5 research outputs found

    Converting relational databases into object relational databases

    Get PDF
    This paper proposes an approach for migrating existing Relational DataBases (RDBs) into Object-Relational DataBases (ORDBs). The approach is superior to existing proposals as it can generate not only the target schema but also the data instances. The solution takes an existing RDB as input, enriches its metadata representation with required semantics, and generates an enhanced canonical data model, which captures essential characteristics of the target ORDB, and is suitable for migration. A prototype has been developed, which migrates successfully RDBs into ORDBs (Oracle 11g) based on the canonical model. The experimental results were very encouraging, demonstrating that the proposed approach is feasible, efficient and correct

    Performance evaluation of an RDB and an ORDB: A comparative study using the BUCKY benchmark

    Get PDF
    This paper highlights the functionality of object-based database systems by comparing the performance of relational database (RDB) and object-relational database (ORDB) systems. The study focuses on assessing the efficiency of database systems based on query processing and object complexity. We conducted an experiment that includes running the queries on the RDB and ORDB that were used in the BUCKY benchmark and implemented on Oracle 11g. The findings of this research show that the performance of both database systems depends on various factors, such as the size and type of databases, the schema and query structures, the number of tuples scanned in tables, indexes as well as the environment, in which the experiment was carried out

    Migrating relational databases into object-based and XML databases

    Get PDF
    Rapid changes in information technology, the emergence of object-based and WWW applications, and the interest of organisations in securing benefits from new technologies have made information systems re-engineering in general and database migration in particular an active research area. In order to improve the functionality and performance of existing systems, the re-engineering process requires identifying and understanding all of the components of such systems. An underlying database is one of the most important component of information systems. A considerable body of data is stored in relational databases (RDBs), yet they have limitations to support complex structures and user-defined data types provided by relatively recent databases such as object-based and XML databases. Instead of throwing away the large amount of data stored in RDBs, it is more appropriate to enrich and convert such data to be used by new systems. Most researchers into the migration of RDBs into object-based/XML databases have concentrated on schema translation, accessing and publishing RDB data using newer technology, while few have paid attention to the conversion of data, and the preservation of data semantics, e.g., inheritance and integrity constraints. In addition, existing work does not appear to provide a solution for more than one target database. Thus, research on the migration of RDBs is not fully developed. We propose a solution that offers automatic migration of an RDB as a source into the recent database technologies as targets based on available standards such as ODMG 3.0, SQL4 and XML Schema. A canonical data model (CDM) is proposed to bridge the semantic gap between an RDB and the target databases. The CDM preserves and enhances the metadata of existing RDBs to fit in with the essential characteristics of the target databases. The adoption of standards is essential for increased portability, flexibility and constraints preservation. This thesis contributes a solution for migrating RDBs into object-based and XML databases. The solution takes an existing RDB as input, enriches its metadata representation with the required explicit semantics, and constructs an enhanced relational schema representation (RSR). Based on the RSR, a CDM is generated which is enriched with the RDB's constraints and data semantics that may not have been explicitly expressed in the RDB metadata. The CDM so obtained facilitates both schema translation and data conversion. We design sets of rules for translating the CDM into each of the three target schemas, and provide algorithms for converting RDB data into the target formats based on the CDM. A prototype of the solution has been implemented, which generates the three target databases. Experimental study has been conducted to evaluate the prototype. The experimental results show that the target schemas resulting from the prototype and those generated by existing manual mapping techniques were comparable. We have also shown that the source and target databases were equivalent, and demonstrated that the solution, conceptually and practically, is feasible, efficient and correct

