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Abstract

This thesis is mainly concerned with designing algorithms for Economic Model Predictive
Control (EMPC), and analysis of its resulting recursive feasibility, stability and asymptotic
average performance.

In particular, firstly, in order to extend and unify the formulation and analysis of economic
model predictive control for general optimal operation regimes, including steady-state or
periodic operation, we propose the novel concept of a “control storage function” and introduce
upper and lower bounds to the best asymptotic average performance for nonlinear control
systems based on suitable notions of dissipativity and controlled dissipativity. As a special
case, when the optimal operation is periodic, we present a new approach to formulate terminal
cost functions.

Secondly, aiming at designing a robust EMPC controller for nonlinear systems with general
optimal regimes of operation, we present a tube-based robust EMPC algorithm for discrete-
time nonlinear systems that are perturbed by disturbance inputs. The proposed algorithm
minimizes a modified economic objective function, which considers the worst cost within
a tube around the solution of the associated nominal system. Recursive feasibility and an
a-priori upper bound to the closed-loop asymptotic average performance are ensured. Thanks
to the use of dissipativity of the nominal system with a suitable supply rate, the closed-loop
system under the proposed controller is shown to be asymptotically stable, in the sense that it
is driven to an optimal robust invariant set.

Thirdly, for the purpose of combining robust EMPC design with a state observer in a
single pure economic optimization problem, we consider homothetic tube-based EMPC
synthesis for constrained linear discrete time systems. Since, in practical systems, full state
measurement is seldom available, the proposed method integrates a moving horizon estimator
to achieve closed-loop stability and constraint satisfaction despite system disturbances and
output measurement noise. In contrast to existing approaches, the worst cost within a single



xii

homothetic tube around the solution of the associated nominal system is minimized, which
at the same time tightens the bound on the set of potential states compatible with past output
and input data. We show that the designed optimization problem is recursively feasible and
adoption of homothetic tubes leads to less conservative economic performance bounds. In
addition, the use of strict dissipativity of the nominal system guarantees asymptotic stability
of the resulting closed-loop system.

Finally, to deal with the unknown nonzero mean disturbance and the presence of plant-model
error, we propose a novel economic MPC algorithm aiming at achieving optimal steady-state
performance despite the presence of plant-model mismatch or unmeasured nonzero mean
disturbances. According to the offset-free formulation, the system’s state is augmented with
disturbances and transformed into a new coordinate framework. Based on the new variables,
the proposed controller integrates a moving horizon estimator to determine a solution of the
nominal system surrounded by a set of potential states compatible with past input and output
measurements. The worst cost within a single homothetic tube around the nominal solution is
chosen as the economic objective function which is minimized to provide a tightened upper
bound for the accumulated real cost within the prediction horizon window. Thanks to the
combined use of the nominal system and homothetic tube, the designed optimization problem
is recursively feasible and less conservative economic performance bounds are achieved.
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Chapter 1

Introduction

1.1 Stabilizing MPC

The development of Model Predictive Control (MPC) or Receding Horizon Control (RHC)
can be traced back to the work of Kalman in the early 1960s when a linear quadratic regulator
(LQR) was designed to minimise an unconstrained quadratic cost function of states and
inputs. Although LQR control has powerful stabilising properties, it has some limitations
in real-world implementations such as the infinite horizon in the objective function, the
absence of constraints in the formulation and the ability to handling nonlinear property of the
real system. After many years of revolution, the applications of MPC, whose strengths are
the ability to handle constraints directly in its framework and satisfaction of some optimal
performance criteria by solving online optimization problems, become successfully popular
in industry [1].

In the MPC dynamic optimization problem, the future state trajectory of the system is
predicted using the process model, and based on this prediction, an accumulated cost which
is usually the deviation between the predicted values and the reference signals is minimized.
This optimization is solved online by taking into account the current conditions, process
operation and safety constraints. Then the first move of this optimal input sequence is injected
into the system, and based on the measurements and information about the process model
and the disturbances, the next state of the system is estimated. This estimate is used to call
the dynamic optimizer again and the feedback loop repeats.
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1.2 Economic MPC

In many practical applications, the main goal of designing advanced controllers is to operate
the system at its most profitable regime of operation, while guaranteeing stability [1]. Typ-
ically, in process industries, this objective is achieved based on a hierarchical architecture
which is composed of two optimization-based layers. The upper layer, usually referred
to as real-time optimization (RTO), is dedicated to computing the economically optimal
steady-state. Then, this optimal operation point is sent to the MPC layer that is used to
determine a control action aiming at stabilizing the closed-loop system to the desired set-
point as closely as possible. Although the system can be regulated to achieve the optimal
equilibrium, the hierarchical separation brings two main disadvantages. The first one is that
the objective of the MPC controllers is designed in the form of positive definite tracking
error without considering the economic costs incurred during transients. On the other hand,
model uncertainties and unknown disturbances can cause offset problems and unsuccessful
determination of the actual economically optimal equilibrium.

In recent years, however, an alternative approach, Economic MPC (EMPC), has looked into
the issue of directly addressing economic optimization in real-time, and to this end, adopts
cost functionals which are not required to be positive definite with respect to an equilibrium
point (refer to [2–11] and references therein on EMPC for deterministic systems). In spite of
this, the implementation mechanism of EMPC is the same as that of traditional MPC, that
is, both adopt the receding horizon approach to achieve the system’s closed-loop state (or
output) feedback control.

However, the closed-loop system of directly optimizing the economic performance shows
potentially complex behaviour because the cost is chosen as dictated by economics and may
take an arbitrary form. To analyse the closed-loop behaviour and economic performance of
Economic MPC controllers, various tools have been proposed [2–6, 12–15]. An EMPC con-
troller without terminal constraints [4, 6, 12] is presented and analyzed based on a turnpike
property and suitable controllability assumptions. Practical stability and approximate opti-
mality in the transient phase of this controller are analyzed. The benefits of omitting terminal
constraints are: (i) a simpler optimization problem and (ii) a larger feasible set. However,
recursive feasibility and asymptotic average performance bounds are not straightforward. In
particular, explicit controllability assumptions (asymptotic controllability concerning stage
cost ℓ [4], local and finite time controllability [7]) are required compared with a setting with
terminal constraints where such properties follow a posteriori within the feasible set. In the
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context of traditional MPC [16], three ingredients are elaborated for enforcement of recursive
feasibility and stability, consisting of terminal cost, terminal constraint and local controller,
respectively. In analogy, similar tools have been proposed for Economic MPC and have
allowed feasibility, stability and performance analysis of the closed-loop system. These
approaches require the introduction of strong duality or dissipativity assumptions to convert
the economic cost function to positive definite functions, in combination with the terminal
equality or inequality constraints so that recursive feasibility and closed-loop stability of the
economically optimal steady-state are established by using a rotated stage cost in an auxiliary
optimization problem [2, 3, 5].

Notice the crucial role that the turnpike property and dissipativity have in Economic MPC.
In particular, the relations between these two properties and the optimality of steady-state
operation have been discussed in several publications: the equivalence between dissipativity
and the turnpike property under suitable assumptions is elaborated in [17]. The sufficiency
of dissipativity for optimal steady-state operation is obtained in [3], and the necessity, under
a mild additional controllability assumption, is proved in [9].

Apart from the stabilization of the optimal feasible setpoint, a priori bounds on the closed-
loop economic performance are also remarkable features of EMPC. When considering
long time horizons, the infinite horizon averaged performance is a useful criterion. In the
work [5], EMPC algorithms with terminal constraints result in a closed-loop asymptotic
average performance which is no worse than the optimal steady-state cost, whereas, in the
framework without terminal constraints, In [4], the author shows that closed-loop averaged
cost approximates the optimal steady-state cost with an error term which vanishes as the
prediction horizon grows to infinity. Nevertheless, the infinite horizon averaged performance
does not necessarily enhance profitability during the transient phase. Hence, non-averaged
performance criteria have also been proposed, see references [12, 18] in the context of EMPC,
with and without terminal constraints, respectively.

Although dissipativity provides an elegant method to design EMPC controllers with terminal
constraints, alternative approaches have been proposed. A new generalized terminal con-
straint where the terminal state can be a free steady-state instead of the optimal steady-state
in the optimization process is studied [19]. The main advantage of this approach, compared
to a fixed terminal constraint, is that the feasible region is enlarged. Based on the generalized
terminal equality constraint, several update rules for the self-tuning terminal weight are
illustrated in [8]. Furthermore, the closed-loop asymptotic average performance bounds can
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be improved if the generalized terminal equality is relaxed by adopting regional constraints
as in [20].

In general, however, optimal regimes of operation (from an economic point of view) are
not limited to steady-state behaviours but may have complex nature, periodic operation and
even non-periodic optimal regimes could sometimes arise. The work [21] proposes two
economically oriented EMPC formulations, a periodic terminal equality constraint and an
infinite horizon method with discounting factor. To achieve lower computational burden
and larger feasibility region, EMPC using a multi-step scheme without terminal constraints
are analyzed and near optimal performance of the closed-loop system is established [22].
For time-varying discrete-time linear systems, in [23], an artificial periodic trajectory is
introduced which is considered as the optimization variable to minimize the average economic
cost without knowing the optimal periodic regime a priori. In addition, the authors of [10]
suggest three solutions of the resulting terminal cost functions under different assumptions
to induce convergence for the time-varying discrete-time closed-loop system. For the
continuous-time system, the time-varying dissipativity property implies the convergence
to the time-dependent steady-states [11]. Accordingly, the notions of dissipativity that
ensure practical asymptotic stability of the optimal periodic orbit are extended [24, 25].
For a further non-stationary mode of optimal operation that a system is optimally operated
in a certain subset of the state space, an economic MPC scheme with optimized terminal
equality constraint is proposed and a dissipativity condition with a parametric storage function
guarantees the convergence to the set of optimal operation [26].

In summary, the above discussion shows some existing literature on economic MPC methods
for different optimal regimes of operation. However, there is no literature on designing
EMPC controllers with time-invariant terminal regional constraints for discrete-time nonlinear
systems. Motivated by this issue, in this thesis, we develop a novel economic MPC controllers
and will discuss in details in Chapter 2.

1.3 Robust Economic MPC

While traditional EMPC approaches require exact knowledge of the plants’ dynamics, many
practical application scenarios are inherently affected by uncertainties. If disturbances
are affecting the real system, predicted states will be different from actual states and the
determined optimal control may even violate constraints and cause the optimization problem
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at the next time step to become infeasible. To deal with uncertainties, various approaches
have been proposed in the literature. In [13], a min-max EMPC approach for linear systems is
discussed which recasts the underlying optimization problem as a second-order cone program
to improve the computational efficiency of its solution. In [14, 27], the authors use the
concept of robust invariant set and adopt the standard tube-based MPC scheme to an EMPC
setting by averaging the economic cost function within the invariant tube, but only the bound
for expectation of the close-loop performance is evaluated instead of a robust guarantee.
Another stream of research, which explicitly considers the stochastic information of the
disturbance, includes chance-constrained stochastic EMPC [28] and multi-stage EMPC [29].

Tube-based EMPC formulates a state-feedback control policy of the form u = v + K (x - z ),
where v is the nominal control input, u is the applied input to the true plant, x and z are the
true and nominal states of the system. The feedback gain K is a pre-defined parameter and
used to compute the rigid tube which is a robust positively invariant set under the feedback
affine policy. In contrast to the tube-based tracking MPC, the economic framework employs
a modified economic stage cost on which the optimal equilibrium is defined in [14, 27].

Unless the full state information is directly available at every time instant, an observer should
be used to estimate the states. Besides, for constrained systems, a direct application of
the separation principle, which obtains the control inputs based on current estimates from
observers, such as high gain observer, Kalman filtering, or Moving Horizon Estimation
(MHE), is not possible as the estimation error may cause constraint violation and thus no
recursive feasibility is ensured. For instance, in the framework of tracking MPC, state
estimation and optimal control problems are usually formulated separately, as in [30, 31],
where a robust output feedback control policy is adopted. Moreover, when the estimation
problem is separated from the controller design, the resulting estimate is normally optimal
in the sense that it maximizes a criterion that captures the likelihood of the estimate for
the given measurements. Thus, this optimal state estimate may not be beneficial from the
economic point of view.

In [32–34], the approach proposed is to solve both the MPC and MHE problems simulta-
neously in a single min-max optimization problem under the assumption of existence of
a saddle-point without requiring recursive feasibility. The authors additionally derive that
existence of saddle-point equilibrium for a linear system with quadratic cost is satisfied if the
system is observable and weights in the cost function are appropriately chosen. To satisfy
recursive feasibility, output-feedback MPC scheme based on set-valued estimation from finite
past measurements is established and its complexity and conservatism are addressed [35].
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Furthermore, within the above-mentioned literature, the mathematical models used for
prediction are assumed to be able to match the true plant dynamics and system disturbances
are zero-mean and bounded. Therefore, under mild assumptions, the feedback control policy
obtained using economic MPC controllers can drive the actual or nominal system’s state
(respectively in a deterministic or robust setup) to the economically optimal equilibrium.
However, when there is an unknown constant disturbance entering the process or if a plant-
model error is present, the closed-loop system may converge to a suboptimal steady-state.
To overcome such difficulties, some authors propose approaches using multi-model linear
offset-free formulations [36, 37], by adopting a finite family of linear models describing the
behaviour of the plant in different operation points, where recursive feasibility, convergence to
the economic set-point and stability are ensured. Another remedy is to augment the system’s
state with offset-free disturbances and adopt an economic steady-state modifier-adaptation
strategy [38, 39], but the state estimation and optimal control problems are formulated
separately and use the current estimated state and disturbance in prediction, which may cause
constraint violation.

In summary, although the above discussed literature develop many economic MPC methods
to deal with uncertainties, there are still many open problems to address in the field of
robust economic MPC. These include (i) the development and convergence analysis of
suitable economic MPC schemes; (ii) a thorough investigation of robust bound for the closed-
loop asymptotic performance; (iii) development of optimization-based controller with pure
economic cost and desired closed-loop performance which integrates both state estimation
and controller synthesis problems. Chapter 3 - 5 will answer these questions and more details
in these chapters will be specified in the next section.

1.4 Outlines and contributions

In the following, we specify in more detail the contributions and the outline of this thesis.

Chapter 2

Chapter 2 designs EMPC controllers with time-invariant terminal constraints for discrete-time
nonlinear systems other than those which are optimally operated at steady-state. In particular,
the contribution of this chapter are: (i) propose a novel notion of “control storage function”
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(CSF) suitable as a terminal cost within a control invariant set regardless of the nature of the
underlying optimal regime of operation (ii) closed-loop performance and stability analysis
under an arbitrary optimal regime of operation (iii) construction of terminal penalty functions
for generalized optimal regime of operation (iv) relate the CSF to a periodic CSF and employ
it as the terminal cost function when the optimal regime of operation is periodic.

Chapter 3

Motivated by the approaches in [14, 27], which present an asymptotic average performance
bound and stability results for systems with optimal steady-state operation under some
additional constraints on the storage function that could restrict the feasibility region, Chapter
3 designs a robust EMPC controller which is able to achieve closed-loop asymptotic stability
for nonlinear systems with general optimal regimes of operation and a robust bound of the
long run average cost. In particular, the main contributions include: (i) it is in fact possible
to design a tube-based robust EMPC algorithm by constructing the optimization problem
using the initial nominal sequences and a weighting function on nominal initial state. There
is no need to have additional constraints based on the storage function limiting the selection
of the nominal initial state. (ii) Recursive feasibility and closed-loop asymptotic stability
hold not only for steady-state operation but also for optimal periodic operation, provided that
dissipativity with respect to nominal dynamics is fulfilled with a suitable supply rate. (iii)
The bound on asymptotic average performance, in the case of optimal periodic operation,
depends on whether the components of the optimal robust invariant set intersect.

Chapter 4

Chapter 4 shows several contributions in the design of robust economic MPC together with
state estimation using MHE: (i) a homothetic tube-based robust EMPC algorithm combined
with a MHE state observer is proposed and the resulting recursive feasibility is guaranteed; (ii)
closed-loop asymptotic stability holds both for optimal steady-state and periodic operation,
provided that dissipativity with respect to nominal dynamics is fulfilled with a suitable
supply rate; (iii) the use of the homothetic tube provides a less conservative robust economic
performance bound.
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Chapter 5

Chapter 5 proposes the formulation of an optimization based controller with pure economic
cost achieving offset-free for the optimal equilibrium, while ensuring recursive feasibility and
providing an asymptotic average performance evaluation. In particular, the main contributions
include: (i) the closed-loop operation using our proposed controller can achieve an offset-free
optimal steady-state; (ii) we can design a homothetic tube-based robust Economic MPC
algorithm integrated with moving horizon estimation state observer to guarantee recursive
feasibility; (iii) the use of the homothetic tube provides a less conservative robust economic
performance bound.

1.5 Publications

Conference papers

• Dong, Z. and Angeli, D., 2017. A generalized approach to economic model predictive
control with terminal penalty functions. IFAC-PapersOnLine, 50(1), pp.518-523.

• Dong, Z. and Angeli, D., 2018, December. Tube-Based Robust Economic Model
Predictive Control on Dissipative Systems with Generalized Optimal Regimes of
Operation. In 2018 IEEE Conference on Decision and Control (CDC) (pp. 4309-4314).
IEEE.

Journal papers

• Dong, Z. and Angeli, D., 2018. Analysis of economic model predictive control with
terminal penalty functions on generalized optimal regimes of operation. International
Journal of Robust and Nonlinear Control, 28(16), pp.4790-4815.

• Dong, Z. and Angeli, D. Homothetic tube-based robust Economic MPC with integrated
Moving Horizon Estimation. Submitted to IEEE Transactions on Automatic Control
(Under the second-round review)

• Dong, Z. and Angeli, D. Homothetic tube-based robust offset-free Economic Model
Predictive Control. (Prepared to submit)



Chapter 2

Economic MPC with generalized
optimal regimes of operation

This chapter is organized as follows. Problem formulations of the deterministic nonlinear
system are described in Section 2.1. Section 2.2 provides an estimate to some upper and
lower bounds for the system’s asymptotic average performance. The extension of EMPC
formulation to general optimal operation regimes by adopting these new concepts and the
resulting closed-loop analysis are addressed in Section 2.3.1-2.3.3. Section 2.3.4 elaborates
the design of control storage function and Section 2.3.5 discusses a special optimal regime of
operation which is periodic. In Section 2.3.6, the MATLAB toolbox SOSTOOLs is introduced
to approximate the storage function. Several examples and counterexamples illustrating
the features of the proposed tools are included in Section 2.4. Section 2.5 summarizes this
chapter.

The results presented in this chapter are based on [40, 41].

2.1 Problem setup

Throughout this chapter, we consider finite dimensional discrete-time nonlinear control
systems described by difference equations

xt+1 = f (xt , ut ) (2.1)
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with state xt ∈ X ⊂ Rn , input ut ∈ U ⊂ Rm , at time t ∈ I≥0, and a continuous state
transition map f : X× U → X. Together with system (2.1), let us consider a time-invariant,
nonlinear and continuous stage cost given as

ℓ(x , u) : Z → R (2.2)

where Z ⊆ X×U is a compact set capturing the pointwise-in-time state and input constraints
which our system is subject to:

(xt , ut ) ∈ Z, ∀t ∈ I≥0. (2.3)

Our goal is to enhance profitability by minimizing the economic costs incurred in the long
term system operation: ∑

t
ℓ(xt , ut ). (2.4)

To this end, we need to identify a viable subset of the state space and corresponding control
actions. As is well known, the notion of a control invariant set is crucial in this respect.

Definition 2.1. A control invariant set is any non-empty set X̄ ⊆ X, such that

∀x ∈ X̄, ∃u : f (x , u) ∈ X̄ and (x , u) ∈ Z. (2.5)

The non-empty and continuous set-valued map of all admissible control inputs which keeps
the system state inside X̄ is denoted as:

Ū(x ) := {u | (x , u) ∈ Z and f (x , u) ∈ X̄}. (2.6)

The set of state and corresponding admissible input pairs is given as:

Z̄ :=
⋃
x∈X̄

[{x} × Ū(x )]. (2.7)

Remark 2.1. We consider a closed control invariant set X̄ ⊆ X. Accordingly, constraints
(2.3) can be strengthened as follows:

(xt , ut ) ∈ Z̄, ∀t ∈ I≥0, (2.8)
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and viability is guaranteed whenever the system is initialized in X̄. Notice that investigating
state trajectories within a control invariant set is also a fundamental step in standard MPC
Lyapunov stability analysis.

For later use, it will also be convenient to define an additional control invariant set as in the
assumption below.

Assumption 2.1. There exists a closed control invariant set Xf ⊆ X̄.

The set of all admissible control input which keeps the system’s state inside Xf is defined for
all x ∈ Xf as:

Uf (x ) := {u ∈ Ū(x ) | f (x , u) ∈ Xf }. (2.9)

The set of state and corresponding admissible input pairs is given as:

Zf :=
⋃

x∈Xf

[{x} × Uf (x )]. (2.10)

2.2 Dissipativity and control storage functions

Design of Economic MPC control schemes is intimately related to the identification of the
“long run” optimal regime of operation of the system as in references [42–44]. In order to
have a grasp of the system long-run optimal average performance, three quantities ℓ∗av , ℓ and
ℓ̄ are explicitly defined below and will be discussed throughout this section.

Definition 2.2. Let x ∈ X̄ be a given initial state, then the best average asymptotic cost is
defined as:

ℓ∗av (x ) := inf
u(·)
x0 = x

xt+1 =f (xt , ut )

(xt ,ut ) ∈ Z̄

∀t ∈ I≥0

lim inf
T→+∞

∑T -1
t=0 ℓ(xt , ut )

T
. (2.11)

Moreover, we denote by ℓ∗av = inf
x∈X̄

ℓ∗av (x ).
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Notice that it is challenging to provide sufficient conditions for the infimums in the infinite
horizon optimal control problems to be obtained, and, in particular, to determine the properties
of ℓ∗av (·). Throughout this paper, we tentatively assume the infimums are attainable and
denote the limit set of the optimal solution, achieving ℓ∗av , as (xs,i , us,i ) such that xs,i+1 =
f (xs,i , us,i ) for all i ∈ I≥0 and f (·, ·) is as in (2.1). If this set is a singleton or has finite
number P ∈ I≥2 of elements, the system has optimal steady-state operation or optimal P
periodic operation. In any case, the optimality of the optimal solution implies

lim inf
T→+∞

∑T -1
t=0 ℓ(xt , ut )

T
≥ lim

T→+∞

∑T -1
i=0 ℓ(xs,i , us,i )

T
, (2.12)

for any feasible solution (x0:+∞, u0:+∞).
For convenience, the solution set is explicitly denoted as the closure of the countably infinite
set

Π := cl {(xs,0, us,0), (xs,1, us,1), ..., (xs,i , us,i ), ...}, (2.13)

and the projection of Π on X̄ is

ΠX̄ := cl {xs,0, xs,1, ..., xs,i , ...}, i ∈ I≥0, (2.14)

where xs,i is an element in the complete separable metric space ΠX̄.

Recall the notion of dissipativity as given in [3, Definition 4.1]

Definition 2.3. A discrete time system is dissipative with respect to a supply rate s : Z̄ → R
if there is a continuous storage function λ : X̄ → R such that:

λ(f (x , u)) - λ(x ) ≤ s(x , u) (2.15)

for all (x , u) ∈ Z̄. If, in addition, a positive definite function ρ : X̄ → R≥0 exists such that:

λ(f (x , u)) - λ(x ) ≤ -ρ(x ) + s(x , u), (2.16)

then the system is said to be strictly dissipative.

Alternatively, given the role of dissipativity in providing lower bounds to the best asymptotic
performance, one may consider the following quantity.



2.2 Dissipativity and control storage functions 13

Definition 2.4. The quantity ℓ (later referred to as the “tightest lower bound to the optimal
asymptotic cost”) is defined as follows:

ℓ := sup{ c |∃λ(·) : X̄ → R, continuous : λ(f (x , u)) ≤ λ(x ) + ℓ(x , u) - c, ∀(x , u) ∈ Z̄}.
(2.17)

Remark 2.2. The dissipativity property is used to estimate a lower bound on the asymptotic
average performance. This bound is independent of the storage function λ(·) and only
depends on the specific form of the supply rate. The same applies to Definition 2.6 below.

Note that the quantity ℓ is a finite real number whose upper bound will be proved in
Theorem 2.1. For the lower bound, by taking λ(·) = 0, ∀x ∈ X̄, we can have ℓ ≥
min(x ,u)∈Z̄ ℓ(x , u) > -∞ which is finite because the function ℓ is continuous and the
set Z is compact.

Next, along the lines of the widely adopted tool of Control Lyapunov Function (CLF) (see
definition [45]) and its role in stabilizability theory, we propose similar concepts referred to
as Control Storage Function (CSF) and controlled dissipativity.

Definition 2.5. Let Xf be a control invariant set as in Assumption 2.1. A control storage
function is a function Vf : Xf → R that is continuous and such that for all x ∈ Xf

min
u∈Uf (x )

Vf (f (x , u)) - s(x , u) ≤ Vf (x ), (2.18)

where s : Zf → R is the supply rate. Moreover, the system (2.1), admitting a control storage
function, is said to fulfill controlled dissipativity with respect to the supply rate s(x , u).

Remark 2.3. Notice that inequality (2.18) appears in [5, Assumption 6] in the form

Vf (f (x ,κf (x ))) + ℓ(x ,κf (x )) - ℓ(xs , us) ≤ Vf (x ), (2.19)

where κf : Xf → U is the terminal control policy. This can be seen as a special case of
(2.18), where s(x , u) = ℓ(xs , us) - ℓ(x , u) and κf (x ) can be chosen to be any selection in
argmin
u∈Uf (x )

Vf (f (x , u)) - s(x , u).

From this definition, we can see that the CLF is a special case of the CSF, in which s(x , u) is
any negative definite function of |x |. Since the CLF is frequently used to approximate the
tail of the infinite horizon cost of tracking MPC (see [46] for instance), our CSF is meant to
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be an appropriate choice of terminal cost in an economic setup. This will be discussed later
in Section 2.3.

In order to estimate upper bounds for the best asymptotic performance, the quantity below
can be specified,

Definition 2.6. The quantity ℓ̄ (later referred to as the “tightest upper bound to the long run
average performance”) is defined as:

ℓ̄ := inf{c |∃Vf : Xf → R : ∀x ∈ Xf , inf
u∈Uf (x )

Vf (f (x , u)) + ℓ(x , u) ≤ Vf (x ) + c}.

(2.20)

Remark 2.4. Note that ℓ̄ is a finite real number. Its lower bound will be proved in Theorem
2.1, and the upper bound can be seen by taking Vf (x ) = 0, ∀x ∈ Xf , which yields ℓ̄ ≤
maxx∈Xf ,u∈Uf (x ) ℓ(x , u) < +∞.

As mentioned in Remark 2.3, inequality (2.18) appears in [5] with s(x , u) = ℓ(xs , us)-ℓ(x , u)
and ℓ̄ is only allowed to be ℓ(xs , us). In particular, the formal definition of penalty function is
crucially linked with the identification of a candidate equilibrium control input pair (xs , us).
The existence of functions Vf (·) and κf (·) as in (2.19) ensures

inf
u∈Uf (x )

Vf (f (x , u)) + ℓ(x , u) ≤ Vf (f (x ,κf (x ))) + ℓ(x ,κf (x )) ≤ Vf (x ) + ℓ(xs , us),

which implies ℓ̄ ≤ ℓ(xs , us). Notice that strict inequality may, in general, occur (see Example
2.4.1).

Under the conditions that the terminal control policy κf (·) is chosen such that the optimal
steady-state xs ∈ Xf is exponentially stabilizable and the resulting stage cost ℓ(x ,κf (x )) is
Lipschitz continuous, the terminal penalty function Vf (·) exists and the inequality (2.19) is
an equality by designing the function as Vf (x ) =

∑∞
t=0

[
ℓ(xt ,κf (xt )) - ℓ(xs , us)

]
, where

x0 = x and xt+1 = f (xt ,κf (xt )).

Moreover, the above CSF inequality in Definition 2.5 follows the same form of the Hamilton-
Jacobi-Bellman (HJB) inequality [47], so any CSF can also be regarded as a solution of the
HJB inequality, which is a value function of an infinite horizon optimal control problem.

