this paper, the optimal operations of multiple residential 

houses with borehole system are investigated. 

The configuration of K number of interconnected energy hubs is shown in Fig. 6-1. The 

system represents a community including K residential houses where electricity and 

heat could be co-ordinated between each other. The power adjustment between hubs 

could be achieved through the electrical connection indicated in Fig. 6-1. For example, 

the electricity transfer from hub K–1 to hub K is achieved by injecting electricity to the 

grid from hub K–1, and extracting the same amount of electricity from the grid to hub 

K. The heat sharing is assumed to be available between adjacent hubs. The borehole 

storage is set up within the community, which supplies the GSHP equipped within each 

house. The heating converter including micro-combined heat and power systems 

(micro-CHP) and gas furnace are also included. Each house is modelled as an energy 

hub. 

Electricity

Hub 1 Hub K-1 Hub K

Heat

Borehole

Gas

Electricity 

distribution 

network

Natural gas 

distribution 

network

 
 

 Fig. 6-1.Eleven interconnected energy hubs system 
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The optimisation for the interconnected energy hub systems is implemented by 

determining the operations of each hub over the whole time horizon to reach a minimum 

system cost, with the knowledge of the prices of energy carriers, load profile, system 

parameters, etc. To mathematically model the optimisation problem, detailed 

mathematical models of converters, borehole, and energy hub are illustrated in the 

following sub-sections. 

6.3.1. Micro-CHP  

The micro-CHP simultaneously generate power and heat by using gas. Compared with 

conventional heating converters, such as a gas furnace, micro-CHP produces a higher 

overall efficiency and a lower carbon emission [25]. The micro-CHP employed in the 

energy hub model is assumed to be steady-state with a constant electric efficiency and 

thermal efficiency. In addition to the constraint of maximum CHP output, the ramp rate 

of CHP is considered in this research and given by 

𝑒p(𝑡 − 1) − 𝑒ramp ≤ 𝑒p(𝑡), (6-1) 

𝑒p(𝑡 − 1) + 𝑒ramp ≥ 𝑒p(𝑡), (6-2) 

where 𝑒p is the power output of the micro-CHP, the variable 𝑡 corresponds to the time 

step number in discrete time, so that any variable that is a function of time is fixed 

during time step 𝑡, and 𝑒ramp is the micro-CHP maximum ramp rate. 

6.3.2. Ground Source Heat Pump  

In 2014, the Renewable Heat Incentive (RHI) was launched in the UK to increase the 

installation of low carbon technologies [26]. Heat pumps have lower carbon emissions 

than the conventional heating methods such as a boiler. Ground source heat pumps 

(GSHP) are widely used since they have a higher and more stable CoP over other heat 

pump types, due to the fact that ground temperatures remain constant throughout the 

whole year. The definition of CoP is 

𝐻 = CoP ∙ 𝑃e, (6-3) 

where 𝐻 is the heat energy output and 𝑃e is the electricity required by the heat pump. 

The CoP equations for this paper is obtained from the real world project, CHOICES 

[27]. The CoP value depends on the condenser water outlet temperature, the evaporator 

inlet temperature, and the GSHP installation capacity which is the maximum heat 
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energy that GSHP can generate. GSHP is connected to the borehole storage which will 

provide a higher evaporator inlet temperature. GSHP consumes electricity and 

generates heat energy to meet the heat demand. Within each condenser temperature 

category and capacity limit, the CoP value can be seen as a linear function between the 

GSHP cut-off temperatures.  

CoPnew = 𝑎 ∙ 𝑇 + 𝑏, (6-4) 

where 𝑇 (°C) is the borehole wall temperature  , 𝑎 and 𝑏 are constants. The calculation 

of CoP values with response to different heat pump evaporator inlet temperatures 

(borehole wall temperature T) at each condenser outlet temperature category is 

demonstrated in Table 6-1. 

In this system, the GSHP is used for space heating, so that the condenser water outlet 

temperature is set to 55°C which is the water temperature running in the radiator in 

houses. 

6.3.3. Borehole  

Borehole thermal storage comprises of an array of vertical holes drilled under the 

ground. The depth of each borehole could be up to one hundred and fifty meters into 

the bedrock. The temperature of the soil remains steady throughout the whole year. In 

winter, the temperature of the soil is generally higher than the ambient air temperature 

which helps to create a high and stable GSHP output [28]. There are three mediums in 

the borehole system, antifreeze agent water, grout (backfill material), and the 

surrounding soil. The borehole system can be built up in the FE model and there are 

different input boundary conditions such as temperature, density, heat capacity, the 

coefficient of heat conduction, heat source (heat flux), etc. With the input information, 

 

Condenser water outlet  temperature 
/°C 

CoP  (T represents the evaporator inlet (borehole) 
temperature ) 

30 0.1362 × 𝑇 + 4.8002 

35 0.1265 × 𝑇 + 4.2335 

40 0.1135 × 𝑇 + 3.7365 

45 0.1002 × 𝑇 + 3.2873 

50 0.0918 × 𝑇 + 2.8072 

55 0.0850 × 𝑇 + 2.3483 

 

 

Table 6-1.GSHP COP CALCULATION 
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each medium is subdivided into a massive number of meshes and the value of each 

mesh node is solved by the partial differential equation toolbox in the MATLAB 

technical computing environment.  

