
Citation: Maatuk, Abdelsalam, Ali, Akhtar, Moftah, Raja A. and Elkobaisi, Mohammed R.

(2016) Performance evaluation of an RDB and an ORDB: A comparative study using the

BUCKY benchmark. In: ICEMIS 2016 - International Conference on Engineering & MIS,

22nd - 24th September 2016, Agadir, Morocco.

URL: http://dx.doi.org/10.1109/ICEMIS.2016.7745312

<http://dx.doi.org/10.1109/ICEMIS.2016.7745312>

This version was downloaded from Northumbria Research Link:

http://nrl.northumbria.ac.uk/28970/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to

access the University’s research output. Copyright © and moral rights for items on NRL are

retained by the individual author(s) and/or other copyright owners. Single copies of full items

can be reproduced, displayed or performed, and given to third parties in any format or

medium for personal research or study, educational, or not-for-profit purposes without prior

permission or charge, provided the authors, title and full bibliographic details are given, as

well as a hyperlink and/or URL to the original metadata page. The content must not be

changed in any way. Full items must not be sold commercially in any format or medium

without formal permission of the copyright holder. The full policy is available online:

http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been

made available online in accordance with publisher policies. To read and/or cite from the

published version of the research, please visit the publisher’s website (a subscription may be

required.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/74228796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html

 Performance Evaluation of an RDB and an ORDB:
A Comparative Study using the BUCKY Benchmark

Abdelsalam M. Maatuk1, M. Akhtar Ali2, Raja A. Moftah3, Mohammed R. Elkobaisi4

1,3Faculty of Information Technology, Benghazi University, Libya
2Faculty of Engineering and Environment, Northumbria University, UK
4Department of Computer Science, Omer AL-Mukhtar University, Libya

Address
1abdelsalam.maatuk@uob.edu.ly
2akhtar.ali@northumbria.ac.uk

3rajaMoftah@hotmail.com
4elkobaisi@gmail.com

Abstract— This paper highlights the functionality of object-

based database systems by comparing the performance of

relational database (RDB) and object-relational database

(ORDB) systems. The study focuses on assessing the efficiency

of database systems based on query processing and object

complexity. We conducted an experiment that includes

running the queries on the RDB and ORDB that were used in

the BUCKY benchmark and implemented on Oracle 11g. The

findings of this research show that the performance of both

database systems depends on various factors, such as the size

and type of databases, the schema and query structures, the

number of tuples scanned in tables, indexes as well as the

environment, in which the experiment was carried out.

Keywords— Relational database, Object-relational database,

benchmarks

I. INTRODUCTION

 Object-Relational databases (ORDBs) are starting to

emerge in the market providing more functionality and

flexibility [1]. The advantages provided by these

technologies and the dominance of traditional relational

databases (RDBs) and their weaknesses in handling data

of a complex nature have motivated a growing trend of

migrating RDBs into ORDBs instead of designing them

from scratch. Database migration is concerned with the

process of converting schema and data from a source RDB,

as a one-time conversion, into a target database to be

managed and handled in its new environment [2,14]. The

target database may be accessed through the concepts of its

data models with a reduced overhead in term of

performance compared to an existing RDB. Furthermore,

since a building information model size increases, query and

performance issues become more interested [3].

 This paper describes an experiment designed to explore

the efficiency of query processing for an RDB and the

equivalent ORDB created in Oracle 11g DBMS. We have

been designed a query-based experiment based on the

BUCKY benchmark [4]. The BUCKY benchmark and its

queries is a published, fully released and freely available

benchmark. The benchmark consists of an RDB and ORDB,

including their semantically equivalent schema, data and

sets of queries. The experiment has been designed to test

many of the key features offered by ORDB systems in

relation to RDB systems. The tested features include row

types and inheritance, references and path expressions, sets

of atomic values and references, and user-defined data types

along with their methods. Most DBMS performance

evaluations consider measurement of the query elapsed

time, which is the amount of time query statements take to

execute. The type of the evaluation is a comparison-based,

in which we load the RDB and the ORDB into their

systems to check and compare their performance.

 Although not a direct issue for database migration,

comparing the performance of input and output databases as

results of the migration process may help the users to decide

whether or not they should move into their chosen database

if performance is a deciding factor. This study could assist

in evaluating and choosing the most appropriate database to

adopt for non-relational applications to be developed

according to functionality, performance and suitability, and

could help increase their acceptance among enterprises and

practitioners.