Remark 2.5. We emphasize that Definition 2.5 is given without reference to any underlying
regime of operation and it only depends on the specific form of the supply rate. Throughout
this paper, two different forms of supply rates are adopted, one is s(x , u) = ℓ(x , u) - ℓ for
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dissipativity and the other is s(x , u) = ℓ̄ - ℓ(x , u) for controlled dissipativity. Sometimes,
shifts of supply rate are also needed as we might not be able to find the tightest value.

We are now ready to state the main result of this section, that is the relation between
dissipativity, controlled dissipativity and optimal averaged performance.

Theorem 2.1. Consider system (2.1) subject to constraints (2.8). Then, the following
inequality holds:

ℓ ≤ ℓ∗av (x ), ∀x ∈ X̄. (2.21)

In addition, if Assumption 2.1 is fulfilled, we have the following upper bound for ℓ∗av (x ):

ℓ∗av (x ) ≤ ℓ̄, ∀x ∈ Xf . (2.22)

Proof. i) We first prove inequality ℓ ≤ ℓ∗av (x ), ∀x ∈ X̄.
By assumption, let system (2.1) be, for all ϵ > 0, dissipative with supply rate s(x , u) =
ℓ(x , u) - ℓa where ℓa = ℓ - ϵ. Then, there exists a continuous storage function λϵ such that
for all (x , u) ∈ Z̄

λϵ(f (x , u)) ≤ λϵ(x ) + ℓ(x , u) - ℓa .

Next, for any time T , and any given feasible solution, it holds

T -1∑
t=0

λϵ(xt+1) - λϵ(xt ) ≤
T -1∑
t=0

(ℓ(xt , ut ) - ℓa).

By applying liminf on both sides, we obtain

lim inf
T→+∞

λϵ(xt ) - λϵ(x0)
T

≤ lim inf
T→+∞

∑T -1
t=0 ℓ(xt , ut )

T
- ℓa .

Moreover, exploiting boundedness of solutions, we see that

lim inf
T→+∞

λϵ(xt ) - λϵ(x0)
T

= 0,

and therefore,

ℓa ≤ lim inf
T→+∞

∑T -1
t=0 ℓ(xt , ut )

T
.

Then, taking infimums with respect to u for any fixed x0 = x ∈ X̄, we can see that

ℓa ≤ ℓ∗av (x ).
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Since ϵ > 0 was taken arbitrary to start with,

ℓ ≤ ℓ∗av (x ).

ii) Next, we prove the inequality ℓ∗av (x ) ≤ ℓ̄,∀x ∈ Xf .
Assume system (2.1) admits CSFs with supply rate s(x , u) = ℓb - ℓ(x , u) where ℓb = ℓ̄ + ϵ

for all ϵ > 0. The corresponding inequality is:

inf
u∈Uf (x )

V ϵ
f (f (x , u)) + ℓ(x , u) ≤ V ϵ

f (x ) + ℓb , ∀x ∈ Xf .

Next, let us consider any state trajectory starting from arbitrary initial state x0 = x ∈ Xf
with corresponding control input sequence defined as:

ut ∈ argmin
u∈Uf (xt )

V ϵ
f (f (xt , u)) + ℓ(xt , u),

xt+1 = f (xt , ut ), t ∈ I≥0.

The state-input pair at any time instant is denoted as (xt , ut ) ∈ Xf ×Uf (xt ),∀t ∈ I≥0; then,
it holds

T -1∑
t=0

V ϵ
f (xt+1) - V ϵ

f (xt ) ≤
T -1∑
t=0

(ℓb - ℓ(xt , ut )).

Dividing by T and applying limsup on both sides, we see that

lim sup
T→+∞

V ϵ
f (xt ) - V ϵ

f (x0)

T
≤ ℓb - lim inf

T→+∞

∑T -1
t=0 ℓ(xt , ut )

T
,

and exploiting boundedness of solutions,

lim inf
T→+∞

∑T -1
t=0 ℓ(xt , ut )

T
≤ ℓb .

Then, by definition of ℓ∗av (x ), it holds

ℓ∗av (x ) ≤ lim inf
T→+∞

∑T -1
t=0 ℓ(xt , ut )

T
≤ ℓb ,

and, since ϵ > 0 was taken arbitrary to start with,

ℓ∗av (x ) ≤ ℓ̄.
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Remark 2.6. If a system is optimally operated at an equilibrium point xs with corresponding
input us , then ℓ∗av = ℓ(xs , us) and one may consider s(x , u) = ℓ(x , u) - ℓ(xs , us). This
supply rate and associated storage function are used [3] as a sufficient condition to prove
Lyapunov stability of the equilibrium point. In addition, the closed-loop asymptotic average
performance is bounded by ℓ(xs , us) from above as shown by [3, Theorem 18].

If a system is controllable within finite time to the best optimal operation, every initial
condition gives the same best asymptotic average performance, that is ℓ∗av (x ) = ℓ∗av , ∀x ∈ X̄.
However, if this is not the case, the strict inequality ℓ∗av (x ) > ℓ∗av may hold. This gap arising
from uncontrollable systems will be illustrated in the Example 2.4.2.

2.3 Economic MPC algorithm and analysis

This section is dedicated to the formulation of EMPC with generalized terminal penalty
functions and the analysis of asymptotic average performance and stability of its associated
closed-loop system. To this end, we start by introducing the basic setup in EMPC.

2.3.1 Economic MPC formulation

Now, we consider the EMPC problem for a given finite prediction horizon N ∈ I≥1. The
open loop EMPC problem at time instant t ∈ I≥0 can be formulated as

VN (xt ) = min
xt+N |t ,ut+N -1|t

JN (xt+N |t , ut+N -1|t ) (2.23)

s .t . xk+1|t = f (xk |t , uk |t ), xt |t = xt (2.23a)

(xk |t , uk |t ) ∈ Z, ∀k ∈ I[t ,t+N -1] (2.23b)

xt+N |t ∈ Xf (2.23c)

where JN (xt :t+N |t , ut :t+N -1|t ) :=
∑t+N -1

k=t ℓ(xk |t , uk |t ) + Vf (xt+N |t ) is the economic
objective function, and Vf (·) is the terminal penalty function and a CSF according to
Definition 2.5 with respect to the supply function

s(x , u) = ℓ̄ - ℓ(x , u).
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The decision variables in this optimization problem are

ut :t+N -1|t := (ut |t , ut+1|t , · · · , ut+N -1|t ), xt :t+N |t := (xt |t , xt+1|t , · · · , xt+N |t ),

which are the input and state sequences over the prediction horizon N . For the ease of
feasibility analysis, we may use Z̄ instead of Z, and it will not affect the EMPC controller
with the original Z. Then, the admissible set ZN ⊆ Z̄ for (x , u0:N -1) pairs is

ZN := {(x , u0:N -1) |∃x1, · · · , xN : xt+1 = f (xt , ut ), x0 = x ,

xN ∈ Xf , (xt , ut ) ∈ Z̄, ∀t ∈ I[0,N -1]},
(2.24)

and the projection of ZN onto X̄ is

XN := {x ∈ X̄ |∃ u0:N -1 such that (x , u0:N -1) ∈ ZN }. (2.25)

Notice that the terminal set fulfills Xf ⊆ XN ⊆ X̄, the set XN is non-empty and hence the
optimization problem PN (x ) has at least one feasible solution for any x ∈ Xf .

As customary in MPC, the optimal input from EMPC controller (2.23) is denoted as:

u∗t :t+N -1|t := (u∗t |t , u
∗
t+1|t , · · · , u∗t+N -1|t ), (2.26)

with the corresponding state trajectory:

x∗t :t+N |t := (x∗t |t , x
∗
t+1|t , · · · , x∗t+N -1|t , x

∗
t+N |t ), (2.27)

and the optimal value function

VN (xt ) := JN (x∗t :t+N |t , u
∗
t :t+N -1|t ). (2.28)

Since only the first element of the optimal control sequence (2.26), which is

κN (xt ) := u∗t |t , (2.29)

will be implemented into the system, the closed-loop system dynamic by using EMPC
controller is

x+ = f (x ,κN (x )). (2.30)
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Notice that u∗t |t might be non-unique, in which case, we take any element that achieves the
optimum.

2.3.2 Performance analysis

In order to address the asymptotic average performance of the closed-loop system (2.30), it
is useful to have an explicit notation for the terminal control policy.

Definition 2.7. The terminal control policy is defined as any function κf : Xf → U fulfilling:

κf (x ) ∈ argmin
u∈Uf (x )

Vf (f (x , u)) + ℓ(x , u). (2.31)

One of the main concerns of EMPC problem is the closed-loop performance which is
analyzed as below:

Proposition 2.1. The asymptotic average performance of system (2.30) is no worse than ℓ̄.

Proof. At any time instant t ∈ I≥0, let xt ∈ XN , a sub-optimal control input sequence and
resulting state trajectory in next time instance is

usub
t+1:t+N |t+1 = (u∗t+1|t , u

∗
t+2|t , · · · , u∗t+N -1|t ,κf (x

∗
t+N |t ))

x sub
t+1:t+N+1|t+1 = (x∗t+1|t , x

∗
t+2|t , · · · , x∗t+N -1|t , x

∗
t+N |t , xt+N+1|t ),

(2.32)

where xt+N+1|t = f (x∗t+N |t ,κf (x∗t+N |t ).

Therefore, the optimal cost-to-go functions fulfill

VN (xt+1) ≤ JN (x sub
t+1:t+N+1|t+1, u

sub
t+1:t+N |t+1),

which is

VN (xt+1) ≤VN (xt ) + Vf (xt+N+1|t ) + ℓ(x∗t+N |t ,κf (x
∗
t+N |t ))

- ℓ(xt ,κN (xt )) - Vf (x
∗
t+N |t )

≤VN (xt ) - ℓ(xt ,κN (xt )) + ℓ̄.
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Then, for any time T , we have,

T -1∑
t=0

VN (xt+1) - VN (xt ) ≤
T -1∑
t=0

(ℓ̄ - ℓ(xt ,κN (xt ))).

By applying liminf on both sides and exploiting boundedness of solutions, we finally obtain
the asymptotic average cost using proposed economic MPC controller satisfies

lim sup
T→+∞

∑T -1
t=0 ℓ(xt ,κN (xt ))

T
≤ ℓ̄.

which proves the claim.

2.3.3 Stability analysis

This sub-section explores the asymptotic stability of the closed-loop system under EMPC
control actions. In this context, we only consider the no gap case, viz:

Assumption 2.2. There is no gap between the tightest upper and lower bounds of ℓ∗av :

ℓ = ℓ∗av = ℓ∗av (x ) = ℓ̄, ∀x ∈ X̄. (2.33)

Remark 2.7. This assumption entails that, although ℓ and ℓ̄ are defined without any a priori
reference to a specific optimal regime of operation, the optimal average performance has been
exactly computed both by means of dissipativity and controlled dissipativity inequalities.

Notice that the duality relation between ℓ and ℓ∗av for continuous time systems has been
studied in [43]. For discrete time systems, the authors of [44] have proved ℓ = ℓ∗av using the
concept of occupational measure.

Before the analysis of closed-loop stability, it is necessary to define strict dissipativity with
respect to a set of points

Definition 2.8. A discrete time system is strictly dissipative at a set S ∈ X̄ if there is a
continuous storage function λ : X̄ → R such that:

λ(f (x , u)) - λ(x ) ≤ s(x , u) + ρ(|x |S) (2.34)
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for all (x , u) ∈ Z̄, where s(x , u) is the supply rate and ρ(|x |S) is a positive definite function
with respect to the set S. 1

As pioneered in [48] and dictated in [5], we introduce the notion of rotated stage cost and
terminal cost as defined below:

L(x , u) := ℓ(x , u) + λ(x ) - λ(f (x , u)) - ℓ∗av , (2.35)

V̄f (x ) := Vf (x ) + λ(x ), ∀x ∈ Xf . (2.36)

Then, the new optimization problem is

V̄N (xt ) = min
xt :t+N |t ,ut :t+N -1|t

J̄N (xt :t+N |t , ut :t+N -1|t ) (2.37)

s .t . xk+1|t = f (xk |t , uk |t ), xt |t = xt (2.37a)

(xk |t , uk |t ) ∈ Z, ∀k ∈ I[t ,t+N -1] (2.37b)

xt+N |t ∈ Xf (2.37c)

where J̄N (xt :t+N |t , ut :t+N -1|t ) :=
∑t+N -1

k=t L(xk |t , uk |t ) + V̄f (xt+N |t ) is the rotated total
economic cost,

ut :t+N -1|t := (ut |t , ut+1|t , · · · , ut+N -1|t ), xt :t+N |t := (xt |t , xt+1|t , · · · , xt+N |t )

are the input and corresponding state sequences.

With the notion of rotated stage cost and terminal cost functions, let us define two sets:

Π̂X̄ := argmin
x∈Xf

V̄f (x ), Π̃X̄ := {x | min
u∈Ū(x )

L(x , u) = 0}. (2.38)

Remark 2.8. Without loss of generality, shifting V̄f (·) by some constant real number, we
may assume V̄f (x ) = 0 for all x ∈ Π̂X̄ and V̄f (x ) > 0 for all x ∈ Xf \ Π̂X̄.

Assumption 2.3. We assume there exists a continuous storage function λ(·) such that the
system (2.1) is strictly dissipative at Π̃X̄ with supply rate s(x , u) = ℓ(x , u) - ℓ∗av , and a
control storage function Vf (·) for which inequalities (2.18) is achieved with supply rate
s(x , u) = ℓ∗av - ℓ(x , u).

1A continuous function ρ(·) : R → R is positive definite with respect to a set S if ρ(|x |S) =
0 for all x such that |x |S = 0, and ρ(|x |S) > 0 otherwise.
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The use of rotated stage costs in the stability analysis of EMPC starts from a powerful analogy
to the case of tracking MPC. In fact, under Assumption 2.3, the rotated stage cost L(x , u) is
positive definite with respect to Π̃X̄. Together with the compactness of the set Z, it implies
the function L(x , u) is bounded from below by a class K function α1(·) of the distance to
Π̃X̄:

L(x , u) ≥ α1(|x |
Π̃X̄

) ≥ 0,∀(x , u) ∈ Z̄. (2.39)

Therefore, a rotated stage cost is at least non-negative definite. Moreover, the solution to
an optimization problem is unaffected by “rotation”, as defined in the following Lemma.
Similarly, the rotated terminal functions fulfill (2.40).

Lemma 2.1. [5, Lemma 14] For every function λ(·) and constant ℓ∗av ∈ R, the set of
solutions of optimization problem (2.23) is identical to the set of solutions to problem (2.37).

Lemma 2.2. [5, Lemma 9] If Assumption 2.3 holds, then for all x ∈ Xf and the terminal
control κf (x ) in (2.31), the CSF inequality in (2.18) with s(x , u) = ℓ∗av - ℓ(x , u) holds if and
only if the following inequality is satisfied

V̄f (f (x ,κf (x ))) - V̄f (x ) ≤ -L(x ,κf (x )). (2.40)

Lemma 2.3. In addition to Lemma 2.2, under Assumption 2.3, the following inequalities are
satisfied:

α1(|x |
Π̃X̄

) ≤ min
u∈Ū(x )

L(x , u) ≤ V̄N (x ),∀x ∈ X̄ and V̄N (x ) ≤ V̄f (x ), ∀x ∈ Xf . (2.41)

Proof. Consider the compound inequality, the first half is trivially satisfied given (2.39), and
the other side is true given the formulation in (2.37) and the non-negativity of functions L(·, ·)
and V̄f (·) as in Remark 2.8,

V̄N (x ) = L(x ,κN (x )) +
N -1∑
k=1

L(x∗k , u∗k ) + V̄f (x
∗
N ) ≥ L(x ,κN (x )) ≥ min

u∈Ū(x )
L(x , u).

Now, let us show the inequality V̄N (x ) ≤ V̄f (x ), ∀x ∈ Xf . Based on Lemma 2.2, it holds

L(x ,κf (x )) + V̄f (f (x ,κf (x ))) ≤ V̄f (x ),

which means
V̄1(x ) ≤ L(x ,κf (x )) + V̄f (f (x ,κf (x ))) ≤ V̄f (x ).



2.3 Economic MPC algorithm and analysis 23

By induction, for any N ∈ I≥2, we have

V̄N (x ) ≤ L(x ,κf (x )) + V̄N -1(f (x ,κf (x ))) ≤ L(x ,κf (x )) + V̄f (f (x ,κf (x ))) ≤ V̄f (x ).

Therefore, we proved the last inequality in (2.41).

Lemma 2.4. Let Assumption 2.3 hold, the sets Π̂X̄ and Π̃X̄ in (2.38) fulfill the following
relation:

Π̂X̄ ⊆ Π̃X̄. (2.42)

Proof. The definition of Π̂X̄ implies V̄f (x ) = 0 for all x ∈ Π̂X̄. Together with (2.41), it can
be seen that, for all x ∈ Π̂X̄ ⊆ Xf , 0 ≤ minu∈Ū(x ) L(x , u) ≤ V̄f (x ) = 0. Thus, x ∈ Π̃X̄
and Π̂X̄ ⊆ Π̃X̄.

Lemma 2.5. The set Π̂X̄ is positively invariant with respect to system x+ = f (x ,κf (x )).

Proof. From Assumption 2.3, taken any x ∈ Π̂X̄ and selecting control u = κf (x ) as in
(2.31),

V̄f (f (x ,κf (x ))) = λ(f (x ,κf (x ))) + Vf (f (x ,κf (x )))

≤ λ(x ) + ℓ(x ,κf (x )) - ℓ∗av + Vf (f (x ,κf (x )))

≤ λ(x ) + Vf (x ) = V̄f (x ) = 0.

Meanwhile, V̄f (f (x ,κf (x ))) is non-negative from (2.41), hence V̄f (f (x ,κf (x ))) = 0 and
f (x ,κf (x )) ∈ Π̂X̄. Then, Π̂X̄ is shown to be positively invariant as x was taken arbitrary in
Π̂X̄.

While the two sets Π̃X̄ and Π̂X̄ are always nested as in (2.4) for some stability results to hold,
the following stronger assumption is needed,

Assumption 2.4. The sets ΠX̄, Π̃X̄ and Π̂X̄ fulfill

ΠX̄ = Π̃X̄ = Π̂X̄. (2.43)

where ΠX̄ is the best regime of operation defined in (2.14).

Remark 2.9. The relation between sets ΠX̄ and Π̃X̄ will be further discussed in Section
2.3.4. In case of steady-states and periodic orbits, it is easy to find suitable storage function
λ(·) and terminal penalty function Vf (·) in order to verify Π̃X̄ = Π̂X̄ = ΠX̄. In Example
2.4.3, even if the optimal regime is non-periodic, Π̃X̄, Π̂X̄ and ΠX̄ are still the same, which
is the unit circle.
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To the end, we recall the definition of asymptotic stability of a set [49], and then state our
main result on asymptotic stability of closed-loop Economic Model Predictive Control with
generalized terminal penalty function.

Definition 2.9. Let D0 be a compact positively invariant set for a nonlinear dynamic system.
D0 is Lyapunov stable if, for all ϵ > 0, there exists δ = δ(ϵ) > 0 such that if |x0|D0 < δ, then
the state, at any time t ∈ I≥0, fulfills |ϕ(t , x0)|D0 < ϵ, where ϕ(t , x0) is the system state at
time t with initial condition x0. D0 is attractive if there exists an open neighborhood O of
D0 such that the ω-limit set ω(x0) ⊆ D0 for all x0 ∈ O. D0 is asymptotically stable if it is
Lyapunov stable and attractive.

Theorem 2.2. Let Assumptions 2.1, 2.2, 2.3 and 2.4 hold, the set ΠX̄ by using control policy
(2.29), is asymptotically stable within a region of attraction XN .

Proof. A candidate Lyapunov function is the optimal value function

V̄N (xt ) = J̄N (x∗t :t+N |t , u
∗
t :t+N -1|t ),

where u∗t :t+N -1|t and x∗t :t+N |t are the optimal control and corresponding state sequences in
(2.26) and (2.27).

Suppose a terminal region constraint enforces x∗t+N |t ∈ Xf , a suboptimal input and state
sequences as in (2.32) guarantees xt+N+1|t ∈ Xf . Then, the cost of this sub-optimal
sequence is given as:

J̄N (x sub
t+1:t+N+1|t , u

sub
t+1:t+N |t+1)

=
N -1∑
k=1

L(x∗k |t , u
∗
k |t ) + L(x∗t+N |t ,κf (x

∗
t+N |t )) + V̄f (xt+N+1|t )

=V̄N (xt ) - L(xt ,κN (xt )) - V̄f (x
∗
t+N |t ) + L(x∗t+N |t ,κf (x

∗
t+N |t )) + V̄f (xt+N+1|t )

≤V̄N (xt ) - L(xt ,κN (xt )) (from (2.40)).

Because of V̄N (xt+1) ≤ J̄N (x sub
t+1:t+N+1|t , u

sub
t+1:t+N |t+1), it yields

V̄N (xt+1) - V̄N (xt ) ≤ -L(xt ,κN (xt )) ≤ -α1(|xt |Π̃X̄
) (from (2.39)),

which shows the attractivity of Π̃X̄.
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Notice that the function V̄N (x ) is lower bounded by α1(|x |Π̃X̄
) as in (2.41). We need to

provide an upper bound for this function. By definition, V̄f (x ) = 0, ∀x ∈ Π̂X̄ and V̄f (·)
is continuous due to continuity of the storage function λ(·) and the penalty function Vf (·).
Hence, there exists α̃2(·) ∈ K such that V̄f (x ) ≤ α̃2(|x |

Π̂X̄
). Then, by (2.41), we obtain

V̄N (x ) ≤ α̃2(|x |
Π̂X̄

),∀x ∈ Xf , which further yields V̄N (x ) ≤ α2(|x |
Π̂X̄

), ∀x ∈ XN [45,

Propositions 2.17 & 2.18], where α2(·) is some class K function. Therefore, the following
inequalities hold

α1(|x |
Π̃X̄

) ≤ V̄N (x ) ≤ α2(|x |
Π̂X̄

),∀x ∈ XN .

With Assumption 2.4, which is Π̂X̄ = Π̃X̄ = ΠX̄, we finally obtain

α1(|x |ΠX̄
) ≤ V̄N (x ) ≤ α2(|x |ΠX̄

)

V̄N (f (x ,κN (x ))) - V̄N (x ) ≤ -α1(|x |ΠX̄
)

for all x ∈ XN which implies the closed-loop system is Lyapunov stable, and any trajectory
that starts in XN satisfies

∣∣ϕκN (t , x0)
∣∣
ΠX̄

≤ β(|x0|ΠX̄
, t),∀t ≥ 0 for some class KL function

β(·, ·). Therefore, the set ΠX̄ is asymptotically stable with a region of attraction XN .

Remark 2.10. The asymptotic stability of the general optimal regimes of operation in this
subsection and the averaged performance of closed-loop system in previous subsection are
not necessarily assuming any relation between terminal region and the optimal regimes.
However, the next section which provides a candidate of terminal cost function is based on
the condition that terminal states are restricted by the optimal operation regime.

2.3.4 Design of terminal control storage functions

Designing suitable terminal penalty functions is, in general, a non-trivial task. In particular
one would normally hope to find a terminal region Xf that strictly includes the support of the
optimal regime of operation ΠX̄. This is desirable, among other things, to increase the set of
feasible initial states XN , as well as possibly avoiding terminal equality constraints. Before
showing the main result in this subsection, we define the limit occupational measure, also
called sojourn time, of a set S generated by the process as

γ(S ) = lim inf
T→+∞

∑T -1
t=0 χS (xt , ut )

T
(2.44)
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where χS (·) is the indicator function of S

χS (x , u) :=

1 (x , u) ∈ S

0 otherwise.
(2.45)

Assumption 2.5. The limit occupational measure γ(·) generated by (xs,i , us,i ), has sup-
port Π, i.e., ∀(x , u) ∈ Π and ∀ϵ > 0 it holds γ(Bϵ(x , u)) > 0, where Bϵ(x , u) :=
{(x̃ , ũ) | |(x̃ , ũ)|(x ,u) < ϵ}.

Remark 2.11. This assumption is trivially fulfilled for steady-state or periodic optimal
regimes of operation. It also holds in Example 2.4.3 and can be straightforwardly verified.
However, in general, this might be difficult to verify as one might need explicit knowledge of
the optimal solution.

Assumption 2.6. There exists a continuous storage function λ(·) such that dissipativity holds
on X̄ with supply rate ℓ(x , u) - ℓ∗av as follows:

λ(f (x , u)) - λ(x ) ≤ ℓ(x , u) - ℓ∗av . (2.46)

Lemma 2.6. If Assumption 2.5 and 2.6 hold, then for any (x , u) ∈ Π, the following equality
is fulfilled:

λ(f (x , u)) - λ(x ) = ℓ(x , u) - ℓ∗av . (2.47)

Proof. Suppose Assumption 2.6 holds, viz.

λ(f (x , u)) - λ(x ) ≤ ℓ(x , u) - ℓ∗av , ∀(x , u) ∈ Π.

The rotated stage cost function L(x , u)

L(x , u) = ℓ(x , u) + λ(x ) - λ(f (x , u)) - ℓ∗av ≥ 0.

Because of the continuity of f (·, ·), ℓ(·, ·) and λ(·), L(x , u) is also continuous.
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Next, we consider the asymptotic average value of the function L(x , u) along the optimal
trajectory in ΠX̄,

lim inf
T→+∞

∑T -1
i=0 L(xs,i , us,i )

T

= lim inf
T→+∞

∑T -1
i=0 ℓ(xs,i , us,i )

T
- ℓ∗av + lim

T→+∞

∑T -1
i=0(λ(xs,i ) - λ(xs,i+1))

T

= lim
T→+∞

∑T -1
i=0(λ(xs,i ) - λ(xs,i+1))

T

= lim
T→+∞

λ(xs,0) - λ(xs,T )
T

= 0.

(2.48)

Notice that this equality is not sufficient to indicate L(xs,i , us,i ) ≡ 0. One can use Assump-
tion 2.5 to prove this result by contradiction.

Assume there exist (x̄ , ū) ∈ Π and ϵ̄ > 0 such that L(x̄ , ū) > 0 and L(x , u) ≥ L(x̄ ,ū)
2 for all

(x , u) ∈ Bϵ̄(x̄ , ū). Considering the asymptotic average value of L(xs,i , us,i ) again,

lim inf
T→+∞

∑T -1
i=0 L(xs,i , us,i )

T
≥ lim inf

T→+∞

∑T -1
t=0 L(xs,i , us,i )χBϵ̄(x̄ ,ū)(xs,i , us,i )

T

≥ lim inf
T→+∞

∑T -1
t=0

L(x̄ ,ū)
2 χBϵ̄(x̄ ,ū)(xs,i , us,i )

T

=
L(x̄ , ū)

2
lim inf
T→+∞

∑T -1
t=0 χBϵ̄(x̄ ,ū)(xs,i , us,i )

T

=
L(x̄ , ū)

2
γ(Bϵ̄(x̄ , ū)) > 0.

The last inequality holds due to Assumption 2.5, and contradicts (2.48) previously established.
Therefore, L(x , u) = 0,∀(x , u) ∈ Π and this in turn implies the equality (2.47).

From Lemma 2.6, it can be seen that the rotated stage cost L(x , u) = 0, ∀(x , u) ∈ Π, which
in turn implies:

Corollary 2.1. Under Assumption 2.5 and 2.6, the two sets ΠX̄ and Π̃X̄ fulfill the following
relation:

ΠX̄ ⊆ Π̃X̄. (2.49)
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Assumption 2.7. The terminal region Xf , the optimal regime of operation ΠX̄ and the set
Π̃X̄ fulfill

Π̃X̄ = ΠX̄ ⊆ Xf ⊆ X̄. (2.50)

Remark 2.12. This assumption indicates the dissipation inequality (2.46) is strict on X̄ \ΠX̄.
Moreover, the terminal region must be designed large enough to include states of the optimal
regime of operation.