This paper uses the borehole system from the CHOICES project with 12 boreholes to 

supply the community modelled by the energy hub system. The CHOICES borehole 

FE model generates thousands of temperature points at each time step. Table 6-2 lists 

the borehole parameters used in the FE model. In the FE model, with heat flux 

injection/extraction, heat transfer happens between boundaries, and the temperature of 

the whole area is represented by each node as is depicted in Fig. 6-2. The temperature 

rises as it gets closer to the borehole centre. However, the temperatures needed in the 

system are the borehole wall temperatures. In the FE model, the temperature 

distribution across the borehole storage is represented by millions of nodes, and as a 

result, the borehole wall temperature is obtained by calculating the mean value of the 

 

Parameter Ground Grout Fluid 

Density/(kg·m–3) 2770 1550 1052 

Heat capacity/(j·(kg·K) –1) 826 1000 3795 

Thermal 
conductivity/(W∙(m·K)–1) 

2.61 2.1 0.5 

Diameter/m --- 0.15 0.07 

 

 

 

 
 

Table 6-2. BOREHOLE PARAMETERS 

Fig. 6-2.Single FE borehole model cross section view 
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borehole wall area nodes as the orange nodes shown in Fig. 6-2. After the charging 

period, the temperature settles in the borehole wall area, and during the heating season, 

the borehole wall temperature is treated as the GSHP inlet temperature. As a result, the 

borehole wall temperature is the key aspect of this system which is affected by the heat 

flux extraction during the heating season. 

With the borehole wall defined, Fig. 6-3 gives an example of temperature response to 

the heat flux output. With constant heat flux (example, 1000 W/m3) in each time step 

for 30 hours, the borehole wall temperature decreases (as shown in Fig. 6-3). 

This paper focuses on the heating season so that the starting borehole wall temperature 

is set to an initial temperature. The borehole system is considered to be an isolated 

system such that the temperature exchange between the borehole unit and the far 

surrounding soil can be ignored due to the short simulation time. It is assumed that the 

borehole wall starting temperature is 20°C after the charging period which is not 

considered in this simulation. However, it is worth noting that in practice, the borehole 

wall temperature could be charged to a higher level to obtain higher CoP values over 

the heating season. 

To accelerate optimisation, instead of using the complex borehole FE model, an 

equivalent borehole wall temperature transfer function is used. By using the borehole 

wall temperature response to the different heat flux input information from the FE 

model, a transfer function model is generated. It takes much less computation time for 

the transfer function to solve the relationship between the input heat flux and the 

borehole wall temperature. The transfer system is obtained by the system identification 

toolbox in the MATLAB using the temperature and heat flux relationship over the time.  

𝐻 =
𝑇

hf
=

8.693×10−8 𝑠+3.625×10−13

𝑠2+0.0001488𝑠+1.079×10−10
, (6-5) 
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Fig. 6-3.Variation of borehole wall temperature with constant heat flux output 
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where 𝑇 (°C) is the borehole wall temperature, hf (W/m3) represents the heat flux, s 

refers to the s domain complex frequency parameter used in the transfer function. 

By expressing the transfer function in the time domain, Eq. (6-5) can be used to model 

how the heat input in a previous time step leads to the temperature change in the current 

time step. Fig. 6-4 exhibits the difference of borehole wall temperature change between 

the FE model and the transfer function with the same heat flux output over 30 hours. 

The average temperature difference is 0.07 °C as shown in the figure. 

6.3.4. Energy Hub Model  

Different heating converters are equipped within the energy hub system. In order to 

efficiently analyse the system, a general formulation of energy hub model including a 

micro-CHP, a gas furnace, and a GSHP is proposed, as displayed in Fig. 6-5. The 

transformation between the individual hub output and input is expressed in Eq. (6-6). 

[
𝐿ele,𝑖(𝑡) + 𝐸𝑖𝑗(𝑡)

𝐿th,𝑖(𝑡)+𝐻𝑖𝑗(𝑡)
] =

[
1 − 𝜈1,𝑖(𝑡) 1 − 𝜈1,𝑖(𝑡) × 𝜈2,𝑖(𝑡) × 𝜂𝑒

𝜈1,𝑖(𝑡) × CoP(𝑡) 𝜈1,𝑖(𝑡) × 𝜈2,𝑖(𝑡) × 𝜂𝑒 × CoP(𝑡) + 𝜈2,𝑖(𝑡) × 𝜂th + (1 − 𝜈2,𝑖(𝑡)) × 𝜂gf
] ×

[
𝑃ele,𝑖(𝑡)

𝑃gas,𝑖(𝑡)
]                    (6-6) 
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Fig. 6-4.Comparison of FE model and transfer function 

Fig. 6-5.Example of single energy hub 
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where i and j denote the hub number; 𝐿ele and 𝐿th represent the electricity and heat load, 

respectively; 𝑃ele and 𝑃gas represent the power input and the gas input; 𝜂e and 𝜂th are 

the micro-CHP electric efficiency and thermal efficiency;  𝜂gf is the gas furnace 

efficiency; 𝜈1 is the dispatch factor, which, in this context, means the ratio of electricity 

injected to the heat pump divided by the total electricity input to the energy hub; 𝜈2 

denotes the ratio of gas injection to the micro-CHP compared with the total gas injection; 

and 𝐸𝑖𝑗  and 𝐻𝑖𝑗 indicate the power and heat import and export between hub i and other 

hubs. 