 This paper is structured as follows. A general

overview of the related work is presented in Section II.

In Section III, a detailed description of an experimental

environment is introduced. Section IV describes the

results obtained from applying the queries of the

benchmark on Oracle 11g DBMS. Section V discusses the

results and presents lessons learned from this study, and

Section VI concludes this paper.

II. RELATED WORK

 Several query-based benchmarks have been designed

to test and measure different aspects of object-based

systems’ functionalities and performances [4, 5]. These

benchmarks can be used to test the performance of

databases based on a pre-defined criteria. It is very

important evaluation issue for benchmarks that concern

systems performance efficiency. A four primary criteria is

defined by [6] to specify a good benchmark, including

relevance, portability, simplicity and scalability. A

perspective on the points where the benchmarks should

focus, how they should be structured to test the performance

of the databases satisfactorily is provided in [7]. We have

noticed that a set of benchmarks are receiving more

acceptance and interest.

 The OO1 [8] and OO7 [5] benchmarks were designed

to evaluate the performance of OODBMS. BUCKY

[4] and BORD [9] benchmarks are for ORDBMSs. The

OO7 benchmark represents a comprehensive test of the

wide range of OO features of OODBMS performance

[5]. The OO7 benchmark includes three clusters of

operation: traversals, queries and structural

modifications. The BUCKY benchmark is a query-

oriented, which has been developed to test the maturity of

an ORDB system’s key features in relation to an RDB

system [4]. I t was implemented in an early ORDB system

i.e., Illustra 97. The benchmark tests many of the key

features of ORDBs, including row types and

inheritance, references and path expressions, sets of

atomic values and of references, methods and late

binding and user-defined abstract data types along with

their methods. Comparisons of the performance of

ODBMSs and ORDBMSs using Db4o with a hybrid

database solution on an artificial dataset are described in

[10, 11]. However, the OO7 benchmark is re-implemented

for performance evaluation in [11], whereas an object

oriented application with focus on the complexity of

objects is expressed in [10]. A performance evaluation of

results for an RDB and ORDB-based IFC servers using the

BUCKY benchmark are reported in [3, 12]. However,

although the performance improvement ORDB server has

been validated, many issues, e.g., data merge, subset model

extraction, and large-model handling issues remain to be

resolved. We conducted a benchmark applied on Oracle

10g, the outcomes of which have been discussed and

evaluated against the results presented in the original

BUCKY tests [13, 15].

III. EXPERIMENTAL ENVIRONMENT

 This section explains how system has been setup, and

a description of the experiment is described.

A. Database Descriptions

1) Relational Implementation

 The RDB used in the experiment reported here is

based on the university database (UniDB) used in the

BUCKY benchmark [4]. Fig. 1 shows the logical

UniDB schema, which includes the relations: Depart ment ,
Person, Employee, St udent , St af f , I n s t r u c t o r , TA,
Professor, Course, CourseSect ion, Enrol led and Kids. The

relationships are modelled using primary/foreign key

pair. Once UinDB schema is are created, the data is

bulk-loaded into it using SQL loader.

2) ORDB Implementation

 The ORDB version of UniDB is generated by our

system [2] in a folder, which contains a schema file, files

for object definitions, files for relationship definitions,

constraints files and a file contains a program, which

runs these files in priorities in order to create the

database. We proposed a conversion program for

automatically migrating RDBs into ORDBs [2]. The

program enacts the schema file firstly and then the files

those contain object definitions. Files contains keys,

indexes and other constraints are loaded into

databases before relationship files. To speed up the

response time in query processing, we created (after

objects have been initialised) appropriate types in

indexing.