Proposition 2.2. Let Assumptions 2.5, 2.6 and 2.7 hold, then, we can select the terminal
control storage function as

Vf (x ) = -λ(x ), ∀x ∈ Xf . (2.51)

Then, the resulting EMPC problem is

VN (xt ) = min
ut :t+N -1|t

t+N -1∑
k=t

ℓ(xk |t , uk |t ) - λ(xt+N |t ) (2.52)

s .t . xk+1|t = f (xk |t , uk |t ), xt |t = xt (2.52a)

(xk |t , uk |t ) ∈ Z, ∀k ∈ I[t ,t+N -1] (2.52b)

xt+N |t ∈ ΠX̄. (2.52c)

Proof. By selecting the terminal penalty function as (2.51), the rotated terminal cost function
fulfills V̄f (x ) = Vf (x ) + λ(x ) = 0,∀x ∈ Xf , and hence Xf ⊆ Π̂X̄ from the definition
of Π̂X̄. Together with Lemma 2.4, it implies Π̃X̄ = Π̂X̄ = ΠX̄ = Xf which means the
terminal region Xf coincides with the support of the optimal trajectory. For any optimal
state-input pair (xs,i , us,i ) ∈ Π, ∀i ∈ I≥0, given the supply rate of the CSF in form of
s(x , u) = ℓ∗av - ℓ(x , u), the CSF inequality follows from the equality:

(-λ(xs,i+1)) - (-λ(xs,i )) = ℓ∗av - ℓ(xs,i , us,i ). (2.53)

Therefore, function -λ(x ) is a suitable candidate of terminal penalty function and the EMPC
problem is shown as (2.52).

2.3.5 Periodic optimal regimes of operation

This section introduces suitable terminal ingredients to specialize the stability analysis of
EMPC to the case of systems with a periodic optimal regime of operation.
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Denote the optimal period-P solution and associated control of the optimal control problem
(2.52) as ΠP := {(xs,i , us,i ), i ∈ I[0,P -1]} for some P ∈ I≥1. For convenience, we denote
the projection of ΠP on X̄ as ΠP

X̄ , and we simply consider i ∈ I[0,P -1] and use i + j to
represent (i + j ) mod P , ∀j ∈ I.

The system cost over a time period P achieves its minimum at ΠP , viz.

P -1∑
i=0

ℓ(xs,i , us,i ) ≤
P -1∑
i=0

ℓ(xi , ui ),

s .t . xi+1 = f (xi , ui )

(xi , ui ) ∈ Z, i ∈ I[0,P -1].

(2.54)

For every state xs,i ∈ ΠP
X̄ , three important terminal ingredients, as discussed on optimal

steady-state operation, [5] are adopted. A terminal region, containing xs,i , is denoted by Xi
f ,

with the corresponding terminal control policy and penalty functions denoted by κi
f (x ) and

V i
f (x ), respectively.

Let us first make an assumption on the relation between Xi
f and κi

f (x ):

Assumption 2.8. There exists a family of compact sets Xi
f , i ∈ I[0,P -1], each containing

xs,i , such that for all x ∈ Xi
f , the solutions of xt+1 = f (xt ,κi+t

f (xt )) converge exponentially

to ΠP
X̄ .

Accordingly, the feedback law κi
f (x ) which drives any state x ∈ Xi

f to Xi+1
f takes values in:

Ui
f (x ) := {u ∈ Ū(x ) | f (x , u) ∈ Xi+1

f }. (2.55)

Then, the i th set of feasible state-input pairs is given as:

Zi
f :=

⋃
x∈Xi

f

[{x} × Ui
f (x )], (2.56)

and we let
Xf =

⋃
i
Xi

f , Uf (x ) =
⋃
i
Ui

f (x ). (2.57)

With regards to the terminal penalty functions V i
f (x ) for period-P optimal operation, the

concept of CSF in Definition 2.5 is adapted to give us a P -CSF as follows:
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Definition 2.10. A P -CSF is a family of continuous functions V i
f : Xi

f → R, i ∈ I[0,P -1]
and the following inequalities hold

min
u∈Ui

f (x )
V i+1

f (f (x , u)) - s(x , u) ≤ V i
f (x ), ∀x ∈ Xi

f , (2.58)

where s :
⋃

i∈I[0,P-1]
Zi

f → R is the supply rate.

Notice that V i
f (x ) is the i th component of a P -CSF defined for all x ∈ Xi

f . Then, for any
point x ∈ Xf a single terminal penalty function can be defined as:

Vf (x ) := min
i

V i
f (x ). (2.59)

Lemma 2.7. The minimum of a P -CSF as in (2.58) and (2.59) is a suitable CSF.

Proof. Denote the P -CSF by {V o
f ,V 1

f , · · · ,V P -1
f }, and let x ∈ Xf be arbitrary. Then for

any i∗ ∈ argmin
i

V i
f (x ), ∀x ∈ Xi∗

f , the following inequality is satisfied,

V i∗+1
f (f (x ,κi∗

f (x ))) ≤ V i∗
f (x ) + s(x ,κi∗

f (x ))

hence, from (2.59) and the above inequality,

Vf (f (x ,κi∗
f (x ))) ≤ V i∗+1

f (f (x ,κi∗
f (x )))

≤ V i∗
f (x ) + s(x ,κi∗

f (x ))

= Vf (x ) + s(x ,κi∗
f (x )).

Therefore, there exists an admissible control policy κi∗
f (x ) ∈ Ui∗

f (x ) ⊆ Uf (x ) such that

inf
u∈Ui∗

f (x )⊆Uf (x )
Vf (f (x , u)) - s(x , u) ≤ Vf (x ),

and Vf (x ) defined in (2.59) is a CSF.

Let us recall the definition of orbital stability:

Definition 2.11. [49, Definition 4.12] A periodic orbit O is orbital stable if for all ϵ > 0,
there exists δ = δ(ϵ) > 0 such that if |x0|O < δ, then the state, at time t ∈ I≥0, fulfills
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|ϕ(t , x0)|O < ϵ. A periodic orbit is orbitally asymptotically stable if it is orbital stable and
there exists δ > 0 such that if |x0|O < δ, then |ϕ(t , x0)|O → 0 as t → 0.

Now, it is sufficient to state the stability property of the periodic orbit by using EMPC
controller with terminal region (2.57) and terminal cost function (2.59),

Theorem 2.3. Let Assumptions 2.1, 2.2, 2.3, 2.4 and 2.8 hold and there exists a P-CSF with
supply rate s(x , u) = ℓ∗av - ℓ(x , u), according to Theorem 2.2, the optimal periodic solution
is orbitally asymptotically stable.

Remark 2.13. In [7], periodic strict dissipativity and local controllability imply the near
optimal performance of the closed-loop EMPC without terminal constraints, whereas, in our
work, optimal performance is enforced by employing terminal constraints.

Notice that our notion of non-periodic dissipativity, which is motivated by the continuous-
time results proposed in [43], is different from the three extended notions of dissipativity for
periodic systems in [50]. Exploring the link of our concept with respect to those extensions
and analyzing the case in which Assumption 2.2 does not hold is an interesting question for
future investigations.

Lemma 2.8. Suppose a continuous autonomous system x+ = f̃ (x ) has a periodic solution.
Then this periodic solution is Lyapunov asymptotically stable if and only if it is orbitally
asymptotically stable.

Proof. Let us denote Π̄P := {xs,0, · · · , xs,P -1} as the optimal P -period solution fulfilling
xs,i+1 = f̃ (xs,i ), ∀i ∈ I[0,P -2] and xs,0 = f̃ (xs,P -1). The optimal state at t = 0 is assigned
as xs,0 without loss of generality.

Since the periodic solution is orbitally stable, according to [51, Theorem 1], there exists a
Lyapunov function V (x ) fulfilling

α̂1(|x |Π̄P ) ≤ V (x ) ≤ α̂2(|x |Π̄P ), V (f̃ (x )) ≤ V (x ) - α̂3(|x |Π̄P )

where α̂1(·), α̂2(·) and α̂3(·) are class K functions.

We select ε > 0 and X̄i
f for every i ∈ I[0,P -1] as the connected components of X̄f :=

{x |V (x ) ≤ ε} which contains xs,i . Then, X̄f =
⋃

i={0,··· ,P -1} X̄i
f is forward invariant.
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Moreover, for ε > 0 sufficiently small, X̄i
f ∩ X̄j

f = ∅ if i ̸= j , and in addition we have

argmin
k

|x - xs,k | = {i}, ∀x ∈ X̄i
f .

Notice that, by [52, Proposition 4.6], f̃ (X̄i
f ) is connected. Hence, there exist j such that

f̃ (X̄i
f ) ⊆ X̄j

f . Since f̃ (xs,i ) = xs,i+1, we concluded that f̃ (X̄i
f ) ⊆ X̄i+1

f .

Therefore, arguing by induction, we see that solutions initiated from x ∈ X̄0
f will evolve

in phase with the optimal periodic solution, that is, the state at any time t ∈ I≥0 which is
denoted by ϕ(t , x ), fulfills ϕ(t , x ) ∈ X̄t mod P

f ,∀x ∈ X̄0
f .

Thus, for any x ∈ X̄0
f ,

argmin
k

|ϕ(t , x ) - xs,k | = {t mod P},

or equivalently,
min
k

|ϕ(t , x ) - xs,k | = |ϕ(t , x ) - ϕ(t , xs,0)|,

since
ϕ(t , xs,0) = xs,t mod P .

By substituting the above equality into the following definition of orbital asymptotic stability:

∀ϵ1 > 0, ∃δ1 > 0, such that min
k∈I[0,P-1]

|x -xs,k | ≤ δ1 ⇒ min
k∈I[0,P-1]

|ϕ(t , x )-xs,k | ≤ ϵ1, ∀t ∈ I≥0,

and

∃δ2 > 0, ∀x , such that min
k∈I[0,P-1]

|x -xs,k | ≤ δ2, it holds lim
t→+∞

min
k∈I[0,P-1]

|ϕ(t , x )-xs,k | = 0,

we obtain the conditions for Lyapunov asymptotic stability as follows

∀ϵ1 > 0, ∃δ1 > 0, such that |x - xs,0| ≤ δ1 ⇒ |ϕ(t , x ) - ϕ(t , xs,0)| ≤ ϵ1, ∀t ∈ I≥0.

and

∃δ2 > 0, ∀x , such that |x - xs,0| ≤ δ2, it holds lim
t→+∞

|ϕ(t , x ) - ϕ(t , xs,0)| = 0.

Hence, the conclusions of the lemma follow.
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Assumption 2.9. The value function VN (·) and the optimal control policy κN (·) : as in
(2.23) and (2.29) are continuous functions of x in a neighborhood of the optimal periodic
trajectory.

Remark 2.14. The continuity properties of the value function and optimal control law in
constrained optimal control problems have been extensively studied in the literature. For
instance, the conditions of [53, Corollary 5.4.2, Theorem 5.4.3] that functions f (·, ·), ℓ(·, ·)
being continuous and the admissible control input Ū(·) being continuous and compact valued,
imply VN (·) is continuous and u∗(·) is outer semicontinuous. If, in addition, the minimizer
is unique, then u∗(·) is continuous at x . However, in general, the continuity of the set map
Ū(·) and thus the optimal value function VN (·) is difficult to be satisfied.

Now, it is sufficient to have a statement on Lyapunov stability of the optimal periodic solution.

Corollary 2.2. If Assumption 2.9 holds, the optimal periodic solution is orbitally asymptoti-
cally stable and asymptotically stable in the sense of Lyapunov.

Remark 2.15. Orbital stability only ensures that state trajectories converge to the orbit and
there is no information on the phase. However, asymptotic stability in the sense of Lyapunov
is a stronger version of stability which tracks the phase of the optimal solution.

We propose next a constructive formula for computing P -CSF. In particular,

V̄ i
f (x ) =

∞∑
k=0

L(x i
k ,κi+k

f (x i
k )). (2.60)

where x i
k is the solution of x i

k+1 = f (x i
k ,κi+k

f (x i
k )) initiated at x i

0 = x ∈ Xi
f .

To analyze the convergence of (2.60), we first consider Lemma 2.6 in the context of P -
periodic optimal regimes of operation. Notice that Assumption 2.5 is trivially satisfied and
this implies the rotated stage cost at the periodic solution fulfills

L(xs,i , us,i ) = 0 ∀i ∈ I[0,P -1] (2.61)

Assumption 2.10. There exists a δL > 0 such that the functions ℓ(·) and λ(·), and hence
the rotated stage cost L(·) are Lipschitz continuous for all (x , u) fulfilling |(x , u)|ΠP < δL.
Then, the corresponding Lipschitz constants are denoted by Lℓ, Lλ and LL. Moreover, for all
i ∈ I[0,P -1], κ

i
f (x ) is Lipschitz continuous with respect to x .
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Since Assumption 2.8 implies that there exist constant real numbers A and |a| < 1 such
that |(xk , uk )|ΠP ≤ A · |a|k . Together with Assumption 2.10 and (2.61), we conclude that
|L(xk , uk )| ≤ LL · A · |a|k , and therefore the P -CSF in (2.60) is upper bounded by LL·A

1-a .

Notice that, provided the series converges for arbitrary i ∈ I[0,P -1], it is straightforward that

V̄ i
f (x ) = L(x ,κi

f (x )) +
∞∑

k=1
L(x i

k ,κi+k
f (x i

k ))

= L(x ,κi
f (x )) +

∞∑
k=0

L(x i+1
k ,κi+k

f (x i+1
k ))

= L(x ,κi
f (x )) + V̄ i+1

f (f (x ,κi
f (x ))).

(2.62)

Thus, the proposed P -CSF follows Lemma 2.2 and the terminal cost function is selected as

V̄f (x ) = min
i

V̄ i
f (x ). (2.63)

Moreover, knowledge of the storage function λ(·) used in the definition of rotated stage and
terminal costs is not needed in designing the EMPC controller. To see this, we consider the
terminal cost

Vf (x ) = min
i

V i
f (x ), (2.64)
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where

V i
f (x )

= V̄ i
f (x ) - λ(x )

=
[ ∞∑

k=0
L(x i

k ,κi+k
f (x i

k ))
]

- λ(x )

=
[ ∞∑

k=0

[
ℓ(x i

k ,κi+k
f (x i

k )) + λ(x i
k ) - ℓ∗av - λ(f (x i

k ,κi+k
f (x i

k )))
]]

- λ(x )

=
[ ∞∑

m=0

[ P -1∑
k=0

[
ℓ(x i

mP+k ,κi+k
f (x i

mP+k )) - ℓ∗av
]]

- λ(x i
(m+1)P ) + λ(x i

mP )
]

- λ(x )

= lim
M→+∞

[ M∑
m=0

[ P -1∑
k=0

[
ℓ(x i

mP+k ,κi+k
f (x i

mP+k )) - ℓ∗av
]]

- λ(x i
(M+1)P )

]

=
[ ∞∑

m=0

P -1∑
k=0

[
ℓ(x i

mP+k ,κi+k
f (x i

mP+k )) - ℓ∗av
]]

- lim
M→+∞

λ(x i
(M+1)P )

=
[ ∞∑

m=0

P -1∑
k=0

[
ℓ(x i

mP+k ,κi+k
f (x i

mP+k )) - ℓ∗av
]]

- λ(xs,i ).

(2.65)

Notice that this V i
f (x ) is entirely dictated by the stage cost, provided the value of the storage

function λ(xs,i ), i ∈ I[0,P -1] is known.

Remark 2.16. Thanks to independence of i in the terminal constraint x ∈ Xf , our setup
shows a larger region where the EMPC problem is feasible without the need for a long
prediction horizon. However, a disadvantage of this terminal constraint is the storage function
must be known a priori. In the paper written by Zanon et al,[24] a periodic (i-dependent)
terminal set XN+i

f is used in the EMPC problem formulation, where the dissipativity is
periodic, the phase is fixed and thus the terminal cost function (2.65) can reduce to the
following without the storage function:

V i
f (x ) =

∞∑
m=0

P -1∑
k=0

(ℓ(x i
mP+k ,κi+k

f (x i
mP+k )) - ℓ∗av ). (2.66)
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2.3.6 SOSTOOLs for storage functions

The MATLAB toolbox SOSTOOLs proposed in [54] can be used to determine a candidate
for λ(·) in polynomial form. SOSTOOLs is a free MATLAB toolbox which solves two types
of sum of squares programs: the feasibility and optimization problems. This toolbox has
been applied to many control problems, such as construction of Lyapunov functions, state
feedback control synthesis, and nonlinear optimal control [55, 56].

In this paper, in order to address the construction of storage functions, we consider the
optimization problem as follows:

min
ℓ,c0,c1,··· ,cP

ℓ (2.67)

such that

λ(x ) =
P∑

i=0
cix i (2.68a)

λ(x ) - λ(f (x , u)) + ℓ(x , u) - ℓ is sum of squares (≥ 0),

∀(x , u) ∈ Z,
(2.68b)

where it requires that the system dynamic function f to be polynomial. In this formulation, x
and u are independent scalar variables which are created as symbolic variables in MATLAB,
whereas ℓ, ci are decision variables.

The objective in (2.67) is to minimize the lower bound of asymptotic average. (2.68a)
shows the construction of the storage function that is formulated as a polynomial of order
P . In addition, (2.68b) comes from the dissipation inequality or the rotated stage cost, this
inequality must hold for all admissible state-input pairs.

By using the returned values of coefficients, the storage function can be formulated as a
polynomial function of the system state.
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2.4 Numerical examples

2.4.1 No gap: ℓ̄ = ℓ - optimal period-2 operation

Consider the nonlinear system, known as a logistic map or demographic model, described by
the following difference equation

x+ = ux (1 - x ) (2.69)

in which x is the ratio between current population and the maximum possible population
with value in [0, 1] and a parameter u in the interval (0, 4]. To avoid the trivial case x = 0,
we only consider the control invariant set X̄ := [ϵ, 1 - ϵ], Ū := [ 1

1-ϵ , 4(1 - ϵ)] and Z̄ = X̄× Ū,
where ϵ is a small positive value. Throughout this example, we select ϵ = 0.01.

In EMPC, the cost can be any function, so we use the following stage cost which is not meant
to be a physically or economically motivated example:

ℓ(x , u) = -x4.

The optimal steady-state operation based on this stage cost is (xs , us) = (0.7475, 3.96) with
an economic cost ℓ(xs , us) = -0.3122. However, a periodic operation regime can be achieved
and it can be expressed as

x∗0,1 =
(5 - 4ϵ) ∓

√
(1 - 4ϵ)(5 - 4ϵ)

8(1 - ϵ)
, u∗0,1 = 4(1 - ϵ).

Numerically, the optimal periodic operation is xs,0 ≈ 0.3507 and xs,1 ≈ 0.9018 with optimal
control u∗0 = u∗1 = 3.96, so that the best asymptotic average cost for all initial states x ∈ X̄

is ℓ = ℓ∗av = ℓ∗av (x ) = ℓ̄ = - (xs,0)
4+(xs,1)4
2 ≈ -0.3382 < ℓ(xs , us).

To construct the terminal cost function, a terminal state feedback control law is needed
κi
f (x ) = us,i + Ki (x - xs,i ), i ∈ I[0,1], where Ki is determined from the linearized system

of (2.69) along the optimal solution that is

δx+
0 = -3.1821δx1 + 0.0886δu1,

δx+
1 = 1.1821δx0 + 0.2277δu0.

(2.70)
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Correspondingly, constraints of this linearized system are

- 0.3407 ≤ δx0 ≤ 0.6393, -2.9499 ≤ δu0 ≤ 0,

- 0.8918 ≤ δx1 ≤ 0.0882, -2.9499 ≤ δu1 ≤ 0.
(2.71)

Since there is no [K0 K1]T able to stabilize system (2.70) within the whole region in (2.71),
we consider maximizing the region of attraction of the linearized system by solving a
bilinear matrix inequality problem based on the method.[57] The resulting feedback gain is
[K0 K1]T = [-5.2 10.75]T which is able to stabilize the linear system for 0 ≤ δx0 ≤ 0.5681
and -0.2606 ≤ δx1 ≤ 0.

Next, we determine a potentially smaller set where the above control policy works for the
nonlinear system (2.69). If the terminal state feedback control law is implemented into (2.69),
that is,

xs,0 + δx+
0 = (u∗1 + K1 · δx1)(xs,1 + δx1)(1 - xs,1 - δx1)

xs,1 + δx+
1 = (u∗0 + K0 · δx0)(xs,0 + δx0)(1 - xs,0 - δx0),

the nonlinear dynamic of state deviation by using state feedback control, after substituting
the values of optimal periodic solutions and state feedback gains, becomes

δx+
0 = -10.75 δx3

1 - 12.6 δx2
1 - 2.23 δx1,

δx+
1 = 5.2 δx3

0 - 5.513 δx2
0 - 0.0016 δx0.

Trajectories described by these two equations admit a small region 0 ≤ δx0 ≤ 0.22 and
-0.21 ≤ δx1 ≤ 0 such that any interior point can be attracted to the origin without con-
straints violation. Therefore, the terminal region is Xf = X0

f ∪ X1
f = [0.3507, 0.5707] ∪

[0.6918, 0.9018].

Then, according to the equations in (2.64) and (2.65), it is sufficient to construct the terminal
cost function as follows

Vf (x ) = min
i

[ ∞∑
m=0

P -1∑
k=0

[
ℓ(x i (mP + k),κi+k

f (x i (mP + k))) - ℓ∗av
]]

- λ(xs,i ),

where κi
f (x ) = us,i + Ki (x - xs,i ).
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Moreover, by using SOSTOOLs, a candidate polynomial storage function of 3rd order which
fulfills dissipativity approximately is

λ(x ) = 0.30471x3 - 0.81183x2 + 1.2215x .

Fig.2.1 shows the closed loop state transition and input at initial condition x = 0.5 and
prediction horizon N = 6. It can be seen that the state trajectory converges to the optimal
periodic solution in several steps with the control input remaining at its upper bound. It
also shows the convergence of asymptotic average performance to ℓ̄ = ℓ and the decreasing
of the optimal cost-to-go which is therefore a Lyapunov function. Moreover, the average
computational time of fmincon is 0.0101s approximately, and the average number of calls
for objective functions and nonlinear constraints are around 94 times.
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Fig. 2.1 State trajectory, optimal input and asymptotic average performance of the logistic
map system (2.69).

2.4.2 With gap: ℓ̄ > ℓ - optimal period-4 operation

Next, we consider a bi-dimensional nonlinear system of equations:

x+ =

 1-u2

1+u2
2u

1+u2
-2u

1+u2
1-u2

1+u2

 x (2.72)
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where x is the state variable and u is the input. This nonlinear system gives solutions which
rotate on a circle with radius that is equal to the norm of the initial state. Thus, only states on
this circle are reachable.

Consider the state space X := {|x | ≤ 1} and input constraint u ∈ U := (-∞, 0], along with
the stage cost:

ℓ(x , u) = -(xTQx )2 + (u + 1)2, Q =

[
1 0
0 -1

]
.

This results into the globally optimal periodic solution x̄ ∗
0 = [1, 0]T , x̄ ∗

1 = [0, 1]T , x̄ ∗
2 =

[-1, 0]T and x̄ ∗
3 = [0, -1]T .

However, due to the structure of reachable sets, any given initial condition with distance to
the origin |x | = r , 0 < r < 1 moves within a robustly invariant set X̄r := {x | |x | = r}.
Then, a sub-optimal periodic operation is x ∗

0 = [r , 0]T , x ∗
1 = [0, r ]T , x ∗

2 = [-r , 0]T and
x ∗

3 = [0, -r ]T with optimal control u∗0 = u∗1 = u∗2 = u∗3 = -1. Thus, there is a gap between
ℓ∗av (x ) and ℓ,

ℓ = ℓ∗av = -1 ≤ ℓ∗av (x ) = -|x |4.

The terminal control policy is expected to be a continuous function of state x . Therefore,
we consider a terminal feedback κf (x ), x ∈ Xf = X̄r \ X̄s where X̄s := {x | (2k+1)π

4 - ϵ ≤
arg(x ) ≤ (2k+1)π

4 + ϵ, k ∈ I}, for any arbitrarily small number ϵ > 0, which forces the
system to evolve according to the following dynamic in polar coordinate,

θ+ = θ +
π

2
- K sin(4θ),

where θ is the angle of the state vector with respect to the positive horizontal axis and K is
the state feedback gain. Since the optimal solution evolves π

2 radius counterclockwise every
step, K sin(4θ) is used to reduce the gap between the current state to the optimal ones. To
keep in phase with the rotation of periodic solution, K should be selected from (0, 1

4 ]. In this
example, K = 1

4 for faster convergence.

Then, with κf (·) defined above, the terminal cost function for x ∈ Xf is

Vf (x ) =
∞∑

m=0

P -1∑
k=0

(ℓ(x (mP + k),κf (x (mP + k))) - ℓ∗av ).
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Notice that, this terminal cost function will only be finite for x in {x | |x | = 1} and Lyapunov
asymptotic stability discussed in Section 2.3 applies for {x | |x | = 1}. In other words, we
have restricted our area of interest to the unit circle and therefore artificially enforced the
Assumption 2.2. Furthermore, a candidate of storage function is

λ(x ) = (xTQx )2.

The state trajectory initialized at x = [0.48 0.64]T and with a prediction horizon N = 6 is
shown in Fig.2.2 in which we see that closed-loop system catches the periodic solution after
several control moves. The system average performance for this cost objectives convergences
to ℓ∗av (x ) = -0.4096 instead of ℓ = ℓ∗av = -1. Moreover, the average computational time of
fmincon is 0.2805s approximately, and the average number of calls for objective functions
and nonlinear constraints are around 160 times.
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Fig. 2.2 State trajectory, optimal input and asymptotic average performance of the bi-
dimensional nonlinear system (2.72) with optimal period-4 operation.

2.4.3 Controllable Non-periodic optimal operation

We consider a bi-dimensional nonlinear control system with two input variables:

[
x+
1

x+
2

]
= u1 ·


1-u2

2
1+u2

2

2u2
1+u2

2
-2u2
1+u2

2

1-u2
2

1+u2
2

 ·

[
x1
x2

]
(2.73)
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where x = [x1 x2]T is the state variable and u = [u1, u2]T is the input. This nonlinear
system gives state trajectories whose rotation speed and distance to the origin are controlled
by u2 and u1, respectively.

Consider X := {|x | ≤ 8} with input admissible set U := [12 , 2] × [0, 1], and Z := X× U.

The stage cost

ℓ(x ,u) =
1
3
x1 +

∣∣∣∣u2 -
1
2

∣∣∣∣ +
∣∣∣xTx - 1

∣∣∣
results into the global optimal trajectory that rotates on the unit circle at -arccos(3

5) rad/step
corresponding to u2 = 1

2 . Since 2π is not commensurable to this speed, the optimal solution
is not periodic and asymptotically approaches the whole unit circle which is denoted by
ΠX. As a consequence, the optimal asymptotic average performance is expected to be
ℓ = ℓ∗av = 0.

We choose the following candidate storage function:

λ(x ) = -
x1

6
√

x2
1 + x2

2

-
x2

3
√

x2
1 + x2

2

. (2.74)

To see this storage function fulfills the strict dissipativity, we transform the system (2.73)
into polar coordinate as follows:[

u1 · r · cos(θ - ϕ)
u1 · r · sin(θ - ϕ)

]
= u1 ·

[
cos(ϕ) sin(ϕ)
-sin(ϕ) cos(ϕ)

]
·

[
r · cos(θ)
r · sin(θ)

]

where [x1, x2]T = [r · cos(θ), r · sin(θ)]T and u2 =
√

1-cos(ϕ)
1+cos(ϕ) . Particularly, as stated

above, when u2 = 1
2 , ϕ = -arccos(3

5) rad/step. Based on this equivalent representation, the
candidate storage function becomes

λ(r , θ) = -
cos(θ)

6
-

sin(θ)
3

.

Then, let us consider the following function from the definition of dissipation inequality

S (x ,u) = λ(x ) - λ(f (x ,u)) + ℓ(x ,u) - ℓ∗av -
1
2

∣∣∣xTx - 1
∣∣∣ .
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Converting it to polar coordinates, we have

S (r , θ,ϕ) = -
cos(θ)

6
-

sin(θ)
3

+
cos(θ - ϕ)

6
+

sin(θ - ϕ)
3

+
r · cos(θ)

3
+

∣∣∣∣∣∣
√

1 - cos(ϕ)
1 + cos(ϕ)

-
1
2

∣∣∣∣∣∣ - ℓ∗av +
1
2

∣∣∣r2 - 1
∣∣∣ .