6.4 Problem formulation and methodology 

As illustrated in Section 6.3, the CoP of GSHP is related to the borehole temperature, 

which is non-linearly affected by the heat flux output at each time step. Additionally, 

the variations of borehole wall temperature over the whole optimisation time horizon 

are derived based on the heat flux output at every time step by using the FE model or 

the transfer function. Therefore, the optimisation for the system needs to be conducted 

by considering the operations over the whole time period, which generates a multi-

period, non-convex problem. With the knowledge of load profile of the hubs, system 

parameters, prices of energy carriers, and system safety constraints, the optimisation is 

implemented for the energy hub system to minimise the energy costs over the whole 

time horizon. The variables to be optimised include the input of the energy carriers, the 

energy adjustments between hubs, the dispatch factors, and the variations of the CoPs 

of GSHP over the whole time horizon.  

The decomposed approach of applying PSO to the complicated non-convex problem 

has been demonstrated to be capable of reaching a global minimum comparing with 

conventional algorithms with better performance [14], and hence it is applied in this 

paper. The problem formulation and the decomposed approach of applying PSO are 

illustrated in following sub-sections. 

6.4.1. Optimisation problem formulation 

The decomposed approach of utilizing PSO is applied to the interconnected energy hub 

system to perform an optimisation over 24 hours on a typical winter day. Each hour 

represents one time step. The electricity load, heat load, energy price, the efficiency of 

each converter and the initial temperature of the borehole field at the first time step are 
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assumed to be known. The optimisation is then implemented to determine the operation 

of every hub at each time to give minimum overall system costs.  

However, traditional algorithms such as linear programming or other numerical 

methods are not capable of solving this problem. The electricity price varies between 

each time step. In addition, along with the variation of borehole wall temperature, the 

CoP of GSHP is also time dependent. Therefore, the energy hub operations at the 

current time step may affect the operations at other time steps. Hence, the optimisation 

is formulated as a multi-period problem. The efficiency of the GSHP changes at each 

time step, hence the problem is a non-convex optimisation problem [7]. The 

decomposed approach of using PSO is capable of searching the entire feasible region 

to find the global minimum. The optimisation is conducted in the MATLAB 

environment based on the ETH Zurich open source PSO code [29]. The optimisation 

problem is formulated as follows: 

Minimize 

Subject to (6-1)–(6-6) 

𝐿𝑖(𝑡) = 𝐶𝑖(𝑡) × 𝑃𝑖(𝑡), ∀𝑖, ∀𝑡, (6-8) 

0 ≤ 𝑣𝑖(𝑡) ≤ 1 ∀𝑖, ∀𝑡. (6-9) 

Electricity  

𝑃ele,𝑖,min(𝑡) ≤ 𝑃ele,𝑖(𝑡) ≤ 𝑃ele,𝑖,max(𝑡), ∀𝑖, ∀𝑡, (6-10) 

𝐸𝑖𝑗,min(𝑡) ≤ 𝐸𝑖,𝑗(𝑡) ≤ 𝐸𝑖𝑗,max(𝑡), ∀𝑖, ∀𝑡. (6-11) 

Heat 

𝐻𝑖𝑗,min(𝑡) ≤ 𝐻𝑖𝑗(𝑡) ≤ 𝐻𝑖𝑗,max(𝑡), ∀𝑖, ∀𝑡. (6-12) 

Gas 

𝑃gas,min(𝑡) ≤ 𝑃gas,𝑖(𝑡) ≤ 𝑃gas,max(𝑡), ∀𝑡. (6-13) 

Heat pump 

𝑃HP,𝑖,min(𝑡) ≤ CoP𝑖(𝑡) × 𝑃ele,𝑖(𝑡) × 𝑣𝑖(𝑡) ≤ 𝑃HP,𝑖,max(𝑡), ∀𝑖, ∀𝑡. (6-14) 

∑∑[𝑃ele,𝑖(𝑡) × Πele(𝑡) + 𝑃gas,𝑖(𝑡) × Πgas(𝑡)]

𝐾

𝑖=1

𝑁

𝑡=1

. (6-7) 
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Gas furnace 

𝑃GF,min(𝑡) ≤ 𝑃gas(𝑡) × 𝜂gf ≤ 𝑃GF,max(𝑡), ∀𝑡. (6-15) 

Micro-CHP 

𝑒p(𝑡 − 1) − 𝑒ramp ≤ 𝑒p(𝑡) ≤ 𝑒p(𝑡 + 1) + 𝑒ramp, ∀𝑡 (6-16) 