    On Pattern Mining in Graph Data to Support Decision-Making

    Get PDF
    In recent years graph data models became increasingly important in both research and industry. Their core is a generic data structure of things (vertices) and connections among those things (edges). Rich graph models such as the property graph model promise an extraordinary analytical power because relationships can be evaluated without knowledge about a domain-specific database schema. This dissertation studies the usage of graph models for data integration and data mining of business data. Although a typical company's business data implicitly describes a graph it is usually stored in multiple relational databases. Therefore, we propose the first semi-automated approach to transform data from multiple relational databases into a single graph whose vertices represent domain objects and whose edges represent their mutual relationships. This transformation is the base of our conceptual framework BIIIG (Business Intelligence with Integrated Instance Graphs). We further proposed a graph-based approach to data integration. The process is executed after the transformation. In established data mining approaches interrelated input data is mostly represented by tuples of measure values and dimension values. In the context of graphs these values must be attached to the graph structure and aggregated measure values are graph attributes. Since the latter was not supported by any existing model, we proposed the use of collections of property graphs. They act as data structure of the novel Extended Property Graph Model (EPGM). The model supports vertices and edges that may appear in different graphs as well as graph properties. Further on, we proposed some operators that benefit from this data structure, for example, graph-based aggregation of measure values. A primitive operation of graph pattern mining is frequent subgraph mining (FSM). However, existing algorithms provided no support for directed multigraphs. We extended the popular gSpan algorithm to overcome this limitation. Some patterns might not be frequent while their generalizations are. Generalized graph patterns can be mined by attaching vertices to taxonomies. We proposed a novel approach to Generalized Multidimensional Frequent Subgraph Mining (GM-FSM), in particular the first solution to generalized FSM that supports not only directed multigraphs but also multiple dimensional taxonomies. In scenarios that compare patterns of different categories, e.g., fraud or not, FSM is not sufficient since pattern frequencies may differ by category. Further on, determining all pattern frequencies without frequency pruning is not an option due to the computational complexity of FSM. Thus, we developed an FSM extension to extract patterns that are characteristic for a specific category according to a user-defined interestingness function called Characteristic Subgraph Mining (CSM). Parts of this work were done in the context of GRADOOP, a framework for distributed graph analytics. To make the primitive operation of frequent subgraph mining available to this framework, we developed Distributed In-Memory gSpan (DIMSpan), a frequent subgraph miner that is tailored to the characteristics of shared-nothing clusters and distributed dataflow systems. Finally, the results of use case evaluations in cooperation with a large scale enterprise will be presented. This includes a report of practical experiences gained in implementation and application of the proposed algorithms

    Migrating relational databases into object-based and XML databases

    Get PDF
    Rapid changes in information technology, the emergence of object-based and WWW applications, and the interest of organisations in securing benefits from new technologies have made information systems re-engineering in general and database migration in particular an active research area. In order to improve the functionality and performance of existing systems, the re-engineering process requires identifying and understanding all of the components of such systems. An underlying database is one of the most important component of information systems. A considerable body of data is stored in relational databases (RDBs), yet they have limitations to support complex structures and user-defined data types provided by relatively recent databases such as object-based and XML databases. Instead of throwing away the large amount of data stored in RDBs, it is more appropriate to enrich and convert such data to be used by new systems. Most researchers into the migration of RDBs into object-based/XML databases have concentrated on schema translation, accessing and publishing RDB data using newer technology, while few have paid attention to the conversion of data, and the preservation of data semantics, e.g., inheritance and integrity constraints. In addition, existing work does not appear to provide a solution for more than one target database. Thus, research on the migration of RDBs is not fully developed. We propose a solution that offers automatic migration of an RDB as a source into the recent database technologies as targets based on available standards such as ODMG 3.0, SQL4 and XML Schema. A canonical data model (CDM) is proposed to bridge the semantic gap between an RDB and the target databases. The CDM preserves and enhances the metadata of existing RDBs to fit in with the essential characteristics of the target databases. The adoption of standards is essential for increased portability, flexibility and constraints preservation. This thesis contributes a solution for migrating RDBs into object-based and XML databases. The solution takes an existing RDB as input, enriches its metadata representation with the required explicit semantics, and constructs an enhanced relational schema representation (RSR). Based on the RSR, a CDM is generated which is enriched with the RDB's constraints and data semantics that may not have been explicitly expressed in the RDB metadata. The CDM so obtained facilitates both schema translation and data conversion. We design sets of rules for translating the CDM into each of the three target schemas, and provide algorithms for converting RDB data into the target formats based on the CDM. A prototype of the solution has been implemented, which generates the three target databases. Experimental study has been conducted to evaluate the prototype. The experimental results show that the target schemas resulting from the prototype and those generated by existing manual mapping techniques were comparable. We have also shown that the source and target databases were equivalent, and demonstrated that the solution, conceptually and practically, is feasible, efficient and correct.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore