
On Pattern Mining in Graph Data

to Support Decision-Making

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

Doctor Rerum Naturalium
(Dr. rer. nat.)

im Fachgebiet Informatik

vorgelegt von
Diplom-Ingenieur (FH) André Petermann

geboren am 22. November 1984 in Zwickau

Die Annahme der Dissertation wurde empfohlen von:
1. Prof. Dr. Erhard Rahm, Universität Leipzig

2. Prof. Dr. Esteban Zimányi, Université Libre de Bruxelles

Die Verleihung des akademischen Grades erfolgt mit Bestehen der
Verteidigung am 21. Januar 2019 mit dem Gesamtprädikat

Magna cum Laude

Abstract

In recent years graph data models became increasingly important in both research
and industry. Their core is a generic data structure of things (vertices) and con-
nections among those things (edges). Rich graph data models such as the property
graph model support additional data attached to vertices and edges. Such data
ranges from simple labels to named attributes. Thus, graph data models can be
used to represent data of di�erent domains. Typically, they are used to repre-
sent native network data such as the world wide web, social networks or complex
knowledge bases. However, they are also suitable to represent data from domains
that are strongly placed in the context of relational databases. An example is data
from business information systems. Here, domain objects such as customers, prod-
ucts and sales orders can be represented by vertices and their relationships can be
represented by edges.

Graphs have an extraordinary analytical power because relationships can be
evaluated without schema knowledge. For example, it is possible to query all ver-
tices that are connected to one another without knowledge about possible rela-
tionship types. By contrast, for such queries relationship types are even part of
the result. There are also data mining techniques based on this property of graph
data models. The present dissertation will study to which extend graph data mod-
els and data mining techniques based thereon may help analysts to make better
decisions. As general as this problem sounds, so versatile are the studied prob-
lems. In particular, they range from transforming relational data into graphs to
the extraction of relevant patterns.

Around these subproblems we developed a conceptual framework called
BIIIG (Business Intelligence with Integrated Instance Graphs). The term business
intelligence is usually associated with data warehouse models which are tailored
to the representation of facts, measures and dimensions. With BIIIG, we transfer
these concepts to a graph data model. In particular, we propose to represent logi-
cal partitions of interrelated data by a collection of many small graphs. In BIIIG’s
model these graphs contain not only interrelated facts but also subgraphs of di-
mension values that occur in multiple graphs. Further on, measure values such
as business indicators must be evaluated on the graph level. With characteristic
subgraph mining, we will propose an example analytical work�ow that is capable
to extract interesting patterns that cannot be found by existing approaches.

We identi�ed di�erent requirements that must be met to implement BIIIG.
Since we evaluate measures in the context of graphs a crucial one is the repre-
sentation of graphs where not only vertices and edges but also graphs themselves
may have attributes. By an overview of recent graph database and graph process-
ing systems we will show that currently no system supports these features. Thus,
we developed the so-called Extended Property Graph Model which extends the
property graph model by respective graph collections and operators that allow to
create, modify or evaluate graph attributes.

Another crucial problem that will be studied is the transformation of business
data, which is commonly stored in relational databases, into property graphs. We
will present a �exible approach based on metadata evaluation. Our solution pro-
vides more features than previous academic approaches and solutions provided by
database vendors. Additionally, our approach includes a seamless data integration
strategy and a generic algorithm that can turn a large graph of business data into
a collection of meaningful subgraphs. Since real business data is not available we
used test data of a real business information system and developed a data generator
based on business process simulation to evaluate these techniques.

An important primitive to extract patterns from graph collections is frequent
subgraph mining. In the past this problem has only been studied for chemical
datasets where graphs represent molecules. Since business data shows di�erent
characteristics existing algorithms cannot be applied to BIIIG. Thus, we extended
an existing algorithm by the missing features. Frequent subgraph mining is our
most expensive subproblem in terms of computational complexity. Thus, this dis-
sertation also studies the problem’s parallelization in the context of state-of-the-art
Big Data technology. In particular, we propose an approach that brings the com-
putation to the data and propose multiple optimizations to decrease runtime. In
an extensive experimental evaluation, we will show the scalability of our solution
with regard to di�erent parameters.

Many interesting patterns can only be extracted, if dimension values are at-
tached to taxonomies and also generalizations are evaluated. Thus, this disserta-
tion also studies the problem of generalized frequent subgraph mining. We will
propose an e�cient algorithm with support for multiple dimensional taxonomies.
To improve e�ciency, we decompose the problem into separate mining steps for
frequent subgraphs and frequent vectors that represent vertex dimensions.

With Gradoop, a distributed system for declarative graph analytics, there is
already a �rst system that supports the Extended Property Graph Model. The de-
velopment of BIIIG was often connected to the development of Gradoop. Thus,
some implementations of BIIIG’s components, for example our horizontally scal-
able approach to frequent subgraph mining, were contributed to Gradoop. Thus,
just like the framework, they are available under an Open Source licence. Addi-
tionally, thread-parallel implementations of all proposed data mining algorithms
have been turned into an Open Source Java library. At the end of this disserta-
tion we will report two real-world applications of BIIIG in cooperation with two
large-scale enterprises. The application scenarios were targeting the identi�ca-
tion of patterns that are characteristic to fraud and security threats. With these
evaluations we were able to con�rm that our approach works.