DEPARTMENT (deptno, name, building, budget, chair, latitude,

longitude) chair PROFESSOR

COURSE (deptno, courseno, name, credits)

deptno DEPARTMENT

COURSESECTION((deptno, courseno), sectionno, semester, instructorid,

textbook, nostudents, building, roomno)
deptno, courseno COURSE, instructorid INSTRUCTOR

PERSON (id, name, street, city, state, zipcode, birthdate, picture, latitude,

longitude)

EMPLOYEE (id, dept, datehired, status)

id PERSON, dept DEPARTMENT

INSTRUCTOR (id)

id EMPLOYEE

STAFF (id, annualsalary)

id EMPLOYEE

PROFESSOR (id, aysalary, monthsummer)

id INSTRUCTOR

STUDENT (id, studentno, majordept, advisor)

id PERSON, majordept DEPARTMENT, advisor PROFESSOR

TA (id, semestersalary, apptfraction)

id INSTRUCTOR

KIDS (id, kidname)

id EMPLOYEE

ENROLLED (studentid, (deptno, courseno, sectionno, semester), grade)

studentid STUDENT,

deptno, courseno, sectionno, semester COURSESECTION

Fig. 1: Logical Relational Schema for the UniDB

3) Database Sizes

 We have worked with up to 27.5M of RDB data and up

to 115M of corresponding data ORDB. The size difference

comes from the update statements in the ORDB input files.

Although the RDB version of UniDB is a relatively small

data set, we have found that it is sufficient to evaluate the

DBMS performance using it and its corresponding ORDB

data. RDB data have been loaded to Oracle using

SQL*Loader, which is a very efficient data loading tool. It

was much faster than loading the script files generated by

our program. As ORDB object definition and relationship

files contain thousands of insert into and update statements,

it was expected that loading these files would take much

longer than using SQL*Loader, especially for object

relationship files. We have loaded the RDB data and ORDB

object definition files before creating any indexes since

indexes increase the object loading time. Before loading

ORDB object relationship files, we created indexes on user-

defined object identifiers, which speed up the process of

establishing relationships among objects.

B. Test Bed Configuration

 In this study, BUCKY is implemented in Oracle 11g on a

standalone PC with 3.2 GHz processor and 2GB of RAM

under Windows 7. To ensure a secure and stable

environment, the computer is isolated so that fluctuations in

the network activity cannot affect the execution of the

benchmark queries. All queries were run with the buffer

pool empty as the Oracle system was shut down and

restarted for each query. Both RDB and ORDB schemas are

created in two separate table spaces under two different

users so that running the queries in either schemas are

completely isolated and have no impact on each other. The

SQL*Plus TIMING command is used to collect and display

elapsed time on the amount of computer resources used to

run the queries. Necessary indexes are created after the data

has been bulk-loaded, so as not to slow down the bulk

loading process.

C. Cost Metrics

 The query elapsed time is measured as performance

metric. While we were obtaining elapsed times in repeating

the query many times, it was found that apart from the first

reading, all the subsequent elapsed times were somewhat

similar. Thus the average was taken from the second to the

fourth time readings.

D. Queries

 The criteria we have used in the queries includes:

• Queries should be simple and basic operations

are supported in both database systems.

• Queries should focus on the equivalence

between both databases in data capacity,

semantics preservation, efficiency and speed of

retrieval of data from the system.

• The fundamental areas that should be covered by

the queries include inheritance, object

relationships, user-defined types and integrity

constraints.

 Followings are the essential query types selected to be

used in our experiment.

• Selection: This type of query is selection

including single and complex with relational

operators.

• Exact Match Lookup: This type of query

tests the database ability to handle simple

string lookups as simple exact-match or over

inheritance hierarchies.

• Joins: This query tests database’s ability for

join processing including single and inheritance

joins.

• Set Operations: This type of query tests the

computing of mathematical operations.

• Set Membership: This type of query tests for

set membership, where the set is a collection of

values extracted by selection statements.

• Path-expressions: This query tests the ability

of handling references to persistence objects. A

path expression, including a navigation path

through a relationship in an ORDB is similar to

outer join in an RDB.

• UDT-based Data: This query is for retrieving

data stored as simple/composite multi-valued

attributes or weak entities.

E. Indexing

 To speed up the response time in query processing, we

created other appropriate indexes, which are defined

considering the queries and what data would be retrieved.

Foreign keys are indexed, whereas primary keys have

default indexes in Oracle. Nested tables have been indexed

on NESTED_TABLE_ID. The salary() function, which is

used to calculate employee salaries has also indexed.

IV. EXPERIMENTAL RESULTS

 This section presents the experiment queries, what each

query is intended to test, and results of running them on an

RDB and ORDB versions of the benchmark on Oracle 11g.