Notice that for u2 = 1
2 and r = 1, we have

2u2
2

1+u2
2

- 1-u2
2

1+u2
2

- (2r - 1) = 0
2(1-u2

2 )
1+u2

2
+ 2u2

2
1+u2

2
- 2 = 0.

and in polar coordinates 2sin(ϕ) - cos(ϕ) - (2r - 1) = 0

2cos(ϕ) + sin(ϕ) - 2 = 0

which in turn implies that
∂S
∂θ

= 0, ∀θ ∈ R.

It is seen that for all z ∈ {z | |z | = 1}, v1 ∈ R and all (x ,u) ∈ Z, it holds

0 = S (z , [v1,
1
2
]T ) ≤ S (x ,u),

explicitly,

λ(x ) - λ(f (x ,u)) + ℓ(x ,u) - ℓ∗av ≥ 1
2

∣∣∣xTx - 1
∣∣∣ .

Since the following inequality holds

1
2

∣∣∣xTx - 1
∣∣∣ =

1
2
∣∣(|x | - 1)(|x | + 1)

∣∣ =
1
2
∣∣|x | + 1

∣∣ ·∣∣|x | - 1
∣∣ =

1
2
∣∣|x | + 1

∣∣ ·|x |ΠX
= ρ(|x |ΠX

),

the storage function (2.74) fulfills strict dissipativity, viz.

λ(f (x ,u)) - λ(x ) ≤ -ρ(|x |ΠX
) + ℓ(x ,u) - ℓ∗av , ∀(x ,u) ∈ Z,

where ρ(|x |ΠX
) is a positive definite function with respect to ΠX.
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Given this candidate storage function, the rotated stage cost is

L(x ,u) = ℓ(x ,u) + λ(x ) - λ(f (x ,u)) - ℓ∗av ≥ ρ(|x |ΠX
), (2.75)

and particularly L(x ,u) = 0 for state trajectories on unit circle with associated inputs
u = [1, 1

2 ]T .

Furthermore, the terminal cost function is constructed as

V̄f (x ) =
∞∑

k=0
L(x (k),u f (x (k))).

where

u f (x ) =


[max (1

2 , 1
|x |),

1
2 ]T , |x | > 1

[1, 1
2 ]T , |x | = 1

[min (2, 1
|x |),

1
2 ]T , |x | < 1

such that u f (x ) ∈ U, ∀x ∈ X and terminal region Xf = X. Since the first component of
u f (x ) controls the radius of state trajectory to 1 and the second component is u2 = 1

2 , the
rotated stage cost L(x ,u f (x )) reaches the value 0 in a finite number of steps; therefore, the
series in (2.75) converges.

Moreover, the terminal cost definition implies the following equality:

V̄f (f (x ,u f (x ))) - V̄f (x ) = -L(x ,u f (x ))

which in turn from Lemma 2.2 implies the non-rotated terminal cost function Vf (x ) is a
CSF.

The resulting state trajectory initialized at x = [-3, 4]T and with a prediction horizon
N = 6 is shown in Fig.2.3 in which we see that the unit circle and solutions are stabilized
and rotate with the speed corresponding to u2 = 1

2 . Notice that there is a phase shift
between the practical and optimal state angles which is formed during the transition period
of radius. However, after the radius achieves 0.8, angular velocity keeps at the optimal
value, in other words, the phase lag of the practical angle with respect to the optimal one is
constant. In addition, the system average performance for this cost objective convergences to
ℓ = ℓ∗av (x ) = 0. The average computational time of fmincon is 0.0362s approximately, and
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the average number of calls for objective functions and nonlinear constraints are around 100
times.
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Fig. 2.3 State trajectory, optimal input and asymptotic average performance of the bi-
dimensional nonlinear system (2.73) with controllable optimal non-periodic operation.

2.4.4 Uncontrollable Non-periodic optimal operation

We consider a bi-dimensional nonlinear control system with single input variable:[
x+
1

x+
2

]
=

(1 + (1 - (x2
1 + x2

2 ))2)
4 + (1 - x2

1 + u)2
·

[
4 - (1 - x2

1 + u)2 -4(1 - x2
1 + u)

4(1 - x2
1 + u) 4 - (1 - x2

1 + u)2

]
·

[
x1
x2

]
(2.76)

where x = [x1 x2]T is the state variable and u is the input. Suppose the state space is
X := {|x | ≤ 1}, input admissible set is U := [0, 1

2 ] and Z := X× U. Any initial state within
the unit disk results into a spiral approaching to the unit circle and the rotation speed is
dependent on the current location. Let us consider the stage cost

ℓ(x , u) = 1 - x2
1 . (2.77)

which enforces the trajectory to evolve mostly around ΠX = {[1, 0]T , [-1, 0]T }, and the
number of states close to these two points is increasing since the growth of x1 slows down
the rotation speed. As a consequence, the asymptotic average performance is expected to be
ℓ = 0.
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We choose the following candidate storage function:

λ(x ) = -(x2
1 + x2

2 ). (2.78)

To see this storage function fulfills the strict dissipativity, it is noticed that

S (x , u) =λ(x ) - λ(x+) + ℓ(x , u) - ℓ∗av - ρ(|x |ΠX
)

= - (x2
1 + x2

2 ) + ((x+
1 )2 + (x+

2 )2) + (1 - x2
1 ) -

1
2
((1 - x2

1 )2 + x4
2 )

= - (x2
1 + x2

2 ) + ((x+
1 )2 + (x+

2 )2) + (1 - x2
1 ) -

1
2
(1 - 2x2

1 + x4
1 + x4

2 )

= - (x2
1 + x2

2 ) + ((x+
1 )2 + (x+

2 )2) +
1
2
(1 - (x4

1 + x4
2 )) ≥ 0

where ρ(|x |ΠX
) = 1

2((1 - x2
1 )2 + x4

2 ) is strict positive definite with respect to ΠX, hence the
strict dissipativity holds

λ(x+) - λ(x ) ≤ -ρ(|x |ΠX
) + ℓ(x , u) - ℓ∗av .

However, for the stage cost in (2.77), CSF does not exist, since it should fulfill

Vf (x
+) - Vf (x ) ≤ ℓ∗av - ℓ(x , u) = x2

1 - 1.

By analyzing the state equation (2.76) and expressing x in polar coordinates, the rotation
angle achieved in a single step is between 0o and 73.74o counter-clockwise, which are
obtained at x1 = 1, u = 0 and x1 = 0, u = 1

2 , respectively. Therefore, x2
1 - 1 does not

converge to zero, which implies Vf (x ) is not bounded from below along the trajectory.

Therefore, we choose another stage cost

ℓ(x , u) = 1 - x2
1 - x2

2 + e
-
4x2

2
x2
1 · u.
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and expand the optimal set to the unit circle Π
′
X = {x | |x | = 1}. In this case, storage

function in (2.78) is still applicable, and the strict dissipativity holds as

S (x , u) =λ(x ) - λ(x+) + ℓ(x , u) - ℓ∗av - ρ(|x |
Π
′
X
)

= - (x2
1 + x2

2 ) + ((x+
1 )2 + (x+

2 )2) + (1 - x2
1 - x2

2 ) + e
-
4x2

2
x2
1 · u -

1
2
(1 - x2

1 - x2
2 )

= - (x2
1 + x2

2 ) + ((x+
1 )2 + (x+

2 )2) +
1
2
(1 - x2

1 - x2
2 ) + e

-
4x2

2
x2
1 · u ≥ 0

where ρ(|x |
Π
′
X
) = 1

2(1 - x2
1 - x2

2 ) is strict positive definite with respect to Π
′
X.

Next, the terminal cost function is defined as

Vf (x ) =
∞∑

k=0
ℓ(x (k), 0) =

∞∑
k=0

1 - x2
1 (k) - x2

2 (k),

and thus the CSF inequality is satisfied

Vf (x
+) - Vf (x ) = -ℓ(x , 0) ≤ ℓ∗av - ℓ(x , 0) = x2

1 + x2
2 - 1.

0 100 200 300 400 500 600 700 800 900 1000
0

5

S
ta

te
 a

n
g
le EMPC control

Zero control

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

S
ta

te
 r

a
d
iu

s

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

In
p
u
t

0 100 200 300 400 500 600 700 800 900 1000

Time

-1

0

1

2

A
s
y
m

 c
o
s
t

Fig. 2.4 State trajectory, optimal input and asymptotic average performance of the bi-
dimensional nonlinear system (2.76) with uncontrollable optimal non-periodic operation.
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Finally, the system performance starting from x = [-0.3, 0.1]T is shown in Fig.2.4. It can be
seen that the trajectory is approaching to the unit circle and the system has shorter transition
period by using the EMPC controller. Moreover, there are no inputs when states are close
to [±1, 0], whereas non-zero inputs are applied if the state is far from these two points. The
average computational time of fmincon is 0.2589s approximately, and the average number
of calls for objective functions and nonlinear constraints are around 879 times.

2.5 Summary

In conclusion, this chapter discusses a generalized approach for estimation of system asymp-
totic average performance from above and below by means of the CSF and dissipation
inequalities. Such tools are adapted to formulate EMPC control schemes and eventually
analyze their performance and stability. In the case of “no-gap”, as previously defined, if the
assumption on continuity of optimal control policy from the economic MPC controller holds,
the optimal periodic operation is Lyapunov asymptotically stable when the CSF is used as
the terminal penalty function.



Chapter 3

Tube-based robust economic MPC
on dissipative nonlinear systems

This chapter is organized as follows. Section 3.1 reviews the problem setup on EMPC and
demonstrates the motivation of our proposed algorithm. Section 3.1 addresses the robust
EMPC algorithm with its formulation in Section 3.2.1 and recursive feasibility analysis in
Section 3.2.2. The asymptotic stability and average performance of the closed-loop system
by using this EMPC controller are analyzed in Section 3.3. Finally, simulative examples
using the proposed EMPC algorithm are presented in Section 3.4 and Section 3.5 summarizes
this chapter.

The results presented in this chapter are based on [58].

3.1 Problem setup

Throughout this chapter, we consider finite dimensional discrete-time nonlinear control
systems described by difference equations

xt+1 = f (xt , ut ,ωt ), (3.1)
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with t ∈ I≥0, state variable xt ∈ X ⊆ Rn , control input ut ∈ U ⊆ Rm , unknown but
bounded disturbance ωt ∈ W ⊆ Rq and continuous state-transition map f : X×U×W → X.
We assume the set W is compact, with the origin as an interior.

The state and input of the system must fulfill the pointwise-in-time state and input constraints

(xt , ut ) ∈ Z, ∀t ∈ I≥0, (3.2)

for some compact set Z ⊆ X× U.

Our objective is to enhance the profitability by minimizing the economic costs accumulated
in the long term system operation ∑

t
ℓ(xt , ut ), (3.3)

where ℓ(·, ·) : Z → R is the economic stage cost, which may take arbitrary form coher-
ently with the EMPC setup (see [3]), and need not be positive definite with respect to any
equilibrium state.

3.1.1 Invariant error sets

As customary in robust MPC, we introduce the nominal system, associated with system (3.1),
that is

zt+1 = f (zt , vt , 0), (3.4)

where zt ∈ X and vt ∈ U are the nominal state and input at time t , respectively. Then, the
resulting state error is et = xt - zt , which tracks the deviation between the real system (3.1)
and the nominal system (3.4). To derive bounds on the error, we apply the control policy

ut = µ(vt , xt , zt ) (3.5)

to the real system (3.1), such that the state error at subsequent time instant t + 1 fulfills

et+1 = f (xt ,µ(vt , xt , zt ),ωt ) - f (zt , vt , 0). (3.6)

Before proceeding, we recall the definition of robust invariant set from [14, 59, 60].
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Definition 3.1. A set Ω ⊆ Rn is robust positively invariant (RPI) for the error system (3.6)
if and only if for all xt , zt ∈ X with et = xt - zt ∈ Ω, all vt ∈ U, and all ωt ∈ W, it holds
et+1 ∈ Ω and (xt ,µ(vt , xt , zt )) ∈ Z.

Remark 3.1. The feedback control law ut = µ(vt , xt , zt ) ensures that state trajectories of
the real system are always inside the robust invariant set Ω around the nominal state trajectory
generated by system (3.4), regardless of the disturbance realization.

Assumption 3.1. There exists a robust positively invariant set Ω as in Definition 3.1 for
error system (3.6) under state feedback control policy (3.5).

For linear systems with additive disturbance, the error system (3.6) is able to be simplified
and there is a broad literature in order to compute some robust invariant sets, e.g., [59, 61].
However, determining a robust invariant set for general nonlinear systems is a difficult task.
For special types of nonlinear systems, there are some systematic techniques, see, e.g.,
[60, 62, 63].

In order to guarantee feasibility of the real system, we should consider tightened constraints
for the nominal system

(zt , vt ) ∈ Z, ∀t ∈ I≥0, (3.7)

where Z = {(z , v) | (x ,µ(v , x , z )) ∈ Z, ∀x ∈ {z} ⊕ Ω}, and the projection of set Z on the
state space is denoted by X.

3.1.2 Optimal regimes of operation

As indicated by the motivating example in [14], simply transferring the design procedure
of tube-based tracking MPC to an EMPC setup may be sub-optimal, we define a modified
robust cost function as

ℓ̃(z , v) = max
x∈{z}⊕Ω

ℓ(x ,µ(v , x , z )), (3.8)

where Ω is the associated robust invariant set for the error system (3.6). This modification
takes the worst cost into account and it provides an upper bound of the real system cost
regardless of the uncertainty realizations. The new robust optimal steady-state operation is

(zs , vs) = arg min
(z ,v)∈Z,z=f (z ,v ,0)

ℓ̃(z , v). (3.9)
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While optimal steady-state operation is often plausible, in general one might need to identify
more complex optimal operation regimes, for nominal system (3.4) with respect to the
modified robust cost function (3.8). For instance, any fixed integer P , one might define the
best feasible P -periodic solution fulfilling

zs,i+1 = f (zs,i , vs,i , 0) ∀i ∈ I[0,P -2]

zs,0 = f (zs,P -1, vs,P -1, 0)

(zs,i , vs,i ) ∈ Z ∀i ∈ I[0,P -1]

(3.10)

where f (·, ·, 0) is the dynamic function in (3.4), and the optimal average performance is

ℓ̃∗av =
∑P -1

i=0 ℓ̃(zs,i , vs,i )
P

. (3.11)

For convenience, the set of states visited along the solution is explicitly denoted as

Π = {zs,0, zs,1, · · · , zs,i , · · · zs,P -1}, ∀i ∈ I[0,P -1], (3.12)

and the corresponding tube is denoted by
⋃

z∈Π[{z} ⊕Ω] which is referred to as the optimal
robust invariant set in later discussions.

Next, we define the optimal operation at a set Π for the nominal dynamics.

Definition 3.2. The nominal system (3.4) is optimally operated at a set Π with respect to the
modified cost function ℓ̃, if for any solution of (3.4) such that (zt , vt ) ∈ Z, ∀t ∈ I≥0, it holds

lim inf
T→+∞

∑T -1
t=0 ℓ̃(zt , vt )

T
≥ ℓ̃∗av , (3.13)

where ℓ̃∗av is the average modified cost of the optimal robust invariant set as in (3.11).

According to this definition, the nominal system, operating at Π, provides the best economic
cost compared to the long-run average modified cost along any other feasible nominal
dynamics. If this set is a singleton (P = 1), system (3.4) is optimally operated at steady-state
(similar to [27, Definition 4] in terms of average integral cost). Otherwise, the system is
optimally operated at some P -periodic solution.

The sufficiency of dissipativity for a nominal system to be optimally operated at steady-state
is obtained in [3], and the necessity, under a mild additional controllability assumption, is
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proved in [9]. We recall the notion of dissipativity as given in [3, Definition 4.1], and also
introduce a definition of strict dissipativity with respect to a set.

Definition 3.3. A discrete time system is dissipative with a supply rate s : Z → R if there is
a continuous storage function λ : X → R such that:

λ(f (z , v , 0)) - λ(z ) ≤ s(z , v) (3.14)

for all (z , v) ∈ Z. If, in addition, a positive definite function ρ : R≥0 → R≥0 exists such
that:

λ(f (z , v , 0)) - λ(z ) ≤ -ρ(|z |Π) + s(z , v), (3.15)

then the system is strictly dissipative with respect to a set Π.

The generalized notions of dissipativity and controlled dissipativity proposed in Chapter 2
are used to derive upper and lower bounds on the optimal asymptotic average performance
without reference to any underlying regime of operation and only depending upon the specific
form of the supply. For stability analysis, the supply rate s(z , v) = ℓ̃(z , v) - ℓ̃∗av will be
adopted for the dissipation inequality.

In [27], a more restrictive dissipativity statement called Ω-robust dissipativity, which takes
the supremum over all possible nominal initial states at the next sampling time, is adopted
to establish Ω∞-robustly optimal steady-state operation, in order to cope with the lack of
connection between the nominal initial states at two consecutive time instants. However, the
nominal dissipativity as in Definition 3.3, which provides a sufficient condition for system
(3.4) to be optimally operated at the set Π, is enough for the purpose of closed-loop stability
analysis. Moreover, as shown in the analysis in Section 3.3.2, the closed-loop nominal
sequence will typically follow the nominal dynamics after finite number of steps because of
its convergence (as a result of strict dissipativity (3.15)).

3.1.3 Motivation

The authors of [14] have proposed an algorithm which controls both the disturbed and
nominal closed-loop system by using a specifically defined integral stage cost. The resulting
closed-loop asymptotic average performance, stability and optimal steady-state operation
are analyzed in detail. Following the same approaches in the context, it can be found that
these properties, regarding both optimal steady-state operation and periodic operation, still
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hold if we change the stage cost to the form of (3.8). Moreover, in order to possibly afford
some performance improvement, they introduced the nominal initial state as an optimization
variable. While this provides an additional degree of freedom, this technique alone prevents
convergence of nominal sequences. To overcome this issue, the authors in [14] state that
the nominal initial state can be used as an optimization variable provided that asymptotic
convergence is ensured by imposing an additional constraint, viz.

λ(zt |t ) ≤ λ(zt |t-1). (3.16)

However, this constraint may restrict the selection of the nominal initial state. Therefore, we
propose an alternative approach which considers the nominal initial state as an optimization
variable at every sampling time, without the need of the additional constraint for stability
purpose, so that the closed-loop economic cost in the transient phase might be improved.

3.2 The robust economic MPC algorithm

This section is to propose a new recursively feasible EMPC algorithm which employs the
modified economic cost function together with a terminal region and a penalty function.

3.2.1 Robust Economic MPC formulation

Notice that the nominal (optimal) initial states at two consecutive time instants, in general,
do not fulfill the nominal dynamic (3.4). Given the measured system state x , let us denote
the set of possible nominal states by

A(x ) := {z ∈ X | x ∈ {z} ⊕ Ω}. (3.17)
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Then, for a fixed prediction horizon N ∈ I≥0, the finite horizon economic optimization
problem is formulated as

PN (xt ) : min
zt :t+N |t ,vt :t+N -1|t

JN (zt :t+N |t , vt :t+N -1|t ) (3.18)

s .t . zt |t ∈ A(xt ), (3.18a)

zk+1|t = f (zk |t , vk |t , 0), (3.18b)

(zk |t , vk |t ) ∈ Z ∀k ∈ I[t ,t+N -1], (3.18c)

zt+N |t ∈ Xf , (3.18d)

where

JN (zt :t+N |t , vt :t+N -1|t ) = λ(zt |t ) +
t+N -1∑
k=t

ℓ̃(zk |t , vk |t ) + Vf (zt+N |t ) (3.19)

is the economic objective function and the set Xf is the tightened terminal region.

The storage function λ(·) appears in the objective function and it can be seen as a weighting
function for the nominal initial state. Compared with constraint (3.16), this initial weighting
function is more natural and will not reduce the feasible region. When the inequality
ℓ̃(z , v) ≥ ℓ̃(zs , vs), ∀(z , v) ∈ Z holds, the supply rate s(z , v) = ℓ̃(z , v) - ℓ̃(zs , vs) is positive
semidefinite and any constant function may be regarded as a storage function fulfilling
the disspativity inequality. In this situation, the weighting function is unnecessary and the
constraint (3.16) is automatically satisfied, so that these two methods boil down to the same
optimization problem.

Then, we make the following assumptions on feasibility, robust invariance and terminal
stability.

Assumption 3.2. There exists a terminal set Xf ⊆ X with associated set Xf := {x ∈
X | {x} ⊕ Ω ⊆ Xf } that contains the support of nominal optimal operation Π in its interior,
and a control policy κf : Xf → U such that for all z ∈ Xf
(i) (z ,κf (z )) ∈ Z
(ii) f (z ,κf (z ), 0) ∈ Xf
(iii) Vf (f (z ,κf (z ), 0)) - Vf (z ) ≤ ℓ̃∗av - ℓ̃(z ,κf (z )).
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Remark 3.2. Conditions (i) and (ii) are standard requirements in economic MPC framework.
Condition (iii) on terminal cost can be regarded as the controlled dissipativity with supply
rate s(z , v) = ℓ̃∗av - ℓ̃(z , v).

The decision variables of this optimization problem are

zt :t+N |t = (zt |t , zt+1|t , · · · , zt+N |t ), vt :t+N -1|t = (vt |t , vt+1|t , · · · , vt+N -1|t ). (3.20)

Once the optimization problem PN (xt ) admits a feasible solution, it is denoted by

z∗t :t+N |t = (z∗t |t , z
∗
t+1|t , · · · , z∗t+N |t ), v∗t :t+N -1|t = (v∗t |t , · · · , v∗t+N -1|t ), (3.21)

and the corresponding optimal value function is

VN (xt ) = JN (z∗t :t+N |t , v
∗
t :t+N -1|t ). (3.22)

Let us define the admissible set ZN for a fixed state x as

ZN (x ) := {(z0:N , v0:N -1) | z0 ∈ A(x ), zk+1 = f (zk , vk , 0)

zN ∈ Xf , (zk , vk ) ∈ Z, ∀k ∈ I[0,N -1]}.
(3.23)

and the collection of admissible states x ,

XN = {x ∈ Rn | ∃(z0:N , v0:N -1) ∈ ZN (x )}. (3.24)

Notice that the terminal set fulfills Xf ⊆ XN , the set XN is non-empty and hence the
optimization problem PN (x ) has at least one feasible solution for any x ∈ Xf .

Following the manner of feedback algorithm in EMPC, the optimal control implemented to
the system (3.1) is

κN (xt ) := µ(v∗t |t , xt , z
∗
t |t ), (3.25)

and the resulting closed-loop dynamic is

xt+1 = f (xt ,κN (xt ),ωt ). (3.26)

Notice that, v∗t |t and z∗t |t might be non-unique, in which case, we take any pair that achieves
the optimum.
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3.2.2 Recursive feasibility

Note that, provided that the optimization problem PN (·) is feasible, the optimal nominal
state-input pair (z∗t |t , v

∗
t |t ) is restricted by the tightened constraint (3.7). The rationale is that

true state and input solutions, in the usual spirit of tube MPC, will then fulfill

(xt ,µ(v∗t |t , xt , z
∗
t |t )) ∈ Z, ∀t ∈ I≥0, (3.27)

whatever the disturbance signal is until time t . Therefore, the real system’s solutions fulfill
pointwise-in-time constraints.

To this end, we are ready to claim the recursive feasibility of the optimization problem
proposed in Section 3.2.1.

Proposition 3.1. Let Assumptions 3.1 and 3.2 hold. Then, for any initial state x ∈ XN , the
EMPC optimization problem PN (·) is recursively feasible.

Proof. The proof for recursive feasibility follows the standard argumentation in robust MPC
(see i.e. [14]). It is worth to be noted that by constraint (3.18a), we have xt - z∗t |t ∈ Ω.
Then, due to Assumption 3.1, for all ωt ∈ W, it holds xt+1 - z∗t+1|t = f (xt ,κN (xt ),ωt ) -
f (z∗t |t , v

∗
t |t , 0) ∈ Ω, which implies z∗t+1|t ∈ A(xt+1).

3.3 Asymptotic performance and stability analysis

This section is dedicated to the analysis of closed-loop behaviors of the system using the
proposed EMPC controller. We start by proving the stability of the optimal robust invariant
set, which is inferred from the asymptotic convergence of the nominal state sequence.
Then, an upper bound of the asymptotic average performance, regardless of the disturbance
realizations is derived.

3.3.1 Stability analysis

This section explores the asymptotic stability of the closed-loop system under EMPC control
actions. Before the statement of asymptotic stability, we define an explicit notation for the
terminal control policy and make some assumptions.
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Definition 3.4. The terminal control policy is defined as the set valued function κf : Xf → U
which is the solution of the following optimization problem

min
v∈U,f (z ,v ,0)∈Xf

Vf (f (z , v , 0)) + ℓ̃(z , v). (3.28)

Note that if the κf (·) exists as in Assumption 3.2, this Definition 3.4 provides an appropriate
approach to compute the terminal control policy.

Assumption 3.3. There exists a continuous storage function λ(·) such that the nominal
system (3.4) is strictly dissipative with supply rate ℓ̃(z , v) - ℓ̃∗av , i.e.,

λ(f (z , v , 0)) - λ(z ) ≤ ℓ̃(z , v) - ℓ̃∗av - α1(|z |Π), (3.29)

where α1(·) is a class K function.

Assumption 3.4. The storage function and the terminal cost function satisfy λ(z )+Vf (z ) =
0 for all z ∈ Π and λ(z ) + Vf (z ) ≥ 0 for all z ∈ X̄f \ Π.

Now, we are ready to state the first main result in this note

Theorem 3.1. Let Assumptions 3.1, 3.2, 3.3 and 3.4 hold, under the application of economic
MPC feedback control policy (3.25), the set

⋃
z∈Π[{z} ⊕ Ω] is asymptotically stable for the

closed-loop system (3.26) with region of attraction XN .

Proof. The idea of this proof is to follow the usual way to prove asymptotic stability of a
closed-loop system under an EMPC controller with the aid of dissipativity assumption. With
the notion of rotated cost functions, the optimal rotated objective function is shown to be a
Lyapunov function. The details are omitted for brevity, but readers may refer to [5, Theorem
15].

3.3.2 Closed-loop asymptotic performance

Another main goal of EMPC is the guaranteed closed-loop performance. Before stating the
main result, we make the following assumptions.

Assumption 3.5. For any zs,i , zs,j ∈ Π where i ̸= j ∈ I[0,P -1], the corresponding compo-
nents in optimal robust invariant sets {zs,i} ⊕ Ω and {zs,j } ⊕ Ω are disjoint.
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Assumption 3.6. For any disturbance realization, there exists a finite time t such that the
closed-loop system (3.26) enters the optimal robust invariant set, i.e., xt ∈

⋃
z∈Π[{z} ⊕ Ω].

Now, we state the second main result in this note.

Theorem 3.2. Suppose Assumptions 3.1, 3.2, 3.5 and 3.6 are satisfied, the asymptotic average
performance of the closed-loop system (3.26) is no worse than ℓ̃∗av , regardless of ω(·) ∈ W∞,
i.e.,

lim sup
T→+∞

∑T -1
t=0 ℓ(xt ,κN (xt ))

T
≤ ℓ̃∗av . (3.30)

Proof. The proof of Theorem 3.2 is similar to that of [5, Theorem 18]. One should note
that, at the first time xt ∈

⋃
z∈Π[{z} ⊕ Ω], we denote the phase of the optimal solution

by i(t) ∈ I[0-P -1]. Then, the one step ahead predicted nominal state is z∗t+1|t = zs,i(t)+1.
Because of Assumption 3.5, the real system state at time t+1 satisfies xt+1 ∈ {zs,i(t)+1}⊕Ω.
Then, the optimal nominal initial state is z∗t+1|t+1 = zs,i(t)+1 = z∗t+1|t which in turn yields
λ(z∗t+1|t+1) = λ(z∗t+1|t ).

Remark 3.3. This upper bound of the asymptotic performance is not guaranteed if the
components of the optimal robust invariant sets intersect. In this case, the phase of the
optimal nominal solution might “reset” at each sampling time. Therefore, the closed-loop
nominal sequence may not be synchronized with the optimal periodic operation. The
asymptotic performance bound is more conservative than the average cost and it is still

bounded by lim supT→+∞
∑T -1

t=0 ℓ(xt ,κN (xt ))
T ≤ maxi∈I[0,P-1]

ℓ̃(zs,i , vs,i ).