The result of this dissertation is BIIIG, a practical conceptual framework for
graph-based business intelligence. All components of BIIIG were implemented
and the resulting prototypes were evaluated in experiments. Further on, the func-
tionality of BIIIG has been con�rmed in real-world applications. By the diversity
of these applications’ domains we could show that BIIIG is not limited to busi-
ness intelligence. Its major strength is the extraction of domain knowledge by a
generic pattern mining process that requires no schema knowledge as input. In
particular, this is useful for an initial discovery but also for continuous monitoring
of patterns that occur in one or more interrelated databases. This dissertation will
further state open research questions for graph-based business intelligence. These
questions will relate to technical problems to further improve performance and to
functional extensions to improve usability.

Acknowledgements

There are so many parties whom I would like to thank. Let me start with academia.
First of all, I would like to thank Professor Johannes Waldmann for arousing my
interest in computing science. Without his lectures I would never have discovered
my passion for programming. Further thanks goes to Professor Jörg Bleymehl
who brought me to my initial scholarship for cooperative PhD studies between
both Leipzig Universities. I would probably never have started this dissertation
without this option. My deepest thanks also goes the Professor Robert Müller
whose support enabled me to catch the scholarship and who gave me �rst advice
about professional research. Further on, also his lectures played an important role
in my life as they woke up my interest in databases that continues unil today.
Finally, highest thanks goes to Professor Erhard Rahm who gave me the chance
to prove myself in Leipzig’s database research group despite my rather untypical
CV. Without his guidance and supervision this dissertation would never have been
�nished.

A second party who I’d like to thank are companies that enabled practical expe-
rience that would never have been possible without their cooperation. First, there
is Axel Schwanke from Immowelt. I would like to thank him for the option to
send a student to Immowelt to evaluate BIIIG on Gradoop. Further thanks goes to
Gerald Ulmer from Siemens. He enabled me to evaluate the �ndings of this disser-
tation in practice under very good conditions. I would also like to thank the whole
STA team for welcoming me warmly despite my short and sporadic presence.

Further thanks goes to my former colleagues of the database research group
for interesting discussions about research in general and about the joy and sorrow
that we were all facing at certain times of our work. Very special thanks goes to the
graph guys which are Martin Junghanns as well as our former student assistants
Kevin Goméz, Niklas Teichmann and Stephan Kemper. Without them work would
have been quite lonely. In particular, I would like to thank Martin for all the endless
discussions about graphs and programming. I am sure without them this disserta-
tion would have had a di�erent outcome. Special thanks also goes to Kevin who
did more than just a student job to make experiments running and always kept all
these tedious con�guration things away from me. Further special thanks goes to
Markus Nentwig. I thank him and Martin for all the happy memories about lunch
breaks, pub evenings and business trips.

I also want to thank all of my friends for not abandoning me after hearing
sentences like "Sorry, I must focus on a paper right now. I will call you back.", "No,
not this weekend I have a deadline to catch." and "Let’s postpone this after I will have
�nished my dissertation, please." Very special thanks goes to Dr. Roxana Bujack
who is not only a friend but also contributed to this dissertation by giving me some
valuable tutoring sessions in mathematics during the �rst months of my research.

Further highest thanks goes to my parents Egon and Sieglinde Petermann. I am
the �st in the family who made it to the dissertation and without them that would
never have been possible. Making them proud has always motivated me. I thank
my mother in particular for keeping me on track back in school days. Without her
commitment and knowledge I would probably have not even made it to university.
I also thank my father in particular for his constant support for doing things in my
way. Because of him I also know that freedom, the key to personal ful�lment,
is not self-evident and that I can consider myself fortunate to grew up in a free
country. If education had been linked to political submission even today, I would
not have made it this far.

Finally, my greatest thanks goes to Janet Jesemann who intensively supported
me over all the years like no other. I thank her not only for the immense e�ort of
proof-reading my papers and this dissertation but also for all the priceless mental
support. She has endured an endless number of discussions related to my research,
pulled me out of every crisis and stopped me from giving up more than once. So,
a part of this dissertation also belongs to her.

About the Author

Andre Petermann studied Multimedia Technology at Leipzig University of Applied
Science and graduated as Diplom-Ingenieur (FH) in 2011. In 2009, he also received
a bachelor’s degree in Information Technology from the University of the West
of Scotland as part of an ERASMUS programme. After studies he left univeristy
and became a data warehouse developer. When he came into contact with graph
databases for the �rst time he had the idea to utilize them for business intelligence.
He though the best way to investigate this topic would be a dissertation and started
looking for professors that may support this idea. With Professor Erhard Rahm
from Leipzig University and Professor Robert Müller from Leipzig University of
Applied Sciences he found two supporters and could successfully apply for a pub-
lic scholarship 1. So, in 2013 he went back to university and started research at
Leipzig University’s database research group. In 2015 he became a research assis-
tant at ScaDS Dresden/Leipzig Competence Center for Scalable Data Services and
Solutions2.

1funded within the EU program Europa fördert Sachsen of the European Social Fund
2funded by the German Federal Ministry of Education and Research (BMBF 01IS14014B)

Dissertation-related Publications

1. Petermann, A., Junghanns, M., Müller, R. and Rahm, E. BIIIG