A set of queries and their results were presented, indicating

the intended coverage for each query, regarding data

retrieval performance. As Oracle 11g supports scoped

references, the ORDB has been queried with and without

index/scoped references. Table I shows the measured time

(in seconds) as indexed and unindexed for RDB queries and

indexed/scoped and unindexed/unscoped for ORDB queries.

The times are shown as variant A/variant B for some

queries. In addition to measuring elapsed times, the

EXPLAIN PLAN statement was used to determine the

execution plan that Oracle DBMS follows in performing

each query. This table contains the necessary metrics,

including the cost of executing the query, and CPU and I/O

costs for any indexes defined in the table.

TABLE I: MEASURED TIMES IN SECONDS FOR QUERIES

 Query

Relational Object-relational rows

selected IN UI IS UU

1-SINGLE-XACT 0.00 0.01 0.00 0.00 1

2- HIER-EXACT 0.00 0.01 0.00 0.01 1

3- SINGLE-METH 0.24 0.25 00.23 496.80 2014

4- HIER-METH 1.03 1.00 0.96 737.61 2788

5- SINGLE-JOIN 1.28 1.21 1.28 1.26 3044

6- HIER-JOIN 0.34 0.39 0.03 0.03 1

7- SET-ELEMENT 0.21 0.14 0.10 0.11 277

8- SET-AND 0.13 0.15 0.12 0.12 277

9- 1HOP-NONE 43.07 43.07 43.13 43.12 75000

10- 1HOP-ONE 0.00 0.03 0.00 0.46 1

11- 1HOP-MANY 0.04 0.07 0.04/0.03 0.07/0.48 318

12- 2HOP-ONE 0.07 0.07 7.22/0.06 61.8/0.31 530

 Sum: 46.41 46.40 45.94 1279.90

IN: Indexed UI: Unindexed IS: indexed/scoped UU: unindexed/unscoped

A. Query 1: SINGLE-EXACT
Find the name, building and budget of the department with
number 1.
RDB: select name, building, budget f rom depart ment where

dept no = 1;
ORDB: select name, building, budget f rom depart ment where

dept no = 1;

 This query tests exact match look up over a single table.

As the RDB and ORDB tables have the same number of

attributes, tuples and indexes, the result times were

identical. The cost (0.00s) estimates were equal for both

queries before and after indexing and scoping.

B. Query 2: HIER-EXACT
Find the name and annual salary of the staff with id 2

RDB: select p.name, s.annualsalary f rom person p, st af f s
where s. id = p. id and s. id = 2;

ORDB: select name, annualsalary f rom st af f where id = 2;

 This query assesses system efficiency in managing queries

over inheritance hierarchies. Although indexing/scoping

increases the time taken slightly (from 0.00s to 0.01s), all

queries performed very similarly with respect to time. As

the union operation was hidden in the query, the ORDB

version was more natural and simple than the RDB query.

C. Query 3: SINGLE-METH
Find IDs of Professors who make 145000 or more per year.

RDB: select id f rom professor p where (p.aysalary * (9 +
p.mont hsummer)/ 9.0) >= 145000;

ORDB: select id f rom professor p where (p.aysalary * (9 +
p.mont hsummer)/ 9.0) >= 145000;

 This query compares performance time for calculating

data stored in attributes in the RDB with invoking functions
in the ORDB. In the ORDB, we used the salary() function

(shown in Fig. 2) to calculate the salaries of the professors

in Variant B of the query. Without indexes/scopes, the

ORDB query was painfully slow (496.80s). The bad

performance, was because of the range scans that have been
made by the optimizer to all nested tables in Professor

table. To speed up the execution time, the nested tables are

indexed, which improves the performance with the time

dropping to 11.90s. Even this length of time shows that the

ORDB query is still slow, compared to RDB time (0.25s).

However, the performance was enhanced considerably

when an index was created on the function. After indexing

the function, the ORDB time (0.23s) shows that the system

is more efficient, compared to the complex predicates of the

RDB query.

Fig. 2: The salary() function for Professor_t type

Variant B: select id, aysalary f rom professor p where
p.salary() >= 145000;

D. Query 4: HIER-METH
Find names and addresses of all Employees who make 140000 or
more per year.�

RDB: select p.name, p.st reet , p.cit y, p.zipcode f rom
person p, st af f s where p. id = s. id and
s.annualsalary >= 140000 union select p.name,
p.st reet , p.cit y, p.zipcode f rom person p, professor f
where p. id = f . id and (f .aysalary * (9 +
f .mont hsummer) / 9.0) >= 140000 union select
p.name, p.st reet , p.cit y, p.zipcode f rom person p,
t a t where p. id = t . id and appt f ract ion * (2 *
t .semest ersalary) >= 140000;

ORDB:

Variant

A

select s.name, s.st reet , s.cit y, s.zipcode f rom st af f s
where s.annualsalary >= 140000 union select p.name,
p.st reet , p.cit y, p.zipcode f rom professor p where
(p.aysalary * (9 + p.mont hsummer) / 9.0) >= 140000
union select t .name, t .st reet , t .cit y, t .zipcode f rom
t a t where appt f ract ion * (2 * t .semest ersalary) >=
140000;

 This query tests the system efficiency in invoking

indexed functions over inheritance. Without indexes/scopes

and unindexed function, the ORDB query was very slow

(737.61s). Similar to SINGLE-METH, the performance of

Oracle improved significantly, with a response time of 0.96s

for the ORDB, after the function was indexed, and was then

faster than the relational time of 1.03s.

Variant B: select s.name, s.st reet , s.cit y, s.zipcode f rom
st af f s where s.salary()>=140000 union select p.name,
p.st reet , p.cit y, p.zipcode f rom professor p where
p.salary() >= 140000 union select t .name, t .st reet , t .cit y,
t .zipcode f rom t a t where t .salary() >= 140000;

E. Query 5: SINGLE-JOIN
Find names, buildings and budgets of departments with the same
budget.
RDB: select d1.name, d1.building, d1.budget , d2.name,

d2.building, d2.budget f rom depart ment d1,
depart ment d2 where d1.budget = d2.budget and
d1.dept no < d2.dept no;

ORDB: select d1.name, d1.building, d1.budget , d2.name,
d2.building, d2.budget f rom depart ment d1,
depart ment d2 where d1.budget = d2.budget and
d1.dept no < d2.dept no;

 This query is the baseline test for RDB join operations.

As the structures of both queries were the same, the query

times and the execution plans were similar. Although the

system seems slower with indexes (1.28s), the results show

that Oracle is efficient in handing join operations in both

RDB and ORDB.

F. Query 6: HIER-JOIN
Find all TAs with the same hired date as those live in the same
zip code area.
RDB: select p1. id, p1.name, p2. id, p2.name f rom person

p1, person p2, employee e1, employee e2, t a t 1, t a t 2
where e1.dat ehired = e2.dat ehired and p1.zipcode =
p2.zipcode and p1. id < p2. id and p1. id = e1. id and
p2. id = e2. id and p1. id = t 1. id and p2. id = t 2. id;

ORDB: select t 1. id, t 1.name, t 2. id, t 2.name f rom t a t 1, t a t 2
where t 1.dat ehired = t 2.dat ehired and t 1.zipcode =
t 2.zipcode and t 1. id < t 2. id;

 This query tests the efficiency of the system in handling

joins among inheritance hierarchies. Executing this query,

Oracle was almost 10 times faster with ORDB compared to

the RDB query, with similar performance before and after

indexing and scoping with times of 0.03s. The relational

times were slower at 0.34s and 0.39s before and after

indexing, respectively.

G. Query 7: SET-ELEMENT
Find ids, names and addresses of all staff who have a child named
boy90.

RDB: select p. id, p.name, p.st reet , p.cit y, p.st at e,
p.zipcode f rom person p, st af f s, kids k where p. id =
k. id and s. id = k. id and k.kidname = ` boy90';

ORDB: select s. id, s.name, s.st reet , s.cit y, s.st at e, s.zipcode
f rom st af f s, t able (s.kidnames) k where k.kidname =
'boy90';

 This query tests the system's ability to handle collection
data types. The RDB query includes joins among Person,

St af f and Kids tables, which make it slower than the ORDB

query. The ORDB query performed better than the RDB

query, which proves that Oracle is powerful in managing

nested tables. An index was created on the object identifier
for the kidnames_st af f_nt nested table and the kidname

attribute. However, it seems that indexing does not improve

the performance and the elapsed time was still similar,

although the nested table is accessed by the index range

scan.

creat e or replace t ype body Professor_t as
overriding member funct ion salary ret urn number is
 begin
 ret urn (aysalary * (9 + mont hsummer) / 9.0);
 end;
end;

H. Query 8: SET-AND - Anded Set Membership
Find ids, names and addresses of all Staff who have children named

girl90 and boy90.

RDB: select p. id, p.name, p.st reet , p.cit y, p.st at e,
p.zipcode f rom person p, st af f e, kids k1, kids k2
where e. id = p. id and e. id = k1. id and e. id=k2. id and
k1.kidname = 'girl90' and k2.kidname = 'boy90';

ORDB: select s. id, s.name, s.st reet , s.cit y, s.st at e,
s.zipcode f rom st af f s, t able (s.kidnames) k1, t able
(s.kidnames) k2 where k1.kidname = ` girl90' and
k2.kidname = 'boy90';

 This query is similar to the SET-ELEMENT with a more

complex structure to test the effectiveness of Oracle in

handling more complex value-based collections. Although

the response times of both queries were close (i.e., 0.13s

and 0.15s for the RDB query and 0.12s for the ORDB

query) the results show that the system is still efficient in

handling value-based collection/sets of data stored in nested

tables.

I. Query 9: 1HOP-NONE
Find the details of all student/major pairs.

RDB: select p. id, p.name, p.st at e, d.dept no, d.name f rom
person p, depart ment d, st udent s where p. id = s. id
and s.maj ordept = d.dept no;

ORDB: select s. id, s.name, s.st at e, s.maj or.dept no,
s.maj or.name f rom st udent s;

 This query tests the system efficiency at processing one-
hop path expressions. In the query, the entire St udent table

was scanned. The two versions of queries are very close in

elapsed time. Although in the ORDB query, path

expressions and scoped references were used, Oracle was

slightly faster in the RDB query (43.07s) compared to the

ORDB query (43.13s). Using scoped references, the system
uses the knowledge that the ref -based attribute points to an

object of a particular type (i.e., Depart ment _t). However,

indexes and scoped references do not increase performance

in the ORDB query.

J. Query 10: 1HOP-ONE
Find the major of the student named studentName75001.

RDB: select p. id, p.name, d.dept no, d.name, d.building
f rom person p,st udent s, depart ment d where p. id =
s. id and s.maj ordept = d.dept no and p.name=
` st udent Name75001';

ORDB: select s. id, s.name, s.maj or.dept no, s.maj or.name,
s.maj or.building f rom st udent s where name=
'st udent Name75001';

 This query tests how Oracle handles a short path

expression. The elapsed times of both RDB and ORDB

queries with indexes were similar, whereas with

unindexd/unscoped settings, the ORDB query was 15 times

slower than the RDB query without an index. As bi-

directional relationships are offered in the ORDB, this query

can have another variant, in which the system efficiency at

handling queries involving a collection of references can be

tested. However, intuitively, as the data required are for a

particular student where its related object contains a

reference pointing to the department object, it would be

better to avoid this variant.

Variant B: select s.column_value. id, s.column_value.name,
d.dept no, d.name, d.building f rom depart ment d, t able
(d.st udent s) s where s.column_value.name=
'st udentName75001';

K. Query 11: 1HOP-MANY
Find ids and names of all students majoring in Department1.

RDB: select p. id, p.name f rom person p, st udent s,
depart ment d where p. id = s. id and s.maj ordept =
d.dept no and d.name = 'dept name1';

ORDB: select st .column_value. id, st .column_value.name
f rom depart ment d, t able(d.st udent s) st where
d.name = 'dept name1';

 This query tests the efficiency of Oracle at handling

collections of references. The ORDB query Variant A with
column_value performed well in the cases indexed/scoped

(0.04s) or unindexed/unscoped (0.07s). However, Variant B

with unindexed/unscoped references was slower than the

RDB and the ORDB Variant A queries. The query response

time was 0.46s compared to just 0.03s and 0.04s in the other

equivalent queries. In other words, it was 16 times slower

than the equivalent ORDB query Variant B with an index

and scoped references, and 12 times slower than the

equivalent RDB query with an index.

Variant B: select s. id, s.name f rom st udent s where
s.maj or.name = ` dept name1';

L. Query 12: 2HOP-ONE
Find the semester, enrolment limit, department number, and

department name for sections of courses taught in room 50.

RDB: select x.semest er, x.nost udent s, d.dept no, d.name
f rom coursesect ion x, course c, depart ment d where
x.dept no = c.dept no and x.courseno = c.courseno and
c.dept no = d.dept no and x. roomno = 50;

ORDB: select se.column value.semest er, se.column
value.nost udent s, d.dept no, d.name f rom
depart ment d, t able(d.of fers) co,
t able(co.column_value.sect ions) se where
se.column_value. roomno = 50;

 This query examines Oracle ability in handling longer

path expressions. The performance of ORDB Variant A

was very poor before indexing (61.8s) compared to the

RDB and the ORDB Variant B. Thus, the performance of

Variant A with the selection of two-hop chain set-valued

references was very poor. Although the time improved

(7.22s) when the references were scoped and indexes

created for nested tables, we could not find a way to

increase the performance of the Variant A. However,

Variant B using the inverse side of the relationship

performed pretty well (0.31s) compared to ORDB Variant A

(61.8s). In addition, Variant B with indexes/scoped

references did even better (0.06s) than RDB version of the

query (0.07s).

Variant B: select s.semest er, s.nost udent s,
s.course.dept .dept no, s.course.dept .name f rom
coursesect ion s where s. roomno = 50;

V. DISCUSSIONS

 In this experiment, we ran the first 12 queries used in

BUCKY benchmark on the RDB UniDB and the

corresponding ORDB. We loaded the entire RDB and

ORDB into Oracle 11g to measure the performance for both

versions of the queries. All the queries were run with and

without indexing, and with and without scoped references

for the ORDB. After analyzing the results, we can draw the

following conclusions:

• The relational and object-relational elapsed times are

virtually identical for all queries on a single table.

Indexing and reference scoping do not improve

performance in these kinds of queries.

• In single/hierarchical function queries, the elapsed

times are very close. The system performance with

ORDB queries improved when the functions were

indexed. However, when not indexed, the ORDB

query performance was very poor. That is because all

nested tables, embedded in accessed object tables, are

scanned while invoking the functions.

• The system with the ORDB version of HIER-JOIN

query was faster than in the RDB query, verifying

that the ORDB outperforms the RDB in handling

inheritance and traditional join operations.

• In handling SET-ELEMENT and SET-AND queries,

the system was slightly faster with ORDB than with

the RDB queries. The results verify that Oracle is

more efficient in handling value-based collection data

type stored in nested tables. The ORDB with set

value-based attributes succeeds over relational joins.

Indexing/scoped references make no difference to

performance in both versions of the queries.

• By looking at path expression queries, it can be

noticed that the elapsed times for RDB and ORDB

queries were almost identical. The 1HOP-NONE

times were more or less the same in both of the query

versions. This is for indexed/unindexed RDB queries

and only indexed/scoped ORDB queries. In addition,
using column_value for de-referencing objects was

effective for the 1HOP-MANY ORDB query.

However, the time taken for the 2HOP-MANY query

with unindexed/unscoped references was obviously

slow. Oracle was inefficient in managing queries of

two-hop chain of ref-based collections. As

relationships in the ORDB schema are defined bi-

directionally, we used the opposite direction in this

query, i.e., the M side of the relationship. For this

option with indexing nested tables and scoped

references, the query performance much improved.

Hence, for ORDB queries with index and reference

scoping, Oracle was faster in handling path

expressions than in the RDB queries.

• The performance of the system is directly affected by

the number of tables and attributes, and also by the

structure of the query and the number of rows in each

table. The query structure in ORDB queries is more

simple and concise than in relational ones.

• After having the summation of the elapsed times of

each set of queries, the ORDB efficiency with

indexed/scoped data was slightly better than the RDB

queries. However, the ORDB query with

unindexes/unscoped references was painfully slow.

The overall time of RDB queries with indexes was

46.41s and without indexes was 46.40s. The overall

time of ORDB queries with indexes/scoped

references was 45.94s and with unindexes/unscoped

references was 1279.90s.

VI. CONCLUSIONS

 This paper evaluates the efficiency of RDB and ORDB

systems in terms query processing. An experiment has been

conducted, which includes running the queries used in the

BUCKY benchmark. The queries are implemented on

Oracle 11g. In the experiment, we have measured the

elapsed time as query processing metric. Comparing the

RDB queries with their equivalents in an ORDB, it was

found that the system is more efficient in handling ORDB

queries over inheritance hierarchies, indexed functions, path

expressions and set element queries. In addition, the

structure of ORDB queries is more simple and concise than

the RDB ones. The ORDB queries with indexed/scoped data

was slightly efficient than that of the RDB, whereas the

ORDB queries with unindexes/unscoped references was

painfully slow. The system performance with the RDB

queries is not improved when data were indexed. The

ORDB queries with indexes/scoped references are slightly

more efficient compared to the RDB queries. In addition,

the performance of the system is directly affected by the

number of tables and attributes in each query, and the query

structure as well as the number of rows in each table.

REFERENCES

[1] J. M. Stonebraker, P. Brown and D. Moore. (1999). Object-Relational

DBMSs: The Next Great Wave and Object-Relational DBMSs:

Tracking the Next Great Wave. Morgan Publishers.

[2] A. Maatuk, M. A Ali and B. N. Rossiter. (2010). Converting

relational databases into object relational databases. In Journal of

Object Technology, vol. 9(2), pp. 145-161.

[3] G. Lee, J. Jeong, J. Won, C. Cho, S. You, S. Ham and H. Kang.

(2014). Query Performance of the IFC Model Server Using an

Object-Relational Database Approach and a Traditional Relational

Database Approach. In Jour. Comput. Civ. Eng., vol. 28, pp. 210-222.

[4] M. Carey, D. DeWitt, J. Naughton, M. Asgarian, P. Brown, J.

Gehrke and D. Shah. (1997). The BUCKY object-relational

benchmark. In SIGMOD Rec., vol. 26(2), pp. 135–146.

[5] M. Carey, D. DeWitt and J. Naughton. (1993). The OO7

benchmark. In SIGMOD Rec., vol. 22(2), pp. 12–21.

[6] J. Gray. (1993). The Benchmark Handbook for Database and

Transaction Systems (2nd Edition). Morgan Kaufmann.

[7] V. Geetha and N. Sreenath. (2012). Augmenting the Performance of

Existing OODBMS Benchmarks. In Int. Jour. of Comp. Appl, vol.

40(5).

[8] R. G. Cattell and J. Skeen. (1992). Object operations benchmark.

In ACM Trans. Database Syst., vol. 17(1), pp. 1–31.

[9] S. H. Lee, S. Kim and W. Kim. (2000). The BORD benchmark for

object-relational databases. In Proc. of DEXA ’00, pp. 6–20.

[10] R. Kalantari and C. Bryant. (2010). Comparing the Performance of

Object and Object Relational Database Systems on Objects of

Varying Complexity. In BNCOD'10, Springer-Verlag, Berlin.

[11] P. Van zyl, G. Derrick and A. Boake. (2006). Comparing the

Performance of Object Databases and ORM tools. In Proc of South

African Institute for Comp. Sci. and Info. Technologists, pp. 1-11.

[12] J. Jeong, G. Lee and H. Kang. (2010). Preliminary Performance

Evaluation of an ORDB-based IFC Server and an RDB-based IFC

Server by Using the BUCKY Benchmark Method. In Proc of CIB

World Congress. Salford, UK, pp. 192 -201.

[13] N. Keivani, A. M. Maatuk, S. Aljawarneh and M. Akhtar. (2015).

Towards the Maturity of Object-Relational Database Technology:

Promises and Reality. The Int. Jour. of Technology Diffusion (IJTD),

vol. 6(4) , pp. 1-19, doi:10.4018/IJTD.2015100101.

[14] A. M. Maatuk, M. Akhtar and N. Rossiter, N. (2011). Re-Engineering

Relational Database: The Way Forward. In ISWSA 2011, Jordan,

ACM, pp. 18.

[15] A. M. Maatuk, M. Akhtar and S. Aljawarneh. (2015): Translating

Relational Database Schemas into Object-based Schemas: University

Case Study. In Recent Patents on Computer Science . Innovations in

Educ. Tech. and E-learning Social Networking, vol. 8(2), pp. 11.

[16] A. M. Maatuk, M. A. Akhtar and S. Aljawarneh. 2015: An algorithm

for constructing XML Schema documents from relational databases.

In Proceeding of ACM International Conference on Engineering &

MIS (ICEMIS '15). ACM, New York, NY, USA, Article 12, 6 pages.

DOI=http://dx.doi.org/10.1145/2832987.2833007