3.4 Numerical examples

Throughout the examples, we compare the economic performance by adopting three EMPC
methods: fixed nominal initial state with dynamic update according to nominal system model
(FNS), variable nominal initial state with additional constraint (VNS-AC) using (3.16), and
variable nominal initial state with initial weighting function (VNS-IWF).
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3.4.1 Linear System: Robust optimal steady-state operation

We revisit the scalar example in [14],

xt+1 = 0.9xt + ut + ωt , (3.31)

constrained by Z = {(x , u) ∈ R2 | |x | ≤ 10, |u| ≤ 1} and W = {ω ∈ R | |ω| ≤ 0.1}.
We also choose control policy ut = µ(vt , xt , zt ) = vt + K (xt - zt ) with K = -0.9 and
the resulting RPI set is Ω = W. Then, the tightened constraints for nominal system is
Z = Z⊖(Ω×KΩ) = {(z , v) ∈ R2 | |z | ≤ 9.9, |v | ≤ 0.91}, that is, X = {z ∈ R | |z | ≤ 9.9}.
The economic cost function is defined as ℓ(x , u) = ℓ1(x ) + ℓ2(u), where

ℓ1(x ) =


x2 + 0.1x x < -0.05

0.225x - 0.0363 - 0.05 ≤ x < 0.15

x2 - 0.3x + 0.02 x ≥ 0.15

ℓ2(u) =


u2 + 1.18u + 0.0981 u < -0.59

-0.25 - 0.59 ≤ u < -0.41

u2 + 0.82u - 0.0819 u ≥ -0.41

and the corresponding modified cost function is

ℓ̃(z , v) = z2 + v2 - z + f (z , v , 0) = z2 + v2 - 0.1z + v .

One can find a possible storage function λ(z ) = z fulfilling the dissipativity condition.
According to (3.9), the robust optimal equilibrium is (zs , vs) = (0, 0), with the best modified
robust cost ℓ̃∗av = ℓ̃(zs , vs) = 0. By using terminal control policy κf (z ) = -Kv , the terminal
region can be defined as Xf = X and the terminal penalty function is Vf (z ) = ℓ̃(z ,κf (z ))
which fulfills controlled dissipativity.

Table 3.1 compares the accumulated transient economic stage cost performance under various
initial conditions and 1000 randomly generated disturbance realizations by using the three
approaches. Generally, the two methods changing the nominal initial state as a variable lead
to less accumulated cost during the transient steps compared with the approach using the
nominal closed-loop system. Moreover, it indicates that our proposed controller VNS-IWF
performs better in more than 70% of cases. In particular, the FNS and VNS-IWF have the
same results at x0 = 0, which cost less in 723 out of 1000 simulations.
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FNS(%) VNS-AC(%) VNS-IWF(%)
x0 = -9 0 0 100
x0 = -5 2 0 99.8
x0 = 0 72.3 27.7 72.3
x0 = 5 0 27.4 72.6
x0 = 9 0 27.2 72.8

Table 3.1 Percentage of best performance achieved in 1000 simulations with random distur-
bances in the case of robust optimal steady-state operation for the scalar system (3.31).

3.4.2 Linear System: Robust optimal periodic operation

We reconsider the linear system (3.31) again in Section 3.4.1. Now, the point-wise-in-time
constraint is Z = {(x , u) ∈ R2 | |x | ≤ 10, 0.1 ≤ |u| ≤ 1} and cost function is

ℓ(x , u) =

(x + 0.1)2 x < 0

(x - 0.1)2 x ≥ 0.

By using the same control policy with K = -0.9, the RPI set is Ω = W and the tightened
constraint is Z = Z ⊖ (Ω × KΩ) = {(z , v) ∈ R2 | |z | ≤ 9.9, 0.19 ≤ |v | ≤ 0.91}. The
modified cost function is

ℓ̃(z , v) =

0.01 - 0.1 ≤ z < 0.1

z2 otherwise,

and the resulting robust optimal periodic solution is

(zs,0, vs,0) = (-0.1, 0.19), (zs,1, vs,1) = (0.1, -0.19).

with average economic cost ℓ̃∗av = ℓ̃(zs,0,vs,0)+ℓ̃(zs,1,vs,1)
2 = 0.01. Using the same terminal

control policy and terminal region as in the previous example, the terminal cost function in
this case is

Vf (z ) =

0.01 - 0.1 ≤ z < 0.1

z2 otherwise.
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To fulfill the dissipativity inequality with supply rate s(z , v) = ℓ̃(z , v) - ℓ̃∗av , the storage
function can be chosen as λ(z ) = c where c ∈ R is a constant real number or λ(z ) = -ℓ̃(z , v).

In the first case, constant storage function causes two methods VNS-IWF and VNS-AC are
equivalent, the simulation results with initial condition x0 = 0.3 and prediction horizon
N = 20 are shown in Fig.3.1 and Fig.3.2, in which the real system switches between the
intervals [-0.2, 0] and [0, 0.2] which are essentially non-overlapping if the single point 0 is
removed. The asymptotic average performance is lower than and approaching to the cost ℓ̃∗av
asymptotically for the random disturbance realization and the worst scenario, respectively.
The average computational time of fmincon is 0.1512s approximately, and the average
number of calls for objective functions and nonlinear constraints are around 813 times.
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Fig. 3.1 State trajectory, optimal input and asymptotic average cost of system (3.31) with
optimal periodic operation under a randomly generated disturbance sequence.
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Fig. 3.2 State trajectory, optimal input and asymptotic average cost of system (3.31) with
optimal periodic operation under the worst disturbance realization.

When the storage function is λ(z ) = -ℓ̃(z , v), the best performing controller depends on
the initial condition and the disturbance. Simulated results are in Table 3.2. It can be seen
that the advantage of using VNS-IWF is obvious if the initial condition is far away from the
origin.

FNS(%) VNS-AC(%) VNS-IWF(%)
x0 = -9 0 0 100
x0 = -5 0 0 100
x0 = -1 28.5 31.6 39.9
x0 = 0 25.6 36.9 37.5
x0 = 1 30.8 31.3 37.9
x0 = 5 0 0 100
x0 = 9 0 0 100

Table 3.2 Percentage of best performance achieved in 1000 simulations with random distur-
bances in the case of robust optimal periodic operation for the system 3.31.

It can be seen from the robust optimal periodic solution, the optimal robust invariant sets
are intervals [-0.2, 0] and [0, 0.2] which are essentially non-overlapping if the single point
0 is removed. In order to demonstrate the effect of substantial overlaps, we modify the
point-wise-in-time constraint to Z = {(x , u) ∈ R2 | |x | ≤ 10, 0.05 ≤ |u| ≤ 1}, and the stage
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cost

ℓ(x , u) =



(x + 0.05)2 - 10 ≤ x < -0.05

4(x + 0.05)2 - 0.05 ≤ x < 0

4(x - 0.05)2 0 ≤ x < 0.05

(x - 0.05)2 0.05 ≤ x < 10

which results into the robust optimal periodic solution

(zs,0, vs,0) = (-0.05, 0.095), (zs,1, vs,1) = (0.05, -0.095).

with corresponding invariant intervals [-0.15, 0.05] and [-0.05, 0.15]. Fig.3.3 shows the simu-
lated results, in which there are some phase resets under the random disturbance. While the
worst disturbances, in Fig.3.4, can always force the system states outside the overlapping area
[-0.05, 0.05], so that the phase is synchronized. For both cases, the asymptotic performance
is bounded by 0.01 which is the average and the worst cost at the robust optimal periodic
solution. To demonstrate the effect from the phase reset, the simulation with terminal equal-
ity constraint which is used to enforce the phase of the state is compared under the same
disturbance realization. In Fig.3.5, as expected, the asymptotic average cost is lower than
than that when phase reset occurs, since the optimal periodic-2 solution should perform
better than any other solutions. Moreover, the computational time when phase resets exist is
longer that the average computational time of fmincon is 0.2726s approximately whereas it
is around 0.1534s when there is no phase reset.
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Fig. 3.3 State trajectory, optimal input and asymptotic average cost of system (3.31) with
optimal periodic operation under a randomly generated disturbance sequence, when the
optimal invariant sets overlap.
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Fig. 3.4 State trajectory, optimal input and asymptotic average cost of system (3.31) with
optimal periodic operation under the worst disturbance realization, when the optimal invariant
sets overlap.
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Fig. 3.5 Real and nominal state trajectories of the systems with and without phase reset as
well as the corresponding asymptotic average cost under a randomly generated disturbance
sequence, when the optimal invariant sets overlap.

3.5 Summary

In conclusion, we presented a tube-based robust economic MPC algorithm for nonlinear
systems subject to disturbances. By considering the worst cost of the tube along the artificial
nominal system and a weighting function on nominal initial state, the robustness against the
disturbances is guaranteed in our EMPC design. Within this chapter, constraint tightening
is used to prove recursive feasibility and a bound of the closed-loop asymptotic average
performance is derived. Moreover, the stability of the optimal robust invariant set is inferred
from the asymptotic stability of the nominal state sequence.



Chapter 4

Homothetic tube-based robust
economic MPC with integrated
MHE

This chapter is organized as follows. Section 4.1 introduces the basic formulations and setup.
Section 4.2 addresses the homothetic tube-based robust EMPC algorithm with its formulation
in Section 4.2.1 and recursive feasibility analysis in Section 4.2.2. The asymptotic stability
and average performance of the closed-loop system adopting this EMPC controller are
analyzed in Section 4.3. Finally, illustrative examples using the proposed EMPC algorithm
are presented in Section 4.4 and Section 4.5 summarizes this chapter.

The results presented in this chapter are based on [41, 64].

4.1 Problem setup

Throughout this chapter, we consider finite dimensional discrete-time linear systems de-
scribed by difference equations

xt+1 = Axt + But + ωt

yt = Cxt + ηt
(4.1)
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where xt ∈ Rnx and ut ∈ Rnu are the system state and the control input, respectively, at
time t ∈ I≥0. The system is subject to pointwise-in-time constraints

(xt , ut ) ∈ Z ⊆ X× U, ∀t ∈ I≥0, (4.2)

where the set Z is compact. Moreover, the variables ωt ∈ W ⊆ Rnx and ηt ∈ H ⊆ Rny ,
where W and H are compact sets containing zero, denote the state disturbance and the
measurement noise, respectively. The signal yt ∈ Rny is known as the measured output that
is available for feedback. Throughout this chapter, we adopt the following assumptions about
the system (4.1):

Assumption 4.1. The pairs (A,B) and (C ,A) are stabilizable and detectable, respectively.

Our objective is to enhance profitability by minimizing the economic costs accumulated in
the long term system operation ∑

t
ℓ(xt , ut ), (4.3)

where ℓ(x , u) : Z → R is the economic stage cost, which may take arbitrary form coherently
with the economic MPC setup (see [3]), and need not be positive definite with respect to any
equilibrium state.

4.1.1 Feedback control and observer

One natural approach to control system (4.1), while ensuring the satisfaction of the constraints
(4.2), is to apply an optimization-based feedback control policy. However, in most literature,
Economic MPC is formulated assuming full-state feedback, whereas, in practical cases, the
full state measurement is often not available. This motivates the use of a pre-defined state
observer

x̂t+1 = Ax̂t + But + L(yt - C x̂t ) (4.4)

where x̂t ∈ Rnx is the observer state and L satisfies ρ(A - LC ) < 1, which will be used in
the computation of the input ut . Therefore, as in [31, 65, 66], the state xt can be decomposed
into different components:

xt = x̂t + et = zt + ξt + et , (4.5)
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where these three terms are later referred to as nominal state, observer state error, and
estimation error, respectively. The nominal state zt depends on the nominal input vt and
fulfills the dynamic

zt+1 = Azt + Bvt . (4.6)

In order to determine the optimal control input ut at each sampling time instant, an optimiza-
tion problem is solved with the nominal state and input sequences as decision variables. As
customary in tube-based EMPC, the optimal nominal state and input pair (zt , vt ) are used to
calculate the control policy

ut = vt + K (x̂t - zt ), (4.7)

which is implemented to the systems (4.1) and (4.4), where K is a pre-defined feedback gain
such that ρ(A + BK ) < 1.

The state estimation error e ∈ Rnx is defined as et := xt - x̂t and governed by

et+1 = (A - LC )et + ωt - Lηt , (4.8)

Moreover, ξt the difference between the observer state x̂t and its nominal counterpart zt
follows the difference equation

ξt+1 = (A + BK )ξt + L(Cet + ηt ). (4.9)

At this point, we recall the standard definition of robust positively invariant set from [65]:

Definition 4.1. A set S ⊆ Rn is robust positively invariant for the system x+ = f (x ,ω) and
the constraint set (X,W) if S ⊆ X and f (x ,ω) ∈ S , ∀ω ∈ W,∀x ∈ S .

Since ρ(A-LC ) < 1, there exists a C set that is finite time computable and robustly positively
invariant [67] for the estimation error system (4.8). Then, following the ideas in [65], we
can bound et and ξt using sets E and Ξ, respectively, provided that the system state x0,
observer state x̂0 and nominal system state z0 satisfy e0 = x0 - x̂0 ∈ E and ξ0 = x̂0 - z0 ∈ Ξ.
Furthermore, it can be indicated that the system state xt fulfills xt ⊆ zt ⊕Ω = zt ⊕ (E ⊕ Ξ).

Remark 4.1. Notice that sets E , Ξ and Ω for a linear system (3.1) and given convex
polyhedrons W and H are, in turn, convex polyhedrons and can be computed based on
MPT3 toolbox. Moreover, the paper [31] analyzed the conservatism of using separate sets for
et and ξt , and proposed a single set on an augmented system δt = [ξt et ]T to obtain tighter
approximations on the worst case effect of the uncertainties. However, the computation of
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RPI sets is performed on a space with double dimension, which reduces the applicability of
the approach for high dimensional systems.

In order to ensure that the unknown state satisfies the state constraint, we need to introduce
the tightened constraint for the nominal system (4.6) using the sets E and Ξ

Z = {(z , v) | (z + ξ + e, v ⊕ K ξ) ⊆ Z,∀ξ ∈ Ξ,∀e ∈ E}, (4.10)

and, accordingly, this tightened constraint guarantees that

(zt , vt ) ∈ Z ⇒ (xt , ut ) ∈ Z. (4.11)

For later use, the projection of Z on X is denoted by X .

Since the set Ω may not provide a tight estimate of the real system state value, it may
be possible to find a less conservative bound for the economic cost incurred in operation.
Indeed, one might take advantage of the past measured outputs in order to further reduce the
region where the real system state belongs. For instance, it is possible to find the best scalar
γ ∈ [0, 1] such that the state is guaranteed to fulfill x ∈ z ⊕ γΩ. Notice that this scaling
parameter is only used to derive a tighter performance bound and it will not affect the robust
optimal regime of operation which will be discussed in the next subsection. Based on the
available information at time t , we are able to recursively define the reachable sets

Rt (y0:t , x̂0, u0:t-1) = {xt |∃xt-1 ∈ Rt-1(y0:t-1, x̂0, u0:t-2), ∃ωt-1 ∈ W, yt - Cxt ∈ H,

xt = Axt-1 + But-1 + ωt-1}.
(4.12)

where R0(y0, x̂0) = {x0 | x0 ∈ x̂0 ⊕ E , y0 - Cx0 ∈ H}.

4.1.2 Robust optimal operation regimes

Clearly, the presence of an additive persistent disturbance ω and measurement noise η acting
on system (4.1) means it is not possible to guarantee asymptotic convergence to the generally
defined optimal steady-state, i.e.

(x∗, u∗) = arg min
(x ,u)∈Z,x=Ax+Bu

ℓ(x , u). (4.13)
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Hence, an achievable goal is to steer the system state to a neighborhood of a certain steady-
state which may differ from (4.13). When the deviation of the true state x from the nominal
state z is bounded by γΩ, the worst economic cost, over the homothetic set centered at z , is
defined as

ℓ̃(z , v , γ) = max
δ∈γΩ,ξ∈Ξ

ℓ(z + δ, v + K ξ). (4.14)

This modification takes the worst cost into account and it provides an upper bound of the
real system cost regardless of the state disturbance and measurement uncertainty realizations.
Readers may refer to [14] for the motivations to consider a modified economic stage cost.
We should also notice that ℓ̃(z , v , γ) is monotonically non-decreasing with respect to γ, so
that the tightest estimates of the state region (corresponding to small γ) provide a lower
upper-bound to the economic cost.

At this point, we are able to define the robust optimal steady-state operation by

(zs , vs) = arg min
(z ,v)∈Z,z=Az+Bv

ℓ̃(z , v , 1). (4.15)

Given this robust optimal state and input pair, the worst cost within z ⊕ γΩ is ℓ̃∗av (γ) =
ℓ̃(zs , vs , γ), in particular, the robust optimal average economic cost ℓ̃∗av (1) = ℓ̃(zs , vs , 1).
Notice that ℓ̃∗av (1) is independent of the parameter γ, so it denotes an a-priori upper bound to
the closed-loop average cost.

Although a steady-state often provides the minimal long run average economic cost, some-
times more complex operations analyzed in Chapter 2 and [22], such as a periodic solution,
can outperform the steady-state, for the nominal system (4.6) with respect to the modified
robust cost function (4.14).

Let us consider the more general case where system (4.1) is optimally operated at some
periodic orbit with period P ∈ I≥1. Solving the following optimization problem,

min
zi+1 = Azi + Bvi ∀i ∈ I[0,P -2]

z0 =AzP -1 + BvP -1

(zi , vi ) ∈ Z ∀i ∈ I[0,P -1]

∑P -1
i=0 ℓ̃(zi , vi , 1)

P
,
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we obtain the best P -periodic solution

Π = {(zs,0, vs,0), (zs,1, vs,1), · · · , (zs,P -1, vs,P -1)}, (4.16)

with corresponding optimal periodic orbit ΠX = {zs,0, zs,1, · · · , zs,P -1}, and its robust
optimal average performance can be denoted by

ℓ̃∗av (γ) =
∑P -1

i=0 ℓ̃(zs,i , vs,i , γ)
P

. (4.17)

Next, we define the notion of optimal operation at a set Π for the nominal dynamic:

Definition 4.2. The nominal system (4.6) is optimally operated at a set Π with respect to the
modified cost function ℓ̃(·, ·, ·), if for any solution such that (zt , vt ) ∈ Z,∀t ∈ I≥0, it holds

lim inf
T→+∞

∑T -1
t=0 ℓ̃(zt , vt , 1)

T
≥ ℓ̃∗av (1), (4.18)

where ℓ̃∗av (1) is the average modified cost of the optimal robust invariant set for γ = 1 as in
(4.17).

Definition 4.2 means that each feasible solution will result in an asymptotic average perfor-
mance which is as good as or worse than the average performance of the periodic orbit Π.
Particularly, for P = 1 the notion of optimal steady-state operation in [3] is recovered.

After clarifying the robust optimal operation of the set Π, we make an assumption based on
the definition of strict dissipativity for disturbance-free systems as given in [24, 25]:

Assumption 4.2. There exists a continuous storage function λ(·) : X → R bounded from
below on X , and a class K function α1(·) such that

λ(Az + Bv) - λ(z ) ≤ ℓ̃(z , v , γ) - ℓ̃∗av (γ) - α1(|z |ΠX
), (4.19)

for all (z , v) ∈ Z and γ ∈ [0, 1].

Remark 4.2. The authors in [68] propose a computational method for automatic verification
of dissipativity for discrete time systems with polynomial dynamics and stage cost. As-
sumption 4.2 requires that inequality (4.19) holds for all γ ∈ [0, 1], whereas in the standard
definition of dissipativity γ = 0 and the supply rate is based on the original cost function
ℓ, rather than ℓ̃. This rather strong condition, ensures an optimal operation regime that is
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independent of our confidence level γ on the location of the true system’s state. In particular,
provided that the stage cost ℓ is convex, the modified function ℓ̃ is convex as well, and under
special symmetry conditions, this may imply the optimal operation is independent of the
factor γ (see Example 4.4.3).

4.2 The Homothetic tube-based economic MPC algorithm

4.2.1 Problem formulation

In this section, a robust economic MPC controller is designed. To this end, further notation
has to be introduced: z0:t+N |t is the sequence of nominal states from sampling instants 0
to t + N , considered at time t ; vt :t+N -1|t is the sequence of future nominal control moves;
u0:t-1 (or v0:t-1 equivalently), y0:t and γ0:t-1 are the (known) past system inputs, measured
outputs and scaling factors, respectively, at time t . Because the observer states are auxiliary
variables processed within the controller, the sequence x̂0:t is known at time t .

Notice that the Luenberger observer only comes with an a-priori (constant) bound E of the
estimation error, which, in some sense, corresponds to the worst case disturbance realization.
The moving horizon estimation, instead, is a set membership estimator that, depending on
disturbance realization, may allow a much tighter bound on the estimation error. This is
beneficial for the economic performance as tighter characterizations of the state whereabouts
allow sharper optimization of the economic criterion.

Before presenting the EMPC algorithm, we first make the following assumption to restrict
the error between the real system and the estimates:

Assumption 4.3. The initial observer state x̂0 is provided along with the minimal RPI set E ,
such that the real system state x0 is initially known to satisfy x0 ∈ x̂0 ⊕ E .
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Next we propose a feedback control law by solving online the following optimization problem
with a prediction horizon N ∈ I≥1,

min
d t

JN (zt :t+N |t , vt :t+N -1|t , γt :t+N |t ) (4.20)

s .t . zt |t ∈ x̂t ⊕ Ξ,

}
(4.20a)

zj+1|t = Azj |t + Bvj , (4.20b)

(zj |t , vj ) ∈ Z, ∀j ∈ I[0,t-1] (4.20c)

yj - Czj |t ∈ γj CΩ⊕H, (4.20d)

Rt (y0:t , x̂0, u0:t-1) ⊆ zt |t ⊕ γt |tΩ, (4.20e)

As + B(vk |t + KΞ) ⊕W

}
⊆ zk+1|t ⊕ γk+1|tΩ,

∀s ∈ zk |t ⊕ γk |tΩ, (4.20f)

zk+1|t = Azk |t + Bvk |t , ∀k ∈ I[t ,t+N -1] (4.20g)

(zk |t , vk |t ) ∈ Z, (4.20h)

0 ≤ γk |t ≤ 1, ∀k ∈ I[t ,t+N ], (4.20i)

zt+N |t ∈ Xf , (4.20j)

where d t = [z0:t+N |t , vt :t+N -1|t , γt :t+N |t ] is the vector of decision variables,

JN (zt :t+N |t , vt :t+N -1|t , γt :t+N |t ) = λ(zt |t ) +
t+N -1∑
k=t

ℓ̃(zk |t , vk |t , γk |t ) + Vf (zt+N |t )

(4.21)
is the economic objective function with initial and terminal penalty costs λ(·) and Vf (·), and
Xf is a terminal constraint set. Note that the initial weighting function is the storage function
defined in Assumption 4.2, and it has been verified that this function is crucial in the proof of
stability as shown in Chapter 3.

This optimization problem utilizes the full past information, which is not practically realizable
as the number of decision variables increases linearly with time. To overcome this issue, one
method is keeping the estimation window as small as possible with guaranteed recursive
feasibility that is only discarding the redundant output measurements. The other approach
is adopting moving horizon estimation which only considers the past data within a finite
window horizon NE ∈ I≥1 after the time instant t = NE . In particular, the decision
variables z0:t-NE -1|t are removed and the index of (4.20b)-(4.20d) becomes j ∈ I[t-NE ,t-1].
In addition, the reachable set Rt might often be trimmed by the new output measurements,
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so that discarding past measurements could avoid its number of vertices growing unbounded.
However, there might be a violation of recursive feasibility when the reachable set Rt is
discarding the previous outputs. To explain this result, let us denote the reachable set at time
t after discarding the output measurement y0:t-NE by RNE

t , and accordingly it should be
defined as

RNE
t = {xt |∃xt-1 ∈ RNE

t-1 ∪ Yt-NE -1, ∃ωt-1 ∈ W,

yt - Cxt ∈ H, xt = Axt-1 + But-1 + ωt-1},
(4.22)

where Yt = {x | yt - Cx ∈ H}. Based on this definition, it is concluded that Rt-1 ⊆ RNE
t-1 ,

and hence there is no guarantee that RNE
t-1 ⊆ z∗t-1|t-1 ⊕ γ∗t-1|t-1Ω, which is necessary in the

proof of recursive feasibility. In particular, when the output yt-NE -1 is important, this set
inclusion may be violated and thus breaks the constraint (4.20e) at time t . Therefore, one
may resort to methods in [35] to treat this problem.

Remark 4.3. In particular, rather than tightening the nominal state-input pairs by the homo-
thetic tube, the constraint (4.20c) is enforced because it is not always satisfied that x̂ - z ∈ γΞ

in which case the input constraint is violated. The constraint (4.20d) is to select the nominal
dynamic compatible with the output measurements, and the restriction of scalar factors along
the prediction horizon is described by the constraint (4.20f) as in [69].

Remark 4.4. The constraint (4.20e) employs a homothetic tube with scalar factor γt |t to
circumscribe the set of potential states Rt (y0:t , x̂0, u0:t-1). This ensures that γt |t ∈ [0, 1]
is selected so that the real system state fulfills xt ∈ zt |t ⊕ γt |tΩ. Moreover, it is less
conservative compared to xt ∈ zt |t ⊕ Ω, and may result in better economic performance due
to the monotonicity of ℓ̃ with respect to γ. To mitigate the computational difficulty of this set
constraint, only its vertices are considered as the computed RPI sets are convex polyhedrons.

Remark 4.5. Notice that we are not applying certainty equivalence or any kind of separation
principle in order to compute state-estimates, and control policies. On the contrary, a unique
“coupled” optimization problem of “pure” economic nature is solved in order to simulta-
neously compute them. By integrating the MHE with EMPC optimization problems and
adopting a pure economic cost, there is no need to maximize the likelihood but only to select
the nominal state sequence compatible with the known measurements, so that the economic
criterion is optimized within the considered prediction horizon. The proposed approach seeks
to optimize performance without probabilistic assumptions on the disturbances and provide a
guaranteed bound on performance. Modelling the probability distribution of the disturbances
and using the expected stage cost could reduce unwanted conservatism, but it will not afford
a performance bound and beyond the scope of this thesis.
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For the terminal periodic sets, we make the following assumptions:

Assumption 4.4. There exist terminal sets Xf ⊆ X ⊖ Ω, containing the nominal optimal
state zs,i in their interior, a terminal control policy κf (·), and a continuous terminal penalty
function Vf : Xf → R, such that for all z ∈ Xf and γ ∈ [0, 1], it holds
(i) (z ,κf (z )) ∈ Z
(ii) Az + Bκf (z ) ∈ Xf
(iii) Vf (Az + Bκf (z )) - Vf (z ) ≤ ℓ̃∗av (γ) - ℓ̃(z ,κf (z ), γ).

When the system enters the optimization routine at time t , the following sub-optimal and
feasible solution which is generated from the previous optimal solution can be adopted as an
initial guess

z sub
0:t+N |t = (z∗0|t-1, z

∗
1|t-1, · · · , z∗t+N -1|t-1,Az∗t+N -1|t-1 + Bκf (z

∗
t+N -1|t-1)),

v sub
t :t+N -1|t = (v∗t |t-1, v

∗
t+1|t-1, · · · , v∗t+N -2|t-1,κf (z

∗
t+N -1|t-1)),

γsub
t :t+N -1|t = (γ∗t |t-1, γ

∗
t+1|t-1, · · · , γ∗t-1+N |t-1, 1).

(4.23)

Finally, the optimization solver converges to the optimal solution d∗
t which is

z∗0:t+N |t = (z∗0|t , z
∗
1|t , · · · , z∗t |t , · · · , z∗t+N |t ),

v∗t :t+N -1|t = (v∗t |t , v
∗
t+1|t , · · · , v∗t+N -1|t ),

γ∗t :t+N |t = (γ∗t |t , γ
∗
t+1|t , · · · , γ∗t+N |t ),

(4.24)

and the corresponding optimal value function is

VN (u0:t-1, x̂0, y0:t , γ0:t-1) = JN (z∗t :t+N |t , v
∗
t :t+N -1|t , γ

∗
t :t+N |t ). (4.25)

For an initial real system state x , let us denote the admissible set fulfilling constraints
(4.20a)-(4.20j) by ZN (x ) and the collection of admissible states x ,

XN = {x ∈ Rnx |∃(z , v ,γ) ∈ ZN (x )}. (4.26)

Next, following the manner of feedback algorithm in EMPC, the optimal control implemented
to the system (4.1) is

ut = v∗t |t + K (x̂t - z∗t |t ), (4.27)
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and the resulting closed-loop dynamic is

xt+1 = Axt + But + ωt . (4.28)

In addition, the optimal value γ∗t |t is recorded as γt and will be used in future optimization
problems. If the optimal solution d∗

t |t is non-unique, we may take any sequence that achieves
the optimum.

4.2.2 Recursive feasibility

Note that, provided the optimization problem is feasible, the optimal nominal state-input pair
(z∗t |t , v

∗
t |t ) is restricted in the set Z defined in (4.10). The rationale is that true state and input

solutions, in the usual spirit of tube MPC, will then fulfill

(xt , v∗t |t + K (x̂t - z∗t |t )) ∈ Z, ∀t ∈ I≥0, (4.29)

whatever the disturbance and noise signals are until time t . Therefore, the real system’s
solutions fulfill pointwise-in-time constraints.

Proposition 4.1. Let Assumption 4.1, 4.3, 4.4.(i), and 4.4.(ii) hold, then the economic MPC
optimization problem (4.20) is recursively feasible.

Proof. The main idea to prove recursive feasibility is to explicitly construct feasible solutions
of problems (4.20), at the current sampling time, given the previous feasible and optimal
solutions. Specifically, the sequences (4.23) will be shown as a feasible solution.

Notice that the sequences (4.23) are generated from the optimization problem at time t - 1,
they fulfill the initial nominal state constraint (4.20a), the nominal state dynamic equality
constraints (4.20b) and (4.20g), the pointwise-in-time constraints (4.20c) and (4.20h), and
the scalar factor constraints (4.20f) and (4.20i).

Because the set Ω is invariant with respect to system disturbance and measurement noise,
and the homothetic sets circumscribe the reachable states, it holds

xt-1 ∈ z∗t-1|t-1 ⊕ γ∗t-1|t-1Ω, and xt ∈ z∗t |t-1 ⊕ γ∗t |t-1Ω
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which further imply
yt-1 - Cz∗t-1|t-1 ∈ γ∗t-1|t-1CΩ⊕H,

Rt (y0:t , x̂0, u0:t-1) ⊆ z∗t |t-1 ⊕ γ∗t |t-1Ω.

In addition, satisfaction of the terminal constraint follows by Assumption 4.4, viz.

z∗t+N -1|t-1 ∈ Xf ⇒ Az∗t+N -1|t-1 + Bκf (z
∗
t+N -1|t-1) ∈ Xf .

Therefore, the optimization problem at current time t has at least one solution, and recursive
feasibility of this optimization problem is ensured.

4.3 Stability and asymptotic performance analysis

This section is dedicated to the analysis of closed-loop behaviors of the system using the
proposed EMPC controller. The first part is to prove the stability of the optimal robust
invariant set, which is inferred from the asymptotic convergence of the nominal state sequence.
Then, an upper bound of the asymptotic average performance, regardless of the disturbance
realizations is derived. Before discussing these two closed-loop properties, we need to make
the following assumption:

Assumption 4.5. The solution in (4.15) and (4.16) are the unique optimal steady-state and
the optimal period-P operation, respectively, for any γ ∈ [0, 1].

Remark 4.6. This assumption ensures that the optimal regime of operation is independent
of the choice of homothetic tube. It is worth to notice that the stability result discussed later
is not valid if this condition does not hold. Nevertheless, the use of homothetic tube may
provide economic profits, which will be indicated by examples in Section 4.4.

4.3.1 Stability analysis

Asymptotic stability of economic MPC employing Lyapunov function was first proved in
[48] under the assumption of strong duality. Such condition is subsequently relaxed by
dissipativity in [3] and [5], where it is shown how to rotate the economic cost to standard
positive definite function and choosing the rotated cost-to-go as a candidate Lyapunov
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function. In analogy, this section explores the asymptotic stability of the closed-loop nominal
sequence under EMPC control actions.

Assumption 4.6. The terminal regions Xf are compact. In addition, the storage function and
the terminal cost function satisfy λ(zs,i )+Vf (zs,i ) = 0,∀i ∈ I[0,P -1] and λ(z )+Vf (z ) ≥ 0
for all z ∈ Xf \ ΠX.

We are now in position to state the first main result in this note:

Theorem 4.1. Let Assumptions 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6 hold, under the application
of economic MPC feedback control policy (4.27), the set

⋃P -1
i=0[zs,i ⊕ Ω] is asymptotically

stable for the closed-loop system (4.28) with region of attraction XN .

Proof. Following the usual way to prove asymptotic stability of a closed-loop system under
an EMPC controller with the aid of dissipativity assumptions, we first introduce the rotated
stage cost function, rotated terminal cost function as

L(z , v , γ) = ℓ̃(z , v , γ) - ℓ̃∗av (γ) + λ(z ) - λ(Az + Bv) ≥ 0,

V f (z ) = Vf (z ) + λ(z ) ≥ 0.

Accordingly, the rotated objective function at time t is

JN (zt :t+N |t , vt :t+N -1|t , γt :t+N |t ) =
N -1∑
k=0

L(zt+k |t , vt+k |t , γt+k |t ) + V f (zt+N |t ).

With the notion of rotated cost functions, readers can refer to [5, Theorem 15] and prove

V N (u0:t , x̂0, y0:t+1, γ0:t ) - V N (u0:t-1, x̂0, y0:t , γ0:t-1)

≤ -L(z∗t |t , v
∗
t |t , γ

∗
t |t ) ≤ -α1(|z∗t |t |ΠX),

where
V N (u0:t-1, x̂0, y0:t , γ0:t-1) = JN (z∗t :t+N |t , v

∗
t :t+N -1|t , γ

∗
t :t+N |t ).

Thus, the optimal value of the rotated value function V N (u0:t-1, x̂0, y0:t , γ0:t-1) is non-
increasing along the trajectory of closed-loop system (4.28) which implies |z∗t |t |ΠX → 0 as
t → +∞.
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Next, we provide lower and upper bounds for the function V N (u0:t-1, x̂0, y0:t , γ0:t-1). Be-
cause of the non-negativity of rotated cost functions, by construction, the optimal rotated
objective function fulfills

V̄N (u0:t-1, x̂0, y0:t , γ0:t-1) =L(z∗t |t , v
∗
t |t , γ

∗
t |t ) +

N -1∑
k=1

L(z∗t+k |t , v
∗
t+k |t , γ

∗
t+k |t ) + V̄f (zt+N |t )

≥L(z∗t |t , v
∗
t |t , γ

∗
t |t ) ≥ α1(|z∗t |t |ΠX).

On the other hand, it holds

V 1(u0:t-1, x̂0, y0:t , γ0:t-1) ≤ L(z∗t |t ,κf (z
∗
t |t )) + V f (Az∗t |t + Bκf (z

∗
t |t )) ≤ V f (z

∗
t |t ).

By induction, for any N ∈ I≥2 and and z∗t |t ∈ Xf , we have

V N (u0:t-1, x̂0, y0:t , γ0:t-1) ≤ L(z∗t |t ,κf (z
∗
t |t )) + V N -1(Az∗t |t + Bκf (z

∗
t |t ))

≤ L(z∗t |t ,κf (z
∗
t |t )) + V f (Az∗t |t + Bκf (z

∗
t |t ))

≤ V f (z
∗
t |t )

Suppose that Assumption 4.6 is satisfied, the continuous function V f (z∗t |t ) fulfills V f (z∗t |t ) ≤
α2(|z∗t |t |ΠX), where α2(·) is a class K function. Hence, we obtain the optimal rotated
objective function is bounded from above and below

α1(|z∗t |t |ΠX) ≤ V N (u0:t-1, x̂0, y0:t , γ0:t-1) ≤ α2(|z∗t |t |ΠX).

Therefore, the function V N (u0:t-1, x̂0, y0:t , γ0:t-1) is a Lyapunov function and the optimal set
ΠX is locally Lyapunov stable. Together with the global attractivity, the set ΠX is asymptotic
stable in the sense that there exists a class KL function β such that |z∗t |t |ΠX ≤ β(|z∗0|0|ΠX , t)

for all t ∈ I≥0, which in turn implies the set
⋃P -1

i=0[zs,i ⊕ Ω] is asymptotically stable for the
real system.

4.3.2 Closed-loop asymptotic performance

Due to convergence to the optimal regime of operation, the average cost of asymptotically
stable closed-loop systems does not deserve special attention. Therefore, in the following we
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analyze asymptotic average cost of more general systems in which the stability conditions,
such as Assumption 4.2 and Assumption 4.4.(iii) for γ ∈ [0, 1), are not required.

Next, we state our second main result in this note:

Theorem 4.2. Suppose Assumptions 4.1, 4.3, 4.4.(i), 4.4.(ii) and 4.4.(iii) only for γ = 1 are
satisfied. Let us choose the initial penalty function λ(·) = 0, then the asymptotic average
performance of the closed-loop system (4.28), regardless of the system disturbance and
measurement noise, fulfills,

lim sup
T→+∞

∑T -1
t=0 ℓ(xt , ut )

T
≤ lim sup

T→+∞

∑T -1
t=0 ℓ̃(z

∗
t |t , v

∗
t |t , γ

∗
t |t )

T
≤ ℓ̃∗av (1). (4.30)

Proof. Given the sub-optimal control input sequence and its resulting state trajectory at
time instant t + 1 in the same structure as (4.23), for all disturbance ωt ∈ W and mea-
surement noise ηt ∈ H, the optimal cost-to-go functions fulfill VN (u0:t , x̂0, y0:t+1, γ0:t ) ≤
JN (z sub

0:t+N+1|t+1, v
sub
0:t+N |t+1, γ

sub
0:t+N |t+1), which is

VN (u0:t , x̂0, y0:t+1, γ0:t ) ≤ VN (u0:t-1, x̂0, y0:t , γ0:t-1) - λ(z∗t |t ) + λ(z∗t+1|t )

+ Vf (Az∗t+N |t + Bκf (z
∗
t+N |t )) - Vf (z

∗
t+N |t )

+ ℓ̃(z∗t+N |t ,κf (z
∗
t+N |t ), 1) - ℓ̃(z∗t |t , v

∗
t |t , γ

∗
t |t )

≤ VN (u0:t-1, x̂0, y0:t , γ0:t-1) - ℓ̃(z∗t |t , v
∗
t |t , γ

∗
t |t ) + ℓ̃∗av (1),

where the last inequality follows considering λ(·) = 0 and Assumption 4.4.(iii) for γ = 1.
Then, integrating the previous inequalities, for any time T ∈ I≥0, we have,

VN (u0, x̂0, y0:1, γ0) - VN (x̂0, y0)

+ VN (u0:1, x̂0, y0:2, γ0:1) - VN (u0, x̂0, y0:1, γ0)

+ · · · + VN (u0:T , x̂0, y0:T+1, γ0:T )

- VN (u0:T -1, x̂0, y0:T , γ0:T -1)

=
T -1∑
t=0

[VN (u0:t , x̂0, y0:t+1, γ0:t ) - VN (u0:t-1, x̂0, y0:t , γ0:t-1)]

≤
T -1∑
t=0

[ℓ̃∗av (1) - ℓ̃(z∗t |t , v
∗
t |t , γ

∗
t |t )].

(4.31)



82 Homothetic tube-based robust economic MPC with integrated MHE

Finally, by applying liminf on both sides of (4.31) and exploiting boundness of solutions, we
obtain

lim sup
T→+∞

∑T -1
t=0 ℓ̃(z

∗
t |t , v

∗
t |t , γ

∗
t |t )

T
≤ ℓ̃∗av (1).

To this end, based on the definition of modified cost function, for any xt ∈ z∗t |t ⊕ γ∗t |tΩ, it

holds ℓ(xt , ut ) ≤ ℓ̃(z∗t |t , v
∗
t |t , γ

∗
t |t ), ∀t ∈ I≥0. Therefore, the following inequality is fulfilled

lim sup
T→+∞

∑T -1
t=0 ℓ(xt , ut )

T
≤ lim sup

T→+∞

∑T -1
t=0 ℓ̃(z

∗
t |t , v

∗
t |t , γ

∗
t |t )

T
≤ ℓ̃∗av (1).

which proves the claim.

4.3.3 Rigid tube-based economic MPC algorithm

As mentioned in Remark 4.6, in case of Assumption 4.5 failing, asymptotic stability is not
in general guaranteed which might be a dangerous disadvantage of homothetic tube-based
economic MPC for some specific applications. However, the asymptotic average performance
of the real system can be preserved, and to illustrate this point, a rigid tube-based economic
MPC algorithm, in which γ = 1, defined as following will be employed for comparison,

min
d t

λ(zt |t ) +
t+N -1∑
k=t

ℓ̃(zk |t , vk |t , 1) + Vf (zN |t ) (4.32)

s .t . zt |t ∈ x̂t ⊕ Ξ,

}
(4.32a)

zj+1|t = Azj |t + Bvj , (4.32b)

(zj |t , vj ) ∈ Z, ∀j ∈ I[0,t-1] (4.32c)

yj - Czj |t ∈ CΩ⊕H, (4.32d)

zk+1|t = Azk |t + Bvk |t , (4.32e)

(zk |t , vk |t ) ∈ Z, ∀k ∈ I[t ,t+N -1], (4.32f)

zt+N |t ∈ Xf , (4.32g)

where d t = [z0:t+N |t , vt :t+N -1|t ] is the vector of decision variables. The main advantage of
this formulation is reduced computational complexity. Similarly to the previous formulation,
recursive feasibility, asymptotic stability and asymptotic performance bounds for this rigid
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tube-based algorithm can be proved. However, the modified cost function over a rigid set
might reach the sub-optimal solution in some situations which will result into conservatism.

Furthermore, it is also possible to achieve less computational complexity by abandoning
moving horizon estimation without losing desired recursive feasibility and stability. However,
this may sacrifice the economic performance as the single Luenberger observer for current
state estimation is not able to provide a tighter bound on the estimation error. The optimization
problem of using Luenberger observer is formulated as:

min
d t

λ(zt |t ) +
t+N -1∑
k=t

ℓ̃(zk |t , vk |t , 1) + Vf (zN |t ) (4.32)

s .t . zt |t ∈ x̂t ⊕ Ξ, (4.33a)

zk+1|t = Azk |t + Bvk |t , (4.33b)

(zk |t , vk |t ) ∈ Z, ∀k ∈ I[t ,t+N -1], (4.33c)

zt+N |t ∈ Xf , (4.33d)

which has less number of decision variables d t = [zt :t+N |t , vt :t+N -1|t ] compared to that in
(4.32).

4.4 Numerical examples

4.4.1 Unstable scalar system - Assumption 4.5 fails

Let us consider a simple scalar example

xt+1 = 1.1xt + ut + ωt

yt = xt + ηt
(4.34)

subjected to state and input constraints X = [-10, 10] and U = [-1, 1]. The process disturbance
and measurement noise are restricted to W = [-0.2, 0.2] and H = [-0.1, 0.1].
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We select feedback gains K = -0.9 and L = 0.9, such that A + BK = A - LC = 0.2, then
the following equation is satisfied[

ξt+1
et+1

]
=

[
0.2 0.9
0 0.2

][
ξt
et

]
+

[
0 0.9
1 -0.9

][
ωt
ηt

]
,

which provides the invariant sets Ξ×E and ∆ in Fig.4.1 by using approaches in [66] and [31].
The error ξ+e , under these two methods, are postively invariant in intervals [-0.8828, 0.8828]
and [-0.6578, 0.6578], respectively. Hence, we use the tighter invariant set ∆ and the resulting
tightened constraints on state and input are [-9.342, 9.342] and [-0.5722, 0.5722].

Fig. 4.1 Robust positively invariant sets of errors using two different approaches for the
unstable scalar system (4.34).

In order to explore the effect of losing Assumption 4.5, we allow existence of γ ∈ [0, 1]
whose corresponding robust optimal regime of operation differs from that of γ = 1, we
define a stage cost

ℓ(x , u) =

|x + 0.6578
2 | -10 ≤ x ≤ 0

|x - 0.6578
2 | 0 < x ≤ 10.
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Accordingly, the modified economic cost function with respect to any γ ∈ [0, 1] is

ℓ̃(z , v , γ)

=


max{|z - 0.6578γ + 0.6578

2 |, |z + 0.6578γ + 0.6578
2 |} -9.342 ≤ z ≤ -0.6578γ

max{|z - 0.6578γ + 0.6578
2 |, |z + 0.6578γ - 0.6578

2 |, 0.6578
2 } -0.6578γ < z ≤ 0.6578γ

max{|z - 0.6578γ - 0.6578
2 |, |z + 0.6578γ - 0.6578

2 |} 0.6578γ < z ≤ 9.342.

which has the robust optimal steady-state (zs , vs) = (0, 0) and the optimal economic cost
ℓ̃∗av (1) = ℓ̃(zs , vs , 1) = 0.6578

2 for γ ∈ [0.5, 1]. Meanwhile, when γ ∈ [0, 0.5], the robust
optimal equilibrium points are (z , v) = (0.6578

2 , -0.6578
20 ) and (z , v) = (-0.6578

2 , 0.6578
20 ).

Next, for γ = 1, the worst cost over the rigid tube is

ℓ̃(z , v , 1) =

|z - 0.6578 + 0.6578
2 | -9.342 ≤ z ≤ 0

|z + 0.6578 - 0.6578
2 |} 0 ≤ z ≤ 9.342

=|z | +
0.6578

2
,

hence the storage function is designed to be λ(z ) = c where c is a finite constant real number,
so that the following dissipativity inequality holds

λ(Az + Bv) - λ(z ) ≤ |z | +
0.6578

2
- (|0| +

0.6578
2

) = ℓ̃(z , v , γ) - ℓ̃∗av (1).

For simplicity, in both homothetic tube-based EMPC (MHE-HT) and rigid tube-based EMPC
(MHE-RT) methods, let us use the terminal equality constraint in which case Vf (z ) = 0,
Xf = zs , and κf (zs) = vs such that Assumption 3.2 is satisfied. Under different disturbances
and noise, Figures 4.2, 4.3, 4.4, and 4.5 illustrate the closed-loop states of the real system (3.1),
observer system (4.4), and the optimal nominal sequences at initial states x = x̂ = 0.3289
and prediction horizon N = 10. It can be seen that the nominal sequences converge to the
optimal steady state zs = 0 in finite steps by using MHE-RT, whereas the sequence of initial
nominal states, in the case of MHE-HT, stays at the zs only in Fig.4.3. Moreover, as expected,
for any control sequence, the total cost is monotone with respect to the initial scaling factor,
which is indicated by every figure with the minimal scaling factor γ defined as

γt = min
γ∈[0,1]

{γ : Rt (y0:t , x̂0, u0:t-1) ⊆ z∗t |t ⊕ γΩ}.
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Finally, the closed-loop asymptotic average cost of MHE-HT, in Fig.4.6, is no worse than
than that of MHE-RT, regardless of disturbances and noise. The average computational time
using fmincon to solve the MHE-HT optimization problem is 1.3208s approximately, and
the average number of calls for objective functions and nonlinear constraints are around
4.1646 × 103 times.
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Fig. 4.2 Closed-loop simulation results of system (4.34) under zero disturbances.
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Fig. 4.3 Closed-loop simulation results of system (4.34) under non-zero constant disturbances.
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Fig. 4.4 Closed-loop simulation results of system (4.34) under uniformly distributed random
disturbances.
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Fig. 4.5 Closed-loop simulation results of system (4.34) under piecewise constant distur-
bances.
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Fig. 4.6 Closed-loop performance comparison of system (4.34) using MHE-RT and HTEPMC
under different disturbances, (a) nominal; (b) non-zero constant; (c) uniformly distributed
random; (d) piecewise constant.

4.4.2 Double integrator system - Assumption 4.5 holds

Optimal steady-state operation

Considering a constrained double integrator system defined as

x t+1 =Ax t + But + ωt

yt =Cx t + ηt
(4.35)

where x = [x1 x2]T and the system parameters are

A =

[
1 1
0 1

]
B =

[
1
1

]
C =

[
1 1

]
.

This system is subject to constraints (x , u) ∈ X× U where X = {x ∈ R2 | [-10 - 10]T ≤
x ≤ [10 10]T } and U = {u ∈ R | - 5 ≤ u ≤ 5}. The sets of state disturbance and
measurement noise are W = {ω ∈ R2 | [-0.2 - 0.2]T ≤ ω ≤ [0.2 0.2]T } and H = {η ∈
R | -0.1 ≤ η ≤ 0.1}, respectively. By selecting K = [-1 -1] and L = [1 1]T , the closed-loop
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system including the observer is described as

[
ξt+1
e t+1

]
=


0 0 1 1
-1 0 1 1
0 0 0 0
0 0 -1 0


[
ξt
e t

]
+


0 0 1
0 0 1
1 0 -1
0 1 -1


[
ωt
νt

]

and the resulting tightened constraints on state and input are Z = {(z , v) | [-8.9 - 8.2]T ≤
z ≤ [8.9 8.2]T , -2 ≤ v ≤ 2}.

Fig. 4.7 Robust positively invariant sets of errors for the double integrator system (4.35).

Moreover, we define the economic stage cost as ℓ(x , u) = x1+x2, which implies ℓ̃(z , v , γ) =
z1+z2+2.9γ, (z s , vs) = ([-8.9 0]T , 0), and ℓ∗av = -6. The storage function is λ(z ) = z1 -z2
satisfying the following dissipativity inequality

λ(Az + Bv) - λ(z ) = z1 - (z1 - z2)

≤[1 1](z + γ[1.1 1.8]T ) - [1 1](z s + γ[1.1 1.8]T )

=ℓ̃(z , v , γ) - ℓ̃(z s , vs , γ).

Then, selecting the terminal ingredients by Vf (z ) = 0, Xf = z s , and κf (z s) = vs , we
can obtain the simulated results in Fig. 4.8 - 4.11, under different disturbances and noise,
with initial states x = [-2.6 - 2.3]T , x̂ = [-2.4 - 2]T and prediction horizon N = 10. The
average computational time using fmincon to solve the MHE-HT optimization problem is
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0.0753s approximately, and the average number of calls for objective functions and nonlinear
constraints are around 263 times.
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Fig. 4.8 Closed-loop simulation results of the double integrator system (4.35) with optimal
steady-state operation under zero uncertainties.
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Fig. 4.9 Closed-loop simulation results of the double integrator system (4.35) with optimal
steady-state operation under non-zero constant uncertainties.
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Fig. 4.10 Closed-loop simulation results of the double integrator system (4.35) with optimal
steady-state operation under uniformly distributed uncertainties.
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Fig. 4.11 Closed-loop simulation results of the double integrator system (4.35) with optimal
steady-state operation under piecewise constant uncertainties.

Optimal period-2 operation

Now, the input set is U = {u ∈ R | 1 ≤ |u| ≤ 10} and the stage cost function is defined
as ℓ(x , u) = 2|x2|. In this case, the tightened constraints are Z = {(z , v) | [-8.9 - 8.2]T ≤
z ≤ [8.9 8.2]T , 4 ≤ |v | ≤ 7}, and the modified cost function is ℓ̃(z , v , γ) = 2|z2| +
3.6γ which implies an infinite number of optimal periodic solutions because of translation
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invariance with respect to the variable z1. We select the robust optimal periodic pairs as
(z s,0, vs,0) = ([-1 - 2]T , 4) and (z s,1, vs,1) = ([1 2]T , -4) whose robust optimal cost is

ℓ∗av = 2|-2-1.8|+2|2+1.8|
2 = 7.2.

The storage function is chosen as λ(z ) = -|[0 1]z | that satisfies dissipativity inequality

λ(Az + Bv) - λ(z ) = -|z2 + v | +|z2|
≤ -|v | +|z2| +|z2|

≤ 2|z2| -
2
∣∣∣[0 1]z s,0

∣∣∣ + 2
∣∣∣[0 1]z s,1

∣∣∣
2

= (2|z | + 3.6γ) -
(2
∣∣∣[0 1]z s,0

∣∣∣ + 3.6γ) + (2
∣∣∣[0 1]z s,1

∣∣∣ + 3.6γ)

2

= ℓ̃(z , v , γ) -
ℓ̃(z s,1, vs,1, γ) + ℓ̃(z s,2, vs,2, γ)

2
.

Finally, the simulation results, with initial states x = -5.2, x̂ = -5 and prediction hori-
zon N = 13, are in Fig.4.12 - 4.15, under different disturbances and noise. The average
computational time using fmincon to solve the MHE-HT optimization problem is 0.3252s ap-
proximately, and the average number of calls for objective functions and nonlinear constraints
are around 389 times.
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Fig. 4.12 Closed-loop simulation results of the double integrator system (4.35) with optimal
period-2 solution under zero uncertainties.
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Fig. 4.13 Closed-loop simulation results of the double integrator system (4.35) with optimal
period-2 solution under non-zero constant uncertainties.
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Fig. 4.14 Closed-loop simulation results of the double integrator system (4.35) with optimal
period-2 solution under uniformly distributed uncertainties.
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Fig. 4.15 Closed-loop simulation results of the double integrator system (4.35) with optimal
period-2 solution under piecewise constant uncertainties.

4.4.3 CSTR system - Assumption 4.5 fails

We consider a constant level continuous stirred tank reactor (CSTR) with a single exothermal

irreversible first order reaction A k−→ B , which has been studied in [14] and [70]. The
homothetic tube-based robust EMPC integrated with MHE (MHE-HT) algorithm, the rigid
tube-based robust EMPC integrated with MHE (MHE-RT) algorithm and the rigid tube-based
robust EMPC integrated with Luenberger observer (LO-RT) are applied to this simplified
discrete time linearized CSTR model with sampling time Ts = 0.1min,

x t+1 = Ax + But + Bωωt

yt = Cx t + ηt
(4.36)

where x = [x1 x2]T and system parameters

A =

[
0.7776 -0.0045
26.6185 1.8555

]
B =

[
-0.0004
0.2907

]

Bω =

[
-0.0002 0.0893
0.1390 1.2267

]
C =

[
0 1

]
.



4.4 Numerical examples 95

This model consists of two states, the concentration x1 of the reactant and the temperature
x2 in the reactor. The control input u is the cooling temperature, while the feed flow
concentration and the feed flow temperature are regarded as disturbances.

In terms of constraints, the system is subject to

X = {x ∈ R2 | |x1| ≤ 0.5,|x2| ≤ 5}

U = {u ∈ R | |u| ≤ 15}.

The disturbance is bounded within the set

W = {ω ∈ R2 | |ω1| ≤ 0.2,|ω2| ≤ 0.05}

and the measurement noise is bounded by

H = {η ∈ R | |η| ≤ 0.01}.

By selecting K = [-84.5145 - 6.3997] and L = [0.0182 2.6331]T , the bounds for errors are
shown in Fig. 4.16, which result into the tightened constraints

Z = {(z , v)|[-0.4811 - 4.139]T ≤ z ≤ [0.4811 4.139]T , -9.997 ≤ v ≤ 9.997}.

Fig. 4.16 Forward invariant sets Ω, E and Ξ of state errors for system (4.36).
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The stage cost function is written as

ℓ(x , u) = x1 + 0.01x2
2 ,

where the fist term is to boost the reaction from A to B , and the second term can be interpreted
as a soft constraint on the temperature, which penalizes the deviation of x2 from 0. Hence,
the modified economic stage cost with a scaling factor γ is

ℓ̃(z , v , γ) = max
δ∈Ω

z1 + γδ1 + 0.01(z2 + γδ2)2.

Due to convexity, we know the maximum of the modified cost can be achieved on the vertex
of the set Ω, so it is reduced to

ℓ̃(z , v , γ) = max
δ∈V

z1 + γδ1 + 0.01(z2 + γδ2)2.

where V is the collection of vertices of Ω.

According to [14, Theorem 3], the robust optimal regime of operation for the nominal system
with γ = 1 is a steady-state that is

(z s , vs) = ([-0.0006 0.0337]T , -0.043954).

Note that, for this modified economic cost, different values of γ correspond to different
optimal steady-state so that Assumption 4.5 does not hold. With γ = 1, a candidate of
storage function obtained by using SOSTOOLs is

V (z ) = 2.67889z2
1 - 0.04058z1z2 - 0.00387z2

2 - 5.37833z1 - 0.00717z2,

so that the dissipativity inequality holds.