𝑒p,min ≤ 𝑒p(𝑡) ≤ 𝑒p,max, ∀𝑡. (6-17) 

The control vector 𝑢(𝑡) is illustrated in Eq. (6-18) 

𝑢(𝑡) = [𝑃ele,𝑖(𝑡), 𝑃gas,𝑖(𝑡), 𝐸𝑖𝑗(𝑡), 𝐻𝑖𝑗(𝑡), 𝑣𝑖(𝑡), CoP(𝑡)], ∀𝑖, ∀𝑡.  (6-18) 

where Π(t)  denotes the energy price. Eq. (6-8) is the energy hub transformation 

function corresponding to Eq. (6-6). N is the number of total time steps, and in this 

research the time step size is one hour, thus N is equal to 24. K represents the number 

of energy hubs modelled in the community. Eq. (6-9) indicates the limitation for 

dispatch factors, and Eqs. (6-10) and (6-13) denote the minimum and maximum energy 

input to each hub. Eqs. (6-11) and (6-12) illustrate the adjustment of energy 

transmission limitation between hubs. Eqs. (6-14), (6-15), and (6-17) indicate the 

minimum and maximum power output of each converter. Eq. (6-16) specifies the ramp 

rate for micro-CHP. The optimisation is carried out by determining the control vector 

shown in Eq. (6-18), which contains the power and gas inputs, the energy adjustments 

between hubs, the dispatch factors within all hubs, and the CoP of GSHP at all time 

steps. 

6.4.2. Decomposed PSO 

The concept of PSO is proposed based on the behaviour of flocking birds or fish schools. 

Each particle represents a solution to the problem, and the fitness score of the particle 

denotes the performance of the particle. The group of particles updates at each iteration 

towards the global minimum based on the two factors of best particle ever achieved 𝑃𝑖
𝑔

 

and the best position of particle i𝑃𝑖
𝑘 . The updating of all particles follows the 

mechanism as follows. 

For particle i at iteration k+1, the position X is indicated as shown in Eq. (6-19). 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1, (6-19) 

where 𝑉𝑖
𝑘+1 means the velocity of particle i at iteration k+1, which is derived in Eq. (6-

20). 
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𝑉𝑖
𝑘+1 = 𝜔𝑉𝑖

𝑘 + 𝑐1𝑟1(𝑃𝑖
𝑘 − 𝑋𝑖

𝑘) + 𝑐2𝑟2(𝑃𝑖
𝑔
− 𝑋𝑖

𝑘), (6-20) 

where 𝜔, 𝑐1, and 𝑐2 are coefficients, 𝑟1 and 𝑟2 indicate two random numbers between 0 

and 1. The decomposed approach of utilizing PSO to solve Eqs. (6-7) – (6-18) is 

illustrated in Fig. 6-6 based on the equations above. 

Eq. (6-7) represents a highly-constrained non-convex optimisation problem. The 

decomposed PSO decouples the complicated problem into sub-problems, namely the 

scheduling of heat fluxes between GSHPs and borehole, and other elements of the 

interconnected energy hub system. As shown in Fig. 6-6, the information of heat fluxes 

over the whole time horizon is initialised and contained in each particle, and all particles 

are forced into the feasible region. The numerical method of the ‘interior-point’ method 

is then applied to optimise other hub elements over the whole time horizon based on 

Randomly initialize a population of particles for heat 
fluxes between GSHPs and borehole over 24 time steps 

Satisfying heat 
fluxes constraints? 

Force the particles 
into feasible region

No

For each particle, use ‘interior-point’ to optimize 
other hub elements operation over 24 hours based 

on the heat fluxes flow between GSHPs and borehole 

The total cost of the energy hub system is 
therefore derived and regarded as the 

fitness score for each particle.

Find       and       based on the 
fitness score for each particle.

g

iP
k

iP

Meeting stopping criteria?

Update velocity and position 
for each particle

Yes

Yes
End

No

 

 Fig. 6-6.Working flow of the decomposed technique of applying PSO 
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heat fluxes information, and the total cost of the system can be derived and regarded as 

the fitness score for each particle. All particles update according to Eqs. (6-19) and (6-

20) until the stopping criteria are met. 

6.5 Case studies and results 

6.5.1. System setup 

Case studies are conducted for a community including 11 houses. The borehole storage 

is set up within the community, which supplies the GSHP equipped within houses 1, 3, 

4, 6, 8, 10, and 11. The micro-CHP and gas furnace are included in houses 2 and 5, and 

7 and 9 respectively. The electricity load and heat load for the 11 hubs over 24 hours 

are generated based on [30, 31], and it is assumed that the customer behaviours of the 

11 houses are different, and hence the energy load profiles are various. The specific 

energy consumptions over the whole time horizon of hub 1 are shown in Fig. 6-7 as an 

example, in which the electricity peak loads appear at around 17:00, and the heat peak 

loads are at approximately 9:00 and 20:00. The efficiencies of hub devices are derived 

 
 

 
 

 
 
 Fig. 6-8.Variant electricity prices against time 

Fig. 6-7. Energy consumptions of hub 1 over 24 hours 
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from Refs. [5, 6, 25]. The varying electricity price over the 24 hours is obtained from 

Ref. [32] and shown in Fig. 6-8. Other parameters simulated in this paper are given in 

Table 6-3.  

Four cases are presented and optimised in this paper. It is assumed that both the four 

cases are carried out to optimise the 11-hub system. The ele ctricity and heat loads, 

system constraints, system parameters including converters efficiencies, borehole 

model, and the prices of the energy carriers of the four cases are the same. Comparing 

with using the FE model to calculate the borehole wall temperature, a transfer function 

model is proposed in this paper. The FE model is applied in Cases 1 and 3, and the 

transfer function model is applied in Cases 2 and 4 respectively. The related results are 

discussed to investigate the accuracy of applying the transfer function model in energy 

hub optimisation. In order to examine the benefits from interconnecting energy hubs, it 

is assumed that there is no power or heat connection between hubs for Cases 1 and 2, 

all hubs are directly connected with the grid, and the heat load in each hub is satisfied 

by applying its own heating converter. The energy sharing is available as indicated in 

Fig. 6-1 for Cases 3 and 4. 

6.5.2. Convergence analysis 

To demonstrate that the decomposed PSO is capable of converging to a near-global 

point, an optimisation is performed for the 11-hub community where the FE model for 

calculating the borehole wall temperature is utilized. Under the conservative stall 

generations (30) and stall tolerance settings (£0.0001), a population of 40 particles is 

utilized to implement the optimisation. The value of the objective function at each 

iteration is indicated in Fig. 6-9. It could be derived that the best particle achieves the 

value of £42.12 when all particles are initially generated. The optimisation result rapidly 

drops from iteration 1 to 44, and trends to be flat after iteration 45. The optimisation 

 

Parameter Value 

eramp/(kW∙min–1) 0.15  
ep/kW 0–0.3  
ηgf 0.75 
ηe 0.3 
Πgas/£ 0.04 
Ηth 0.57 
PHP/kW 0–8.3  

 

 

Table 6-3. PARAMETERS FOR ELEVEN HUBS 
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eventually converges to £37.17 after 132 iterations, which demonstrates that the 

application of the decomposed PSO enables a near-global minimum when solving the 

optimisation problem proposed in this paper.  

6.5.3. Results and analysis 

The total energy cost over the 24 hours for each case is shown in Table 6-4.  

As shown in Table 6-4, when the energy sharing is available between hubs, the eleven-

hub energy cost can be reduced by £2.16 and £2.06 respectively for the FE model and 

the transfer function model being employed during the optimisation. It can also be 

concluded that although the FE model is more accurate to estimate the borehole wall 

temperature, the transfer function model can achieve the results within an acceptable 

error (0.38%), and the computation time can be reduced by a factor of 17. 

 

Case number 
Energy cost/£  Computation 

time/s 

1 39.32 N/A 
2 39.36 N/A 
3 37.16 5998  
4 37.30 248 
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Fig. 6-9.Convergence behavior for the decomposed PSO applying to Case 3 

Table 6-4. ENERGY COST FOR EACH CASE 

Fig. 6-10.CoP for GSHP over 24 hours for each case 
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The CoP of GSHP located at each individual residential house at each time step in terms 

of the four cases is shown in Fig. 6-10. Since the CoP of GSHP is linearly correlated 

with the borehole wall temperature as indicated in Eq. (6-4), and both the FE model and 

transfer function model are applied to derive the borehole wall temperature, hence the 

differences of CoPs between Cases 3 and 4 reflect the accuracy of applying the two 

models. As seen from Fig. 6-10, the CoPs over the 24 hours differ in Cases 3 and 4, but 

have similar variations where the CoPs difference at each time step is less than 0.01. 

This demonstrates that the transfer function model is capable of deriving the borehole 

wall temperature for energy hub optimisation over the 24 hours with error less than 

0.2%.  

Compared with the cases that there are energy sharing between hubs, the CoP of GSHPs 

over the 24 hours obtained from Cases 1 and 2 has a greater variation. Especially the 

CoP varies between the boundary of 4 and 4.05 for Case 2. Conversely, when the energy 

hubs are interconnected, the CoP derived from Cases 3 and 4 has a similar variation. 

This demonstrates that the operations of combined GSHP and borehole system tends to 

be more stable when the energy sharing between hubs is available.  

Since the electricity price reaches the peak value around the time steps of 17 and 18, it 

can be seen from Fig. 6-10 that for optimisation Cases 3 and 4, the CoP does not drop 

around the high-electricity price period, which means the utilization of GSHP is 

accordingly reduced. Alternatively, other heating devices are activated to support the 

heat load. 

It can also be derived from Fig. 6-10 that, according to the second law of thermal 

dynamics, when the heat is extracted from the borehole, the borehole wall temperature 

decreases, which generates a high temperature gradient between the wall and the 

surrounding storage volume. As a result, the heat replenishment from the surrounding 

volume to the wall occurs. When this is greater than the heat extraction from the GSHP, 

it will lead to a rise in temperature of the borehole wall, which explains the slight 

increase in the CoP value seen in Fig. 6-10 in the time steps of 10–14. 

The total electricity injection to the eleven-hub system over the 24 hours is depicted in 

Fig. 6-11. Compared with Cases 1 and 2 where no energy sharing or optimisation is 

carried out, the electricity consumption in Cases 3 and 4 are reduced at every time step, 

especially during the peak price period. The reason for this is that the micro-CHP is 
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operated during this period, and thus the generated power and heat could be exported 

to other hubs, avoiding the need for grid import. Meanwhile, the gas furnace is switched 

on to supply most of the heating instead of electricity driven GSHP in this period. 

6.6 Conclusions and future work 

This paper presents the optimisation of an interconnected energy hub system including 

a combined GSHP and a borehole heating system, a micro-CHP, and a gas furnace. The 

borehole FE model and transfer function model are respectively applied to the 

optimisation to simulate the borehole wall temperature based on the given discharging 

heat flux at each time step. The main findings are concluded as follows: 

 When the borehole transfer function model is employed the optimisation produces 

approximately the same results compared with the optimisation where the FE model 

is applied. 

 The computation time is significantly reduced by applying the borehole transfer 

function model. 

 The combined GSHP and borehole system tends to be more stable when the energy 

hubs are interconnected. 

 The total energy cost of the community can be significantly reduced by applying 

the energy hub optimisation scheme. 

Future work will be centred on investigating the optimal control policy for combined 

GSHP and boreholes within energy hub communities on seasonal time scales. 
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6.7 Chapter Summary 

This chapter contributes to the optimisation for energy hub system incorporated with 

other smart grid technologies. It innovatively integrates the ground source heat pump 

and borehole thermal storage to supply a community of residential houses, which are 

modelled by interconnected energy hubs. The decomposed technique of applying 

Particle Swarm Optimisation developed in chapter 3 is employed to optimally 

scheduling the operations of energy hub system together with the borehole storage.  

The extra heat can be stored in the borehole thermal storage in summer and discharge 

during heating seasons, hence the borehole system performs efficiently for inter-

seasonal operations. Future work will be carried out to operate the energy hub system 

with borehole on seasonal time scales. 
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This chapter summarises the thesis by outlining the major contributions 
and findings from the research. 

Conclusion 
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The energy hub presents a powerful concept to advise system operators of how to 

dispatch, convert, and store various energy infrastructures in order to achieve an optimal 

condition. Due to the challenges introduced by the increasing utilisation of uncertain 

renewable generations, distributed generation, distributed multi-energy generation, and 

the advance of smart grid optimisation schemes, the energy hub concept is therefore 

proposed to incorporate them to function in the smart city. 

The interconnected energy hub system increases system flexibility and profits by 

maximally exploiting the value of available energy carriers, energy converters, and 

storages in each hub. Thus, this thesis intensively investigates the optimisation of the 

interconnected energy hub system to benefit the community and residential users, 

meanwhile address the challenges to the modern power system. Previous researches 

may fail to propose robust technique to solve non-convex multi-period energy hub 

problem, the uncertainty has not been well modelled, and the integration between 

energy hub and other smart grid technologies might be ignored. This thesis investigates 

the interconnected energy hub optimisation problem in terms of the aforementioned 

aspects. From the perspective of operating power system, this thesis benefits both the 

system operator and customers with improved optimisation performance, less energy 

infrastucture cost, reduced carbon emission, increased system flexibility and network 

security. The conclusions and main findings are drawn as follows.   

Optimising Energy Hub with Decomposed PSO Approach 

The optimisation for interconnected energy hub system is generally formulated as a 

complicated multi-period, non-convex problem considering the inclusion of complex 

energy transmission networks and energy storages. The optimisation algorithms applied 

in previous researches fail to prove their capability of achieving a global minimum in 

solving the energy hub problem with a massive number of constraints and variables. In 

order to address it, a comprehensive interconnected energy hub system is firstly 

modelled by considering converters with non-constant efficiency converters and battery 

storage system, the battery lifetime cost is considered to better utilise the battery without 

unnecessary degradation. A novel decomposed approach of applying PSO hybridised 

with interior-point method is proposed to solve the optimisation problem. The main 

findings are indicated as follows: 
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 The performance of the proposed approach of utilising combined PSO with interior-

point is validated by a simple 2-hub system, where the theoretical minimum can be 

analytically derived.  

 The optimisation is carried out for a 3 residential energy hub system over 24 hours. 

By considering the battery lifetime cost within the objective function, it is observed 

that the utilisation of battery varies between 60% and 90% to avoid unnecessary 

degradation of the battery lifetime, while achieving the minimum cost. 

Comparatively, the state of charge of the battery varies from 50% to 100% if the 

battery lifetime cost is not considered. It demonstrates that the battery lifetime 

consumes faster when it is operated during a lower state of charges. 

 Compared with the conventional PSO, the decomposed approach of utilising PSO 

hybridised with interior-point method achieves a 58% greater energy saving for the 

3-hub optimisation with 98% saving of computation time. The optimisation 

demonstrably reaches very near to the global minimum. This method can be applied 

in a receding time horizon approach for solving a practical system of size around 

10 hubs, always leveraging the most up to date load prediction. 

Chance-Constrained Programming for Energy Hub 

In order to better model the uncertain renewable generations compared with the 

traditional methods such as Monte Carlo simulation and scenario-generation methods, 

the chance-constrained programming is proposed to solve the energy hub optimisation 

with uncertainty. The chance constraints innovatively restrict the power and gas flows 

between adjacent hubs, due to the fact that the temporary overloading is tolerable in the 

power system. This research contributes to maximally penetrate the renewable 

generations into the energy hub system at the lowest cost in a smart city, and the impact 

of chance constraints on energy hub optimisation is extensively explored. The main 

findings are illustrated as follows: 

 By applying Cornish-Fisher Expansion to translate chance constraints into 

deterministic constraints, the stochastic chance-constrained programming problem 

is mathematically transferred to a deterministic problem, the interior-point method 

is applied to optimise the problem. It is demonstrated that the algorithm is capable 

of achieving a minimum in solving the proposed 3-hub problem. 



Chapter 7        Conclusion 

Page | 140 
 

 The optimisation results for the 3-hub problem derived from chance-constrained 

programming are compared with the results from 2 point estimate method through 

the Expected Value of Perfect Information and Value of the Stochastic Solution 

models. The comparison suggests that the optimised system cost from CCP is £3.94 

higher compared with 2PEM, and the system needs to spend extra £5.04 to deal 

with the uncertain renewable generations. 

 The energy hub operations could be more unstable if the power flows between hubs 

are restricted by chance constraints. It shows stable characteristics when the chance 

constraints restrict gas flows. However, the total gas injection into the network is 

more affected when the gas flows are restricted by the chance constraints. 

Chance-Constrained Programming for Integrated Demand 

Respond with Energy Hub Considering Correlated Wind 

Generations 

In order to further improve the simulation for uncertain renewable generations to 

acquire more accurate results for energy hub optimisation with uncertainty, the 

correlation between geographically closed wind generations is considered and 

quantified by Pearson correlation coefficient. Additionally, the integrated demand 

response with energy hub optimisation is considered to reflect customers’ reaction to 

varying energy prices and energy hub operations. This work benefits both the system 

operators and customers with reduced energy infrastructure investment costs and 

energy bills. The main contributions and findings are indicated as follows: 

 Chance-constrained programming is capable of solving energy hub optimisation 

with demand response while considering the correlations between wind power 

generations. The historical data of wind speeds observed at two geographically 

closed stations display strong linear relationship for each hour, hence the Pearson 

correlation is utilised to quantify the linearity and applied in the expressions of 

chance constraints. 

 The results demonstrate that the effects of chance-constrained programming on 

energy hub optimisation are more obvious when the power flow between hubs is 

restricted by chance constraints, compared with the case that gas flow is restricted 

by chance constraints.  
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 After implementing the integrated demand response with energy hub optimisation, 

the loads over the high-tariff period are slightly decreased, and the loads at other 

time steps are increased compared with the reference load. It demonstrates that the 

energy hub optimal operations respond to both the varying energy prices and the 

elements within the energy hub system. 

Energy Hub Optimisation with Combined GSHP and 

Borehole Thermal Storage 

The combined GSHP with borehole thermal storage effectively reduces the carbon 

emission at the residential level and improves the energy utilisation efficiency since the 

borehole storage is regarded as a stable heat source with high temperature, which results 

in high efficiency of GSHP. In order to accommodate the utilisation of the combined 

system for domestic users, it is investigated within the interconnected energy hub 

system to support the thermal load of a community of residential houses. The borehole 

finite element (FE) model and an equivalent borehole transfer function are proposed 

and respectively applied to the optimisation to analyse the variation of GSHP 

performance over the entire optimisation time horizon of 24 h. The main contributions 

and findings are illustrated as follows: 

 The decomposed approach of applying the hybrid PSO and interior-point method 

proposed in this thesis is employed in this work to resolve the energy hub 

optimisation problem. It is demonstrated that the approach is capable to achieve a 

near global minimum. 

 The optimisation results validate the equivalent transfer function model, which 

produces approximately the same results compared with the case that the FE model 

is applied. Additionally, the computational time is reduced by a factor of 17 times 

by using the equivalent transfer function model. 

 Compared with the case that the electricity and heat connection between hubs are 

unavailable, the combined GSHP and borehole system tends to be more stable when 

the energy hubs are interconnected, the coefficient of performance of GSHP slightly 

varies in supporting the interconnected energy hub system over the whole 

optimisation time horizon. 



Chapter 8       Future Work 

Page | 142 
 

 

Chapter 8   Future Work 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter presents the potential future work to enrich the 
optimisation methodologies for multi-carrier energy system, as well as 
the interaction with other smart grid technologies or frameworks. 

Future Work 
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In the future, the following work is important because the specific trading scheme 

between energy hubs should be built to consider the market participants’ willingness to 

exchange energies; the operating constraints of the distributed generation need to be 

included in the energy hub optimisation for more accurate simulation; the uncertain 

variables may not comply with the empiric distributions, and hence the risk 

management can be employed to optimise the energy hub system with low risk; the 

control method should be implemented for energy hub operations to maintain the 

system stability. Detailed future work is illustrated as follows. 

Considering Peer to Peer Trading between Energy Hubs 

The interconnected energy hub system is optimised in order to achieve the minimum 

energy cost for the holistic system, the energies including renewable energies, 

electricity, gas, and heat are assumed to be flexibly shared among all hubs. From the 

prospective of reducing energy cost, the more robust energy converters, free renewable 

generations, and energy storage systems are more likely to be utilised by all hub 

participants through the energy transmission networks. However, the willingness of the 

customers to share their energies or robust technologies with others is ignored, the 

metering and trading scheme between different hub users have not been investigated in 

previous researches.   

In recent years, with the increasing utilisation of DERs and DGs among residential, 

commercial, and industrial users, the traditional consumers are transferred to prosumers 

as they both consume and generate energy. The prosumers may wish to sell the extra 

energy from their DERs or DGs to other consumers to make profits, and the trading 

paradigm is defined as the Peer to Peer (P2P) trading. Within the context of P2P, each 

energy hub participant can be regarded as a single entity to trade in the market. The 

conventional P2P paradigm generally considers the trading of electricity and renewable 

energies, however, the P2P established between multi-carrier energy systems can 

include the trading of other energy infrastructures such as gas and heat, while 

considering the optimal operations of energy hub system. Therefore, considering the 

P2P trading between energy hubs proposes a more explicit trading scheme, which could 

bring further energy saving and better meet customers’ multiple demands. Additionally, 

it practically models the application of interconnected energy hub system with energy 
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markets. The work benefits the system coordinator with enhanced transparency of the 

trading between all hub participants. 

Unit Commitment with Energy Hub Optimisation 

Presently, the interconnected energy hub system is considered to be equipped with 

various energy storages, renewable generators, CHP, heat pumps, and other efficient 

energy converters to collectively meet customers’ demands. Most of the studies 

simulate the energy converters and storages with constant efficiency, some researches 

models the efficiency with quadratic function in terms of the energy input. However, 

some constraints such as start-up/shut-down costs are excluded, where the related 

optimal operations can be inaccurate. 

The unit commitment problem is defined as optimising the production of a series of 

electricity generators in order to meet the energy demands with minimum cost or carbon 

emissions. The unit commitment considers more explicitly for the generators with the 

operational constraints such as ramp up/down rate, minimum up/down time constraints. 

Unit commitment has not been investigated within energy hub system. Therefore, based 

on the work presented in this thesis, unit commitment can be applied to interconnected 

energy hubs with uncertainty to contribute more practical optimisation for the 

operations of the energy converters and storage.  

Risk Management in Energy Hub Optimisation 

Uncertain variables such as the renewable generations and customer loads of the energy 

hub system are generally modelled by their distributions, which are derived empirically 

by fitting historical data. The optimisation for energy hub is therefore implemented 

based on the distributions. However, the uncertainty existed in the energy hub system 

is mostly time-varying and stochastic, which may significantly depend on the factors 

such as customers’ behaviour and weather condition. The uncertain variables may not 

comply with the empiric distributions, hence the optimal operations are inaccurate and 

the energy hub system is in risks. 

To address this issue and operate the energy hub system with acceptable risks, the risk 

management model can be employed into the optimisation problem to search for the 

trade-off between energy saving and risks. Risk management was initially proposed to 

deal with natural disasters and constitute financial policies. The risk is quantitatively 
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measured within the management scheme and has been applied to some power system 

planning and pricing problems. However, it has never been applied to energy hub 

problem. Within the context of the multi-carrier energy system, future work can 

incorporate risk management scheme to determine the optimal policy with acceptable 

risk, and investigates the effect of risks on the dependency between various energies.  

Energy Hub System Stability Analysis 

The energy hub optimisation in most researches is assumed to be carried out under 

steady-state, where the loads, energy prices, and system parameters are assumed to be 

constant. Uncertainty can be considered in the system optimisation, however, they are 

typically simulated through deterministic approaches to analyse the effects of 

uncertainty on system operations. In fact, some dynamic phenomenon exists in the 

power system such as the variations in voltage and frequency, which could generate 

small transients or larger disturbance in the system. Stability can be applied to quantify 

the capability of the system that recovers to an equilibrium after undergoes a physical 

disturbance. Conclusively, the system stability influences whether the system 

operations can be continually implemented without majorly affecting any customers 

after an incentive. The energy hub system theoretically improves the system stability 

because the system demands depend on various energy carriers, the energy storage 

system can also provide reserves to hedge the risks from uncertainty. However, the 

stability of the energy hub system has not been analysed in the previous literature.    

Future work can be carried out to optimally plan the energy hub system while maintains 

the system stability. Novel control approaches such as stochastic distribution control 

theory can be applied to optimise the energy hub problem. The system reliability and 

network investment security can thus be improved.
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