In the simulation, we assume the prediction horizon N = 12, initial states x 0 = [0.2 - 3]T

and x̂ 0 = [0.205 - 2.9]T , and use the terminal equality constraint such that Assumption
4.4 is satisfied and the terminal state is driven to the optimal steady-state in N steps. The
optimization is performed using the MATLAB routine fmincon with the sqp solver. In
particular, the computation of sets are based on the Multi-Parametric Toolbox 3 (MPT3).
The following Table.4.1 summarizes the computational usage and the asymptotic average
economic costs (averaged over 200 simulations with ω and η uniformly distributed over W
and H, respectively) of the three algorithms.
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MHE-HT MHE-RT LO-RT
τf (seconds) 4.94332 0.68121 0.186665
ℓav (T = 20) 0.06133 0.06138 0.06144
ℓ̄av (T = 20) 0.07167 0.08383 0.07874
ℓav (T = 50) 0.02383 0.02385 0.02387
ℓ̄av (T = 50) 0.03339 0.04946 0.04725
ℓav (T = 100) 0.01057 0.01059 0.01059
ℓ̄av (T = 100) 0.0205 0.03786 0.03675

Table 4.1 Average computational time for fmincon (τf ), corresponding averaged economic

costs (ℓav (T ) =
∑T -1

t=0 ℓ(xt ,ut )
T ), and the upper bounds of asymptotic average performance

(ℓ̄av (T ) =
∑T -1

t=0 ℓ̃(z
∗
t |t ,v

∗
t |t ,γ

∗
t |t )

T , where γ∗t |t = 1 in MHE-RT) by using three proposed EMPC
algorithms for the CSTR plant (4.36), averaged over 200 randomly generated disturbance
and noise sequences, when Assumption 4.5 fails.

As expected, while Assumption 4.5 does not hold, the approach considering the homothetic
tube in the optimization provides a better average performance and bounds at the expense
of computational complexity. Moreover, it can be seen that the upper bound of MHE-RT
is more conservative than that of LO-RT because more constraints on past information are
enforced in the optimization problems.

We also run simulations consisting malicious disturbance and noise sequences, ωt =
[0.2 0.05]T and ηt = 0.01, ∀t ∈ I≥0, which intend to maximize the economic cost in
prediction. The simulated results are shown in Table.4.2. For these non-zero constant distur-
bance and noise, the optimal value of the scaling factor γ∗t |t converges to 0.8946. Comparing
these two tables, it can be observed that the method MHE-HT provides a larger gap in average
economic performance relative to other two methods when the disturbances and noises are
malicious to the system. The reason is that the modified online optimization is considering
the worst cost within the tube, so the results in Table.4.2 takes more advantages compared to
Table.4.1 which corresponds to the random noise realizations.
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MHE-HT MHE-RT LO-RT
τf (seconds) 5.03089 0.799921 0.165637
ℓav (T = 20) 0.0718 0.07539 0.0754
ℓ̄av (T = 20) 0.07727 0.08413 0.08186
ℓav (T = 50) 0.04031 0.04113 0.04114
ℓ̄av (T = 50) 0.04469 0.04971 0.04875
ℓav (T = 100) 0.02914 0.02944 0.02944
ℓ̄av (T = 100) 0.03354 0.03798 0.0375

Table 4.2 Computational time for fmincon (τf ), corresponding asymptotic economic costs
(ℓav (T )), and the upper bounds of asymptotic performance (ℓ̄av (T )) by using three proposed
EMPC algorithms for the CSTR plant (4.36), under the malicious disturbance and noise
sequences, when Assumption 4.5 fails.

Note that, without Assumption 4.5, the algorithm does not guarantee convergence to the
robust optimal equilibrium z s . For instance, given arbitrary uniformly randomly generated
disturbance and noise sequences of ω and η, comparing the sequences of the nominal states
shown in Fig.4.17, Fig.4.19 and Fig.4.20, the algorithms MHE-RT and LO-RT always enforce
initial nominal states converging to the robust optimal steady state in finite time, whereas
they do not have convergence behavior in MHE-HT as the value of γ varies.

Therefore, we can conclude that our proposed algorithm MHE-HT can bring some advan-
tages in economic performance while stability convergence is not a necessary requirement.
Moreover, as the total cost is monotone with respect to the initial scaling factor, it is observed
that in Fig.4.18 the optimal current scaling factor γ∗t |t coincides with the minimal scaling
factor γt defined as

γt = min
γ∈[0,1]

{γ : Rt (y0:t , x̂0, u0:t-1) ⊆ z∗t |t ⊕ γΩ}.

The average computational time using fmincon to solve the MHE-HT optimization problem
is 1.9585s approximately, and the average number of calls for objective functions and
nonlinear constraints are around 3699 times.



4.4 Numerical examples 99

0 1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15

0.2

MHE-HT

MHE-RT

LO-RT

0 1 2 3 4 5 6 7 8 9 10

Time (min)

-3

-2

-1

0

1

MHE-HT

MHE-RT

LO-RT

Fig. 4.17 The real state trajectory in closed-loop when Assumption 4.5 does not hold.
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Fig. 4.18 Sequences optimal control inputs and scaling factors using MHE-HT EMPC
algorithm, under randomly generated disturbances and noise sequence, when Assumption
4.5 does not hold and the optimal operation is a steady-state.
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Fig. 4.19 The estimated state trajectory in closed-loop when Assumption 4.5 does not hold
and the optimal operation is a steady-state.
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Fig. 4.20 The nominal state sequence in closed-loop when Assumption 4.5 does not hold and
the optimal operation is a steady-state.

4.4.4 CSTR system - Assumption 4.5 satisfied

Optimal steady-state operation

If different values of the scaling factor γ lead to the same optimal equilibrium, which means
Assumption 4.5 holds, we compare the economic performance of using three algorithms
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and show that the closed-loop nominal sequence of MHE-HT also converges to the robust
optimal equilibrium z s .

Considering the same system in previous section but with different stage cost function

ℓ(x , u) = 50x1

which is to accelerate the reaction from A to B without any penalty on the temperature. Thus,
the modified stage cost is represented as

ℓ̃(z , v , γ) = max
δ∈V

50(z1 + γδ1).

In this case, for any γ ∈ [0 1], the robust optimal regime of operation is

(z s , vs) = ([-0.0740 4.1390]T , -5.4017).

Then, a candidate of storage function with respect to this new stage cost is

V (z ) = 2734.42z2
1 - 1.9195z1z2 - 0.1929z2

2

+ 144.29z1 + 1.0853z2,

For the initial states x 0 = [-0.2 2.5]T and x̂ 0 = [-0.195 2.6]T , and prediction horizon
N = 12, the simulated results are shown in the following TABLE.4.3 and Fig.4.21 - Fig.4.24.
Although the algorithm MHE-HT consumes more time in computation, the resulting eco-
nomic performance is slightly better than other two cases as tighter characterizations of the
state whereabouts allow sharper optimization of the economic criterion. In particular, there
is an obvious improvement on performance bound.
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MHE-HT MHE-RT LO-RT
τf (seconds) 2.61487 0.253959 0.0224035
ℓav (T = 20) -5.269 -5.268 -5.268
ℓ̄av (T = 20) -4.341 -3.99 -3.982
ℓav (T = 50) -4.378 -4.377 -4.377
ℓ̄av (T = 50) -3.722 -3.25 -3.246
ℓav (T = 100) -4.097 -4.096 -4.096
ℓ̄av (T = 100) -3.506 -3.002 -3

Table 4.3 Average computational time for fmincon (τf ), corresponding averaged economic
costs (ℓav (T )), and the upper bounds of asymptotic average performance (ℓ̄av (T )) by using
three proposed EMPC algorithms for the CSTR plant (4.36), averaged over 200 randomly
generated disturbance and noise sequences, when Assumption 4.5 is satisfied.

An important observation of adopting these three algorithms is that the closed-loop nominal
sequences converge to the common robust optimal state and input pair (z s , vs) regardless
of the disturbances and noises or the optimal scaling factors. This fulfills our expectation
because satisfaction of Assumption 4.5 ensures convergence, and hence the improvement in
average economic cost by using MHE-HT might be less evident. The average computational
time using fmincon to solve the MHE-HT optimization problem is 0.5591s approximately,
and the average number of calls for objective functions and nonlinear constraints are around
781 times.
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Fig. 4.21 The real state trajectory in closed-loop when Assumption 4.5 holds and the optimal
operation is a steady-state.
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Fig. 4.22 Sequences optimal control inputs and scaling factors using MHE-HT EMPC
algorithm, when Assumption 4.5 holds and the optimal operation is a steady-state.
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Fig. 4.23 The estimated state trajectory in closed-loop when Assumption 4.5 holds and the
optimal operation is a steady-state.
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Fig. 4.24 The nominal state sequence in closed-loop when Assumption 4.5 holds and the
optimal operation is a steady-state.

Optimal period-2 operation

To illustrate the performance of the proposed controller when the periodic operation is
optimal, we consider the CSTR system and its stage cost function same as that of the optimal
steady-state operation. In this case, we introduce an auxiliary state pt+1 = vt to capture the
previous step input, hence the new nominal system state equation can be described as

z̃ t+1 =

[
A O
O O

]
z̃ t +

[
B
I

]
vt

where z̃ = [z1 z2 p]T . In addition to the constraints to define the state and input space,
a coupled constraint is also considered so that the resulting tightened constraints for the
augmented system is

Z̃ = {(z̃ , v)|[-0.4811 - 4.139]T ≤ z ≤ [0.4811 4.139]T ,

-9.997 ≤ p ≤ 9.997, -9.997 ≤ v ≤ 9.997,

|p - v | ≥ 5}.

The last inequality in Z̃ is equivalent to enforcing the variation of input signal at two
successive sampling time no less than 5. Since this constraint will not affect the stage cost
function and the dissipation inequality, the modified cost function and the storage function
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are unchanged. However, the resulting optimal regime of operation becomes a period-2
solution, that is,

(z s,1, vs,1) = ([-0.0694 4.1390]T , -7.5705),

(z s,2, vs,2) = ([-0.0696 3.6315]T , -2.5705).

It has been verified that the optimal nominal sequence can always converge to this peri-
odic operation by using the three algorithms. The simulated state trajectories are shown
in the following Fig.4.25 - Fig.4.28. Notice, in Fig 4.28 (upper figure was zoomed in),
the nominal sequences switch between the corresponding values of z s,1 and z s,2 in the
optimal phase, because it is determined by the switching terminal equality constraints. The
average computational time using fmincon to solve the MHE-HT optimization problem is
0.2964s approximately, and the average number of calls for objective functions and nonlinear
constraints are around 498 times.
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Fig. 4.25 The real state trajectory in closed-loop when Assumption 4.5 holds and the optimal
operation is a period-2 solution.
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Fig. 4.26 Sequences optimal control inputs and scaling factors using MHE-HT EMPC
algorithm, when Assumption 4.5 holds and the optimal operation is a period-2 solution.
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Fig. 4.27 The estimated state trajectory in closed-loop when Assumption 4.5 holds and the
optimal operation is a period-2 solution.
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Fig. 4.28 The nominal state sequence in closed-loop when Assumption 4.5 holds and the
optimal operation is a period-2 solution.

4.5 Summary

In conclusion, we presented a homothetic tube-based robust economic MPC algorithm
integrated with moving horizon estimation for constrained linear discrete time systems. By
considering the worst cost within the homothetic tube along the artificial nominal system
and a weighting function on nominal initial state, the robustness against the disturbances
and measurement noise is guaranteed in our EMPC design. Within this chapter, constraint
tightening is used to prove recursive feasibility and a less conservative bound of the closed-
loop asymptotic average performance is derived. Moreover, the stability of the optimal robust
invariant set is inferred from the asymptotic stability of the nominal state sequence.

One of the major drawbacks of the algorithm is its computational burden. We highlight
below possible future research directions to mitigate this aspect of the proposed solution.
In particular, one may use ellipsoid or polyhedral sets with fixed number of vertices to
approximate the robust invariant sets and the reachable sets. Another possibility is discarding
past measurements and adoption of finite time-windows. All of these solutions, however,
could lead to more conservative results as we are considering the worst cost within an enlarged
tube. In this respect, there seems to be, as expected, a trade-off between computational
burden and closed-loop system’s performance.





Chapter 5

Homothetic tube-based robust
offset-free Economic Model
Predictive Control

This chapter is organized as follows. Section 5.1 introduces the basic notions and setup.
Section 5.2 elaborates the homothetic tube-based robust economic algorithm with its for-
mulation in Section 5.2.1 and recursive feasibility analysis in Section 5.2.2. The associated
closed-loop asymptotic average performance by adopting this controller is discussed in
Section 5.3. Finally, two illustrative practical examples are presented in Section 5.4 and
Section 5.5 summarizes this chapter.

The results in this chapter are based on [71].

5.1 Problem setup

Throughout this chapter, we consider discrete-time linear systems of the form

xt+1 = Axt + But + Bddt + Bωωt

dt+1 = dt + θt

yt = Cxt + Cddt + ηt

(5.1)
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where xt ∈ X ⊆ Rn , ut ∈ U ⊆ Rm , yt ∈ Rp , ∀t ∈ I≥0 are, respectively, the state, input and
output vectors, while ωt ∈ W ⊆ Rnω and ηt ∈ E ⊆ Ry are process noise and measurement
noise. The unknown but bounded variable d ∈ D ⊆ Rnd is an additional integrating input,
which models a constant or slowly varying disturbance, and its rate of variation θt ∈ Θ for
any time t ∈ I≥0.

System’s state and input are required to satisfy the following pointwise-in-time constraints

(xt , ut ) ∈ Z ⊆ X× U,∀t ∈ I≥0 (5.2)

where Z is a compact set.

Our objective is to enhance profitability by minimizing the economic costs accumulated in
the long term system operation ∑

t
ℓ(xt , ut , dt ), (5.3)

where ℓ(x , u, d) : Z× Rnd → R is the economic stage cost, which may take arbitrary form
coherently with the economic MPC setup (see [3]), and need not be positive definite with
respect to any equilibrium state.

System (5.1) can also be written in state-space form with the augmented state xa
t =

[xT
t , dT

t ]T , [
xt+1
dt+1

]
=

[
A Bd
O I

][
xt
dt

]
+

[
B
O

]
ut +

[
Bω

O

]
ωt +

[
O
I

]
θt

yt =
[
C Cd

] [xt
dt

]
+ ηt

(5.4)

which is
xa
t+1 = Āxa

t + B̄ut + B̄ωωt + Ψθt

yt = C̄ xa
t + ηt

(5.5)

where

Ā =

[
A Bd
O I

]
, B̄ =

[
B
O

]
, B̄ω =

[
Bω

O

]
, Ψ =

[
O
I

]
, C̄ =

[
C Cd

]
. (5.6)
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It is useful, in the following, to transform system (5.4) to new coordinates:

za
t =

[
zt
dt

]
= Mxa

t =

[
I -(I - A)-1Bd
O I

][
xt
dt

]
, (5.7)

which yields the algebraically equivalent representation

za
t+1 = Ãza

t + B̃ut + B̃ωωt + Ψ̃θt

yt = C̃ za
t + ηt

(5.8)

where

Ã = MĀM -1 =

[
A O
O I

]
, B̃ = MB̄ =

[
B
O

]
, B̃ω = MB̄ω =

[
Bω

O

]
,

Ψ̃ = MΨ =

[
-(I - A)-1Bd

I

]
, C̃ = C̄M -1 =

[
C C (I - A)-1Bd + Cd

]
.

(5.9)

Accordingly, the stage cost function ℓ(x , u, d) is expressed as

ℓ(x , u, d) = ℓ(z + (I - A)-1Bdd , u, d) =: ℓ̃(z , u, d) (5.10)

in terms of the new coordinates.

Throughout this chapter, we adopt the following assumption:

Assumption 5.1. The pair (A,B) is stabilizable, the pair (C̃ , Ã) is detectable and the matrix
I - A has full rank.

Remark 5.1. Note that the transformation matrix M is non-singular, detectability of the pair
(C̄ , Ā) implies that the pair (C̃ , Ã) is detectable. Necessary and sufficient conditions for
detectability of (C̄ , Ā) have been addressed by [72, Theorem 3].

Remark 5.2. The rather strong condition that matrix I - A has full rank rules out some
practical applications such as the double integrator dynamic which models a wide range of
second order systems. To overcome this limitation, one can define a pre-stabilizing controller
u = ū + Kx with the selected state feedback gain K such that the matrix I - (A + BK )
has full rank. Then, accordingly, it is rational to transform the system state coordinate with
equation z = x - (I - A - BK )-1Bdd .
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Given system (5.8), a pre-designed observer is introduced to track the new augmented system
variable and the estimate is denoted by ẑa

t = [ẑT
t , d̂T

t ]T ,

ẑa
t+1 = Ãẑa

t + B̃ut + L̃(yt - ŷt )

ŷt = C̃ ẑa
t ,

(5.11)

where the matrix L̃ = [LT , LT
d ]T . Then, the estimation error is defined as ea

t = za
t - ẑa

t ,
and governed by

ea
t+1 = (Ã - L̃C̃ )ea

t + B̃ωωt + Ψ̃θt - L̃ηt . (5.12)

This estimation error is the stack of state estimation error and disturbance estimation error
components. Since Ã - L̃C̃ is chosen as a Hurwitz matrix, a robust invariant set E can be
determined by the method in [67] such that ea

0 ∈ E implies ea
t ∈ E ,∀t ∈ I≥0 regardless of

uncertainty realizations. For the ease of notation, we denote the projections of E on system
state space and integrating disturbance space by Ez = FE ⊆ Rn and Ed = GE ⊆ Rnd ,
respectively, where F = [I , O ] and G = [O , I ].

Next, in order to determine the optimal input, based on current and past information, we
consider nominal system dynamics:

z̄t+1 = Az̄t + Bvt . (5.13)

The mismatch between the observer state and the nominal state is ξt = ẑt - z̄t , and, by
applying a state feedback control policy ut = vt +K (ẑt - z̄t ) where K is a pre-defined matrix
gain such that A + BK is Hurwitz, the observer mismatch fulfills the following recursion

ξt+1 = (A + BK )ξt + FL̃C̃ ea
t + Lηt . (5.14)

Thus, it is possible to construct a robust invariant set Ξ for the error system (5.14).

For an initial state z̄0 and a nominal control sequence v0:t-1, we can obtain a nominal
state sequence z̄0:t . By the definitions of estimated state error Fea

t = zt - ẑt and observer
mismatch ξt = ẑt - z̄t , the actual transformed system’s state differs from the nominal state
is zt - z̄t = Fea

t + ξt . Then, according to [65, Proposition 2], we can bound the difference
zt - z̄t by Ω = FE ⊕ Ξ = Ez ⊕ Ξ, provided that z0 - ẑ0 ∈ Ez and ẑ0 - z̄0 ∈ Ξ.

Since the set Ω may not provide a tight estimate of the real system state value, it may be
possible to find a less conservative bound for the economic cost incurred. Indeed, one might
take advantage of the past measured outputs in order to further reduce the region where
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the real system state belongs. For instance, by solving the economic MPC optimization
problem, it is possible to find the smallest scalar γt ∈ [0, 1] such that at any time t the state
is guaranteed to fulfill

zt ∈ z̄t ⊕ γtΩ. (5.15)

In order to provide a robust feasibility region within the prediction horizon window, we may
adopt some notion of “outer reachable sets” based on currently available information. We
denote an a-priori estimate of the reachable set at time instant t of the integrating disturbance
by Dt |t-1 updated as follows

Dt |t-1 = (Dt-1 ⊕Θ) ∩ D, (5.16)

where D0|-1 = (d̂0 ⊕ Ed ) ∩ D. In addition to the information from the previous time step,
the current measured output yt is also available to further tighten the disturbance set. To take
outputs into account, we first recursively define the reachable sets for the augmented state za

as

Rt (y0:t , ẑa
0 , u0:t-1)

= {za
t ∈ Rn+nd |∃za

t-1 ∈ Rt-1(y0:t-1, ẑa
0 , u0:t-2),∃ωt-1 ∈ W, ∃θt-1 ∈ Θ,

za
t = Ãza

t-1 + B̃ut-1 + B̃ωωt-1 + Ψ̃θt-1,

M -1za
t ∈ X× D, yt - C̃ za

t ∈ H,Gza
t ∈ Dt |t-1}.

(5.17)

where R0(y0, ẑ0) = {za
0 ∈ Rn+nd | za

0 ∈ ẑa
0 ⊕ E ,M -1za

0 ∈ X× D, y0 - C̃ za
0 ∈ H,Gza

0 ∈
D0|-1}. Then, for all t ∈ I≥0, the reachable sets of state zt and disturbance dt , by making
the best use of available information, are the projections of Rt on the state space and the
disturbance space,

Zt = FRt , Dt = GRt . (5.18)

Given the a-posteriori estimation set Dt ⊆ D, as customary in standard robust MPC, the
tightened state and input constraint for the nominal system is defined as

Z̄D = {(z , v) | (z +δ+(I -A)-1Bdd , v +K ξ) ∈ Z,∀ξ ∈ Ξ, ∀δ ∈ ξ⊕Ez , ∀d ∈ D}, (5.19)

which, accordingly, guarantees that the true system state and input are feasible provided that
the nominal ones are restricted by the tightened set, viz.,

(zt , vt ) ∈ Z̄Dt ⇒ (xt , ut ) ∈ Z. (5.20)
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Although this set Dt can provide bounds for the true integrating disturbance dt and robustly
tightened constraint (5.19), it does not take advantage of the fact that the variation of dt is
infrequent. To reduce the conservatism of using Dt , we may consider the situation arising
if the integrating disturbance is constant, i.e., Θ = {0}, and hence we consider a tighter
modified definition together with (5.16)

Do
t |t-1 = Do

t-1 ∩ D, (5.21)

where Do
0|-1 = (d̂0 ⊕ Ed ) ∩ D. Similar to (5.17), the available output sequence is also used

to select those constant d values in Do
t |t-1 which are compatible with measured outputs

Ro
t (y0:t , ẑa

0 , u0:t-1) = {za
t ∈ Rn+nd |∃za

t-1 ∈ Ro
t-1(y0:t-1, ẑa

0 , u0:t-2),∃ωt-1 ∈ W,

za
t = Ãza

t-1 + B̃ut-1 + B̃ωωt-1,

M -1za
t ∈ X× D, yt - C̃ za

t ∈ H,Gza
t ∈ Do

t |t-1}.
(5.22)

where Ro
0(y0, ẑ0) = {za

0 ∈ Rn+nd | za
0 ∈ ẑa

0 ⊕ E ,M -1za
0 ∈ X× D, y0 - C̃ za

0 ∈ H,Gza
0 ∈

Do
0|-1}. As a result, the a-posteriori estimated disturbance set in this case is Do

t = GRo
t .

When the integrating disturbance is known to be constant, or equivalently Θ = {0}, dt ∈ Do
t

for all time t and one can expect that the increasing number of output measurements keeps
shrinking the size of compatible disturbances Do

t , and hence even offset-free predictions
may be achieved, i.e., limt→∞Do

t = {d̄}, in the Hausdorff metric. However, if infrequent
or slow disturbance variation occurs, there might exist a time instant τ at which the set Ro

τ is
empty, due to the incompatibility of current output measurement, and we would then reset
Do
τ according to Do

τ = Dτ which certainly contains the true disturbance dτ . Therefore, by
the updating rules of Dt and Do

t , one can see that for all time t ∈ I≥0 it holds

Do
t ⊆ Dt . (5.23)

Remark 5.3. It may happen that the set Do
t is non-empty even if dt /∈ Do

t . However,
detecting whether dt belongs to Do

t instantaneously is difficult, and we have to compromise
using emptiness of Do

t as a proxy for dt /∈ Do
t .

In fact, due to the existence of uncertainties, it is not realistic to enforce the system to any
optimal equilibrium. An achievable goal is to steer the system to a neighbourhood of a certain
steady-state. Thanks to the restricted bound γΩ, the deviation of the true transformed state
z from the nominal state z̄ is bounded. At this point, for any set S, we define a modified
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economic cost
ℓ̄S(z , v , γ) = max

ξ∈Ξ,δ∈γΩ,d∈S
ℓ̃(z + δ, v + K ξ, d), (5.24)

which is monotonically non-decreasing with respect to γ and the set S (according to set-
inclusion). In particular, when S = D, this modified cost provides an upper bound of the
real system cost regardless of the process and measurement noise. However, according to the
inclusion in (5.23), the estimated cost by adopting D is higher and possibly conservative with
respect to that obtained by using Do . In addition, due to the desirable decreasing property
of Do as long as no reset occurs the latter is preferred in the formulation of the proposed
economic MPC optimization. Therefore, in the next section, we will only employ D to
guarantee robust feasibility while the sharper bound Do is used to approximate the upper
bound of the economic stage cost in agreement with our modelling presumption that dt is a
piecewise constant or slowly-varying disturbance.

The rational having that in our considered scenario disturbances will mostly be constant,
except for transient intervals of small variation where they might adjust to a different level.
Based on the modified stage cost function (5.24) and the case S = D = {d}, the optimal
equilibrium can be defined as

(zs , vs) = argmin
z=Az+Bv , (z ,v)∈Z̄D

ℓ̄d (z , v , γ). (5.25)

Notice that the optimal equilibrium is a function of γ and ℓ̄d (zs , vs , γ) provides the worst
cost for states within zs ⊕ γΩ regardless of the effect from noises. In particular, when γ = 1,
it gives the robust optimal cost ℓ̄d (zs , vs , 1) which is relatively conservative compared with
any other case with γ < 1.

5.2 Homothetic tube-based offset-free economic MPC al-
gorithm

5.2.1 Problem formulation

In this section, a robust economic MPC controller is designed. Following the fashion of
previously mentioned notation along the prediction: z̄0:t+N |t is the sequence of nominal
states from sampling instants 0 to t + N , considered at time t ; vt :t+N |t is the sequence of
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future nominal control moves; u0:t-1 (or v0:t-1 equivalently) and y0:t are the (known) past
system inputs and measured outputs, respectively, at time t . Because the observer states
are auxiliary variables processed within the controller, the sequence ẑa

0:t is known at time t .
Moreover, we make the following assumption to restrict the error between the real system
and the estimates:

Assumption 5.2. The initial augmented observer state ẑa
0 is provided, such that the true

transformed system state z0 and disturbance d0 fulfill za
0 - ẑa

0 ∈ E .

Now, we propose a feedback control law by solving the following finite horizon economic
MPC optimization problem with a prediction horizon N ∈ I≥1,

min
st

JN ,Do
t
(z̄t :t+N |t , vt :t+N |t , γt :t+N -1|t , β) (5.26)

s .t . ẑt - z̄t |t ∈ Ξ, (5.26a)

z̄j+1|t = Az̄j |t + Bvj , ∀j ∈ I[0,t-1], (5.26b)

(z̄j |t , vj ) ∈ Z̄Dj , ∀j ∈ I[0,t-1], (5.26c)

yj - C̃ [z̄T
j |t , d̂

T
j ]T ∈ C̃E ⊕ CΞ, ∀j ∈ I[0,t ], (5.26d)

Zt ⊆ z̄t |t ⊕ γt |tΩ, (5.26e)

A(z̄t+k |t ⊕ γt+k |tΩ) ⊕ B(vt+k |t ⊕ KΞ) ⊕ BωW⊕ (-(I - A)-1Bd )Θ

⊆ z̄t+k+1|t ⊕ γt+k+1|tΩ, ∀k ∈

}
I[0,N -2], (5.26f)

z̄t+k+1|t = Az̄t+k |t + Bvt+k |t , (5.26g)

(z̄t+k |t , vt+k |t ) ∈ Z̄Dt+k |t
, ∀k ∈ I[0,N -1], (5.26h)

0 ≤ γt+k |t ≤ 1, (5.26i)

z̄t+N |t = Az̄t+N |t + Bvt+N |t , (5.26j)

ℓ̄Do
t
(z̄t+N |t , vt+N |t , 1) ≤ κ(t), (5.26k)

where st = [z̄0:t+N |t , vt :t+N |t , γt :t+N -1|t ] is the vector of decision variables, the function

JN ,Do
t
(z̄t :t+N |t , vt :t+N |t , γt :t+N |t , β)

=
N -1∑
k=0

ℓ̄Do
t
(z̄t+k |t , vt+k |t , γt+k |t ) + β(t)ℓ̄Do

t
(z̄t+N |t , vt+N |t , 1),

(5.27)
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is the economic objective with terminal constraint κ specified as

κ(t) =

ℓ̄Dt (z̄
∗
t+N -1|t-1, v

∗
t+N -1|t-1, 1), if Ro

t is empty,

ℓ̄Do
t-1

(z̄∗t+N -1|t-1, v
∗
t+N -1|t-1, 1), otherwise.

(5.28)

The motivation of adopting a time-varying terminal weight β and several self-tuning update
rules are detailed in [8] and it satisfied the following assumption:

Assumption 5.3. [8, Assumption 1] The function β(t) satisfies β(t + 1) - β(t) ≤ c and
β(t) ≥ β for all t ∈ I≥0 and some constant c, β ∈ R, and lim supt→+∞(β(t +1) -β(t)) ≤
0.

Remark 5.4. In the optimization problem (5.26), we use the iteration Dt+k+1|t = (Dt+k |t⊕
Θ) ∩ D, where Dt |t = Dt , to generate a prediction, at time t , of the sequence of sets Dt+k ,
reachable by disturbances ∀k ∈ I≥0. Since new output measurements are available at time
t + k , the predicted and the a-posteriori disturbance sets satisfy Dt+k ⊆ Dt+k |t and this
implies that correspondingly tightened constraints fulfill Z̄Dt+k |t

⊆ Z̄Dt+k . In particular,
for k = 1, that is Dt+1 ⊆ Dt+1|t , we can obtain the relation between the two sequentially
generated tubes, Dt+k |t+1 ⊆ Dt+k |t , and hence Z̄Dt+k |t

⊆ Z̄Dt+k |t+1
, which is crucial

to guarantee recursive feasibility. While, for the predicted stage cost, it is adopted that
Do

t+k |t = Do
t , ∀k ∈ I[0,N ], because no future output measurements are available to further

tighten Do
t .

Remark 5.5. The constraint (5.26d) is to guarantee that the nominal dynamics are compatible
with output measurements. Because the set E is robustly invariant with respect to the
augmented estimation error dynamics, the difference between output measurement yj and
estimated output ŷj satisfies yj - ŷj ∈ C̃E . Meanwhile, it holds ŷj - C̃ [z̄T

j |t , d̂T
j ]T =

C (ẑT
j - z̄T

j |t ) ∈ CΞ. Therefore, if we consider yj - C̃ [z̄T
j |t , d̂T

j ]T , the constraint (5.26d) is
obtained.

Remark 5.6. The constraint (5.26e) employs a homothetic tube with scalar factor γt |t to
circumscribe the set of potential states Zt . This ensures that γt |t ∈ [0, 1] is selected so that
the real system state fulfills zt ∈ z̄t |t ⊕ γt |tΩ. Moreover, it is less conservative compared to
zt ∈ z̄t |t ⊕ Ω, and may result in better economic performance due to the monotonicity of
function ℓ̄S(z , v , γ) with respect to γ.

Remark 5.7. Providing that the integrating disturbance is constant, no reset will happen
and the time-varying terminal constraint enforces the sequence κ(t) to be non-increasing.
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Moreover, this is bounded from below because of continuity of ℓ and compactness of Z.
Hence, it convergences to a limit value denoted by κ∞ = limt→+∞ κ(t).

When the system enters the optimization routine at time t , the following suboptimal and
feasible solution which is generated from the previous optimal solution can be adopted as an
initial guess

z̄ sub
0:t+N |t = (z̄∗0|t-1, · · · , z̄∗t |t-1, · · · , z̄∗t+N -1|t-1, z̄

∗
t+N -1|t-1),

v sub
t :t+N |t = (v∗t |t-1, · · · , v∗t+N -1|t-1, v

∗
t+N -1|t-1),

γsub
t :t+N -1|t = (γ∗t |t-1, · · · , γ∗t+N -2, 1).

(5.29)

Finally, the solver converges to the optimal solution s∗t , which is

z̄∗0:t+N |t = (z̄∗0|t , · · · , z̄∗t |t , · · · , z̄∗t+N -1|t , z̄
∗
t+N |t ),

v∗t :t+N |t = (v∗t |t , · · · , v∗t+N -1|t , v
∗
t+N |t ),

γ∗t :t+N -1|t = (γ∗t |t , · · · , γ∗t+N -2|t , γ
∗
t+N -1|t ).

(5.30)

and the optimal value function is denoted by

VN ,Do
t
(u0:t-1, ẑa

0:t , y0:t , β) = JN ,Do
t
(z̄∗t :t+N |t , v

∗
t :t+N |t , γ

∗
t :t+N -1|t , β). (5.31)

As usual in feedback algorithm in economic MPC, the optimal control input implemented to
system (5.1) is

ut = v∗t |t + K (ẑt - z̄∗t |t ), (5.32)

and the resulting closed-loop dynamic is

xt+1 = Axt + But + ωt . (5.33)

In addition, the optimal values v∗t |t are recorded as vt and will be used in future optimization
problems. If the optimal solution is non-unique, we may take any sequence that achieves the
optimum.



5.2 Homothetic tube-based offset-free economic MPC algorithm 119

5.2.2 Recursive feasibility

Notice that, provided the optimization problem is feasible, the optimal nominal state-input
pair (z̄∗t |t , v

∗
t |t ) is restricted in the set Z̄t defined in (5.19). The rationale is that true state and

input solutions, in the usual spirit of tube MPC, will then fulfill

(xt , v∗t |t + K (ẑt - z̄∗t |t )) ∈ Z, ∀t ∈ I≥0, (5.34)

whatever the disturbance and noise signals are until time t . Therefore, the real system’s
solutions fulfill pointwise-in-time constraints.

Proposition 5.1. Let Assumption 5.1 and 5.2 hold, then the economic MPC optimization
problem (5.26) is recursively feasible.

Proof. The main idea to prove recursive feasibility is to explicitly construct feasible solutions
of problems (5.26), at the current sampling time, given the previous feasible and optimal
solutions. In particular, we will show the initial guess (5.29) is a feasible solution at time t .

Notice that the sequences in (5.29) are generated from the optimization problem at time
t - 1, they satisfy the nominal state dynamic equality constraints (5.26b) and (5.26g), the
pointwise-in-time constraints (5.26c), the output constraints (5.26d) until t -1, the scalar factor
constraints (5.26f) and (5.26i), and the terminal equilibrium constraint (5.26j), automatically.

In terms of the constraint (5.26e), since the homothetic sets circumscribe the reachable states,
it holds

zt ∈ Zt ⊆ z̄∗t |t-1 ⊕ γ∗t |t-1Ω.

For the pointwise-in-time constraints (5.26h) within the prediction horizon k ∈ I[1,N ], it is
indicated by

(z̄∗t-1+k |t-1, v
∗
t-1+k |t-1) ∈ Z̄Dt-1+k |t-1

⊆ Z̄Dt-1+k |t
.

Then, because the observer mismatch (5.14) is invariant with respect to the set Ξ and it is
able to be tightened by the scalar factor, the initial constraint (5.26a),

ẑt ∈ z̄∗t |t-1 ⊕ Ξ,

ŷt - C̃ [z̄∗
T

t |t-1, d̂
T
t ]T ∈ CΞ.
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Together with the result that the estimation error at time t fulfills ea
t ∈ E from Assumption

5.2, we can obtain yt - ŷt ∈ C̃E , and hence

yt - C̃ [z̄∗
T

t |t-1, d̂
T
t ]T ∈ C̃E ⊕ CΞ,

which ensures the output constraint (5.26d) at time instant t for the sub-optimal solution.

Moreover, when there is no reset on Do
t , it fulfills Do

t ⊆ Do
t-1, hence

ℓ̄Do
t
(z̄∗t+N -1|t-1, v

∗
t+N -1|t-1, 1) ≤ ℓ̄Do

t-1
(z̄∗t+N -1|t-1, v

∗
t+N -1|t-1, 1) = κ(t).

Once reset happens, we have Do
t = Dt and then

ℓ̄Do
t
(z̄∗t+N -1|t-1, v

∗
t+N -1|t-1, 1) = ℓ̄Dt (z̄

∗
t+N -1|t-1, v

∗
t+N -1|t-1, 1) = κ(t).

Thus, the terminal inequality constraint (5.26k) is always satisfied. Therefore, the optimiza-
tion problem (5.26) at current time t has at least one solution, and recursive feasibility of this
optimization problem is ensured.

5.3 Asymptotic average performance

For tube-based robust economic MPC problems analyzed in Chapter 3, 4 and reference [14],
the nominal state sequence is stabilized to the robust optimal steady-state, and the true system
state is invariant with respect to the generated tube. Thus, the worst cost evaluated within
this tube guarantees an upper bound for the system long-run average operation. Similarly,
having formulated the economic MPC optimization problem with self-tuning terminal cost,
in this section, we study the resulting closed-loop average performance in the case of constant
integrating disturbance. This result is stated in the following theorem.

Theorem 5.1. Suppose Assumption 5.1, 5.2 and 5.3 are satisfied and the integrating distur-
bance is constant. The asymptotic average performance of the closed-loop system using
optimal input (5.32), regardless of the noises, fulfills,

lim sup
T→+∞

∑T -1
t=0 ℓ(xt , ut , dt )

T
≤ lim sup

T→+∞

∑T -1
t=0 ℓ̄Do

t
(z̄∗t |t , v

∗
t |t , γ

∗
t |t )

T
≤ κ∞. (5.35)
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Proof. Given the suboptimal control input sequence and its resulting state trajectory at time
t + 1 in the same structure as (5.29), for all noises ωt ∈ W, θt ∈ Θ and ηt ∈ E, the optimal
cost-to-go functions fulfill

VN ,Do
t+1

(u0:t , ẑa
0:t+1, y0:t+1, β(t + 1))

≤ JN ,Do
t+1

(z̄ sub
t+1:t+N+1|t+1, v

sub
t+1:t+N |t+1, γ

sub
t+1:t+N |t+1, β(t + 1))

≤ JN ,Do
t
(z̄ sub

t+1:t+N+1|t+1, v
sub
t+1:t+N |t+1, γ

sub
t+1:t+N |t+1, β(t + 1)),

with the last inequality satisfied by Do
t+1 ⊆ Do

t , which is

VN ,Do
t+1

(u0:t , ẑa
0:t+1, y0:t+1, β(t + 1)) - VN ,Do

t
(u0:t-1, ẑa

0:t , y0:t , β(t))

≤ JN ,Do
t
(z̄∗t+1:t+N+1|t , v

∗
t+1:t+N |t , γ

∗
t+1:t+N |t , β(t + 1))

- JN ,Do
t
(z̄∗t :t+N |t , v

∗
t :t+N -1|t , γ

∗
t :t+N -1|t , β(t))

= -ℓ̄Do
t
(z̄∗t |t , v

∗
t |t , γ

∗
t |t ) + ℓ̄Do

t
(z̄∗t+N |t , v

∗
t+N |t , 1)

- β(t)ℓ̄Do
t
(z̄∗t+N |t , v

∗
t+N |t , 1) + β(t + 1)ℓ̄Do

t
(z̄∗t+N |t , v

∗
t+N |t , 1)

= -ℓ̄Do
t
(z̄∗t |t , v

∗
t |t , γ

∗
t |t ) + (1 - β(t) + β(t + 1))ℓ̄Do

t
(z̄∗t+N |t , v

∗
t+N |t , 1).

(5.36)
As mentioned in Remark (5.7), the sequence ℓ̄Do

t
(z̄∗t+N |t , v

∗
t+N |t , 1) is non-increasing in t

and converge to κ∞ as t → +∞. This implies that ε(t) = ℓ̄Do
t
(z̄∗t+N |t , v

∗
t+N |t , 1) - κ∞ is

non-increasing and converges to zero for t → +∞.

Integrating the inequality (5.36), for any time T - 1 ∈ I≥0, we have,

VN ,Do
1
(u0, ẑa

0:1, y0:1, β(1)) - VN ,Do
0
(ẑa

0 , y0, β(0))

+ VN ,Do
2
(u0:1, ẑa

0:2, y0:2, β(2)) - VN ,Do
1
(u0, ẑa

0:1, y0:1, β(1))

+ · · · + VN ,Do
T

(u0:T -1, ẑ
a
0:T , y0:T , β(T )) - VN ,Do

T -1
(u0:T -2, ẑ

a
0:T -1, y0:T -1, β(T - 1))

=
T -1∑
t=0

[VN ,Do
t+1

(u0:t , ẑa
0:t+1, y0:t+1, β(t + 1)) - VN ,Do

t
(u0:t-1, ẑa

0:t , y0:t , β(t))]

≤
T -1∑
t=0

[-ℓ̄Do
t
(z̄∗t |t , v

∗
t |t , γ

∗
t |t ) + (1 + β(t + 1) - β(t))(κ∞ + ε(t))]

(5.37)
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Then, by taking arithmetic average, applying lim inf on both sides of (5.37) exploiting
boundedness of solutions, we obtain for the right hand side

lim inf
T→+∞

∑T -1
t=0[-ℓ̄Do

t
(z̄∗t |t , v

∗
t |t , γ

∗
t |t ) + (1 + β(t + 1) - β(t))(κ∞ + ε(t))]

T

≤κ∞ - lim sup
T→+∞

∑T -1
t=0 ℓ̄Do

t
(z̄∗t |t , v

∗
t |t , γ

∗
t |t )

T
+ lim sup

T→+∞

∑T -1
t=0(β(t + 1) - β(t) + 1)ε(t)

T

+ lim sup
T→+∞

∑T -1
t=0(β(t + 1) - β(t))κ∞

T

=κ∞ - lim sup
T→+∞

∑T -1
t=0 ℓ̄Do

t
(z̄∗t |t , v

∗
t |t , γ

∗
t |t )

T
+ lim sup

T→+∞

(β(T ) - β(0))κ∞
T

=κ∞ - lim sup
T→+∞

∑T -1
t=0 ℓ̄Do

t
(z̄∗t |t , v

∗
t |t , γ

∗
t |t )

T

where the last two equalities hold true since signals converging to 0 have zero average and
because of Assumption 5.3 and the fact that ℓ̄Do

t
can be shifted to be positive without loss of

generality.

On the other hand, as the stage cost function ℓ̄Do
t

> -∞ and β(t) ≥ 0 for all t ∈ I≥0, the
optimal value function VN ,Do

t
is bounded from below, then the left hand side becomes

lim inf
T→+∞

1
T

[VN ,Do
1
(u0, ẑa

0:1, y0:1, β(1)) - VN ,Do
0
(ẑa

0 , y0, β(0))

+ VN ,Do
2
(u0:1, ẑa

0:2, y0:2, β(2)) - VN ,Do
1
(u0, ẑa

0:1, y0:1, β(1))

+ · · · + VN ,Do
T

(u0:T -1, ẑ
a
0:T , y0:T , β(T )) - VN ,Do

T -1
(u0:T -2, ẑ

a
0:T -1, y0:T -1, β(T - 1))]

≥ lim inf
T→+∞

VN ,Do
T

(u0:T -1, ẑa
0:T , y0:T , β(T ))

T
+ lim inf

T→+∞

-VN ,Do
0
(ẑa

0 , y0, β(0))

T
≥ 0.

Finally, combining both sides, we have

lim sup
T→+∞

∑T
t=0 ℓ̄Dt (z̄

∗
t |t , v

∗
t |t , γ

∗
t |t )

T
≤ κ∞
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To this end, based on the definition of modified cost function (5.24), for any xt ∈ z̄∗t |t ⊕
γ∗t |tΩ⊕ (I -A)-1BdDo

t , it holds ℓ(xt , ut , dt ) ≤ ℓ̄Dt (z̄
∗
t |t , v

∗
t |t , γ

∗
t |t ),∀t ∈ I≥0. Therefore, the

following inequality is fulfilled

lim sup
T→+∞

∑T
t=0 ℓ(xt , ut , dt )

T
≤ lim sup

T→+∞

∑T
t=0 ℓ̄Do

t
(z̄∗t |t , v

∗
t |t , γ

∗
t |t )

T
≤ κ∞.

which proves the claim.

5.4 Numerical examples

We consider a two-tanks system addressed in [46, 73] and the structure of this system is
presented in Fig.5.1. Let variables x = [x1 x2]T ∈ R2, u ∈ R and y ∈ R denote the
heights of two tanks, the total water inflow through the pump, and the total water outflow,
respectively. There is an additional constant flow into tank 2 described as an integrating
disturbance d .

𝑢

𝑦

𝑥2

𝑥1

𝑑

Fig. 5.1 Two tanks system.
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The mathematical linear model can be written asx+
1

x+
2

d+

 =

-0.0159 0.0419 0
0 -0.0419 1
0 0 1


x1
x2
d

 +

0.0521
0.0479

0

 u +

0.0718
0
0

ω,

y =
[
0.5 0.1

] [x1
x2

]
+ η.

(5.38)

This system is subject to constraints (x , u) ∈ X× U where

X = {x ∈ R2 | [0 0]T ≤ x ≤ [2 1.5]T }

and
U = {u ∈ R | 0 ≤ u ≤ 5}.

The sets of system and measurement noise are

W = {ω ∈ R | - 0.1 ≤ ω ≤ 0.1}

and
H = {η ∈ R | - 0.05 ≤ η ≤ 0.05},

respectively. Moreover, it is known that the integrating disturbance satisfies

d ∈ D = {d ∈ R | 0 ≤ d ≤ 1}.

By selecting state feedback gain K = [0.5 0.1] and observer gains L = [0.1 0.2]T ,Ld = 5,
the computed sets to bound the estimation errors and the observer mismatch are shown in
Fig.5.2 and Fig.5.3.
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Fig. 5.2 Robust positively invariant set E
for system (5.38).

Fig. 5.3 Associated sets in system (5.38):
Ez , Ed , Ξ and Ω.

5.4.1 Linear cost function

The aim of this controlled system is to maximize the total height of the water in these two
tanks, so the stage cost to be minimized is

ℓ(x , u, d) = -x1 - x2, (5.39)

which leads to the modified stage cost

ℓ̄S(z̄ , v , γ) = max
d∈S

-z̄1 - z̄2 - 0.9994d + 0.09217γ. (5.40)

• Zero rate of variation

Next, when the integrating disturbance is a constant that is θ = 0, the size of the estimated
disturbance set Do is expected to be monotonically non-increasing. Under the sequences
of noise in Fig.5.6, the following Fig.5.4 shows the closed-loop results at the initial state
x = [1 1]T , initial transformed state estimate ẑ = [0.9802 0.5201]T , constant disturbance
d = 0.5, and prediction horizon N = 20.

As a result, the nominal state sequence converges to the steady state z̄ s = [0.2654 0.2294]T

which corresponds to x s = [0.2852 0.7093]T in the original coordinate. We can verify that
the obtained value of z̄ s indeed is the optimal equilibrium for any γ ∈ [0 1]. As the function
ℓ̄S(z̄ , v , γ) is linear with respect to z̄ , the optimal solution in (5.25) is independent of S and
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γ. Therefore, the proposed economic MPC controller is able to achieve offset free behaviour
for the nominal state without a priori knowledge of constant disturbances.

Regarding disturbance estimation, the noise realizations and a priori bounds determine the
size of the disturbance sets, Dt and Do

t . Our simulations indicate that there exist some
scenarios which can ensure the set Do to estimate the actual disturbance accurately. This
happens, in particular, when the process noise ω and the measurement noise η are random
signals and their actual supports are adopted as a priori estimates W and H. Specifically,
convergence might be faster when the noise take values on the boundary of the respective
supporting sets. Notice in Fig.5.5 how Do

t shrinks to the true value {0.5} (purple line). For
comparison Dt has a non-monotone behaviour and never is able to tightly characterize the
constant disturbance acting on the system (yellow line).

Moreover, the sequence of optimal scaling factors and the average performance are shown
in Fig.5.6. The use of the homothetic tube provide a less conservative upper bound for the
actual asymptotic average economic cost. The average computational time using fmincon to
solve the optimization problem is 1.2628s approximately, and the average number of calls
for objective functions and nonlinear constraints are around 889 times.

Fig. 5.4 Closed-loop transformed state trajectories with scaled bounded set γΩ for system
(5.38), when the disturbance has zero rate of variation.
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Fig. 5.5 True disturbance d , disturbance bound D, robust estimated set D, estimated set Do

and its zoomed-in for system (5.38), when the disturbance has zero rate of variation and
noises are randomly generated from the boundaries W and H.
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Fig. 5.6 Distribution of the noises, the optimal scaling factor, and asymptotic average
performance for system (5.38), when the disturbance has zero rate of variation.

For a different randomly generated scenario of noises from sets W and H, the resulting
disturbance sets are shown in Fig.5.7. We can see that Do

t is decreasing in time, however,
it does not appear to converge asymptotically to a singleton or, alternatively, convergence
might be very slow.
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Fig. 5.7 Actual disturbance d , disturbance bound D, robust estimated set D, estimated set
Do under uniformly generated noises, when the disturbance has zero rate of variation and
noises are randomly generated from sets W and H.

• Nonzero rate of variation

Suppose the rate of variation is nonzero, i.e.,

θ ∈ Θ = {θ ∈ R | - 0.005 ≤ θ ≤ 0.005},

the simulation results of two noise scenarios are shown in Fig.5.8 and Fig.5.9. Particularly,
in Fig.5.8, at t = 50, 100, 150 where disturbance variation occurs and Ro

t becomes empty,
Do

t is reset to Dt accordingly. To this end, we can conclude that the set Do can estimate the
actual value of d exactly provided that the past output measurements are sufficiently rich.
In addition, in both cases, it is observed that the sequences of the nominal state converge
to z̄ s = [0.2654 0.2294]T . Based on this z̄ s , it has been verified that the nominal system
of (5.38) can always be driven to its economically optimal equilibrium for different values
of disturbance d . The average computational time using fmincon to solve the optimization
problem is 1.5528s approximately, and the average number of calls for objective functions
and nonlinear constraints are around 1014 times.
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Fig. 5.8 True disturbance d , disturbance bound D, robust estimated set D, estimated set Do

and its zoomed-in for system (5.38), when the disturbance has nonzero rate of variation and
noises are randomly distributed on the boundaries of W and H.
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Fig. 5.9 True disturbance d , disturbance bound D, robust estimated set D, estimated set Do

and its zoomed-in for system (5.38), when the disturbance has nonzero rate of variation and
noises are randomly distributed on sets W and H.

5.4.2 Quadratic cost function

The optimal equilibrium of problem (5.25) with the linear cost function shows its indepen-
dence to the scaling factor γ, and hence the closed-loop initial nominal sequence converges
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to the same point regardless of the optimal solution γ∗t |t . However, there are cases that the
results affected by the scaling factor which can be illustrated by considering the following
quadratic stage cost function

ℓ(x , u, d) = -x1 + (x2 - 0.5)2.

Then, the modified stage cost is represented as

ℓ̄S(z̄ , v , γ) = max
d∈S,δ∈γΩ

(0.9598d + z̄2 + δ1γ)2 - (z̄1 + δ1γ) - (z̄2 + δ2γ) - 0.9994d + 0.25.

We consider the initial state x = [1 1]T , prediction horizon N = 12, and a slowly varying
disturbance d increasing from 0.5 to 0.58 and subsequently decreasing to its initial value. The
simulated results are shown in the following Fig.5.10 - Fig.5.12. Notice, in Fig.5.11, that the
set Do

t can estimate the true constant values {0.5} and {0.58} (purple line) when the noise
take values on the boundary of the respective supporting sets as shown in Fig.5.12. More
importantly, the closed-loop initial nominal sequence z̄ ∗t |t converges to [0.7155 0.6186] and
[0.6267 0.5418] for d = 0.5 and d = 0.58, respectively, which are approximately identical to
the optimal equilibria from problem (5.25) in the case of γ = 0.345 in Fig.5.12. The average
computational time using fmincon to solve the optimization problem is 2.6402s approxi-
mately, and the average number of calls for objective functions and nonlinear constraints are
around 3525 times.

Fig. 5.10 Closed-loop transformed state trajectories with scaled bounded set γΩ for system
(5.38), when the disturbance is as shown in Fig.5.11.
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Fig. 5.11 True disturbance d , disturbance bound D, robust estimated set D, estimated set Do

and the zoomed-in for system (5.38), when noises are randomly generated on the boundaries
of sets W and H.
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Fig. 5.12 Distribution of the noises, the optimal scaling factor, and asymptotic average
performance for system (5.38), when the disturbance is as shown in Fig.5.11.

5.5 Summary

In summary, we presented a homothetic tube-based robust offset-free Economic MPC
algorithm combined with moving horizon estimation for constrained linear discrete time
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systems. By adopting separate iterative updating rules for the set of current disturbances
compatible with past data, allows to differentiate the tightest estimate based on constant
disturbances, from the worst case approach based on the assumption of slowly-varying
disturbances. These are respectively used for cost estimation and to both guarantee robustness
against process/measurement noises and recursive feasibility. Moreover, a tight robust
economic performance bound of the closed-loop asymptotic average performance is derived.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we investigated recursive feasibility, asymptotic stability and average perfor-
mance of robust economic MPC problems.

In particular, we introduced the new concept control storage function and adopt it as the
terminal cost function. A generalized approach for estimation of system asymptotic average
performance from above and below employing the CSF and dissipation inequalities has
been elaborated. Such tools are adapted to formulate economic MPC control schemes and
eventually analyze their performance and stability. In the case of “no-gap”, as previously
defined, if the assumption on continuity of optimal control policy from the economic MPC
controller holds, the optimal regime of operation is Lyapunov asymptotically stable when the
CSF is used as the terminal penalty function.

When the system is subject to disturbances, a tube-based robust economic MPC algorithm
was presented. By considering the worst cost of the tube along with the artificial nominal
system, the robustness against the disturbances is guaranteed in our economic MPC design.
Within this thesis, constraint tightening is used to prove recursive feasibility and the bound
of the closed-loop asymptotic average performance is derived. The asymptotic stability of
the robust optimal invariant set is inferred from the asymptotic convergence of the nominal
state sequence.
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Furthermore, MHE is integrated with the economic MPC in a single optimization problem
and the homothetic tube is employed if the system state is not measurable. In this setup,
a purely economic cost is formulated as the objective function, so that the controller can
estimate the current state using the past output measurements and optimize the predicted
cost at the same time. More importantly, thanks to the use of the artificial nominal system,
recursive feasibility and asymptotic stability are ensured. This method is then extended to
the offset-free framework, in which the optimal equilibrium is unknown as a-priori and a
generalized terminal cost function is used in the objective function.

In conclusion, the results provide a possibility of economic MPC for systems optimally
operated at general solutions beyond steady-state and contribute to some design methods in
the area of robust economic MPC.

6.2 Future work

In this thesis, we obtained some novel results of economic MPC on general optimal regimes
of operation and explicitly considering disturbances, so this can be regarded as a starting
point for various interesting future research topics.

For all of the presented ideas, the dissipativity condition is required to classifying the optimal
operation regime and establish closed-loop stability. However, it is not always easy to find
suitable storage functions to fulfill the dissipativity. Hence it would be an interesting direction
to explore the analytically or approximate solutions. Meanwhile, as the counterpart of the
dissipativity, controlled dissipation inequality, which is on terminal cost functions, is an open
area. Therefore, the relation between the storage function and the control storage function is
of interest.

We derived some bounds of asymptotic performance for systems operating in a long time,
while the performance of the transient phase has not been considered. To find similar bounds
on transient average cost is also a possible research direction. In addition, throughout this
thesis, the disturbance is assumed to be uniformly distributed in a bounded set and the worst
cost is utilized in problem formulations, thus this could lead to conservatism in closed-
loop operation and performance bound estimation. Taking into account more statistical
information of the disturbance and deriving a tighter robust performance bound for system
realizations without losing recursive feasibility and stability is an interesting topic.
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Adopting the tube-based controller requires the computation of control invariant set which is
a complex procedure for general nonlinear systems. One possibility is to investigate other
system properties to reduce the computation complexity such as monotonicity in which case
only the extreme disturbance realization is needed.

Finally, in our proposed methods, non-zero disturbances are always treated as quantities
which degrade economic performance. In fact, this is not the case. For example, we usually
consider wind as a disturbance in aircraft control problems. However, in the forced landing
problem where there is no thrust to control the aircraft, upward wind could help the flight
have less sink rate and longer glide distance. Furthermore, the robust optimal steady-state
is defined based on the nominal system, but there might be other steady-state of the system
with non-zero disturbance, which is capable of providing a lower economic cost. Then, it
could be very interesting to replace the nominal system consideration in tube-based economic
MPC framework by other system scenarios, which takes the influence of the disturbance into
consideration explicitly.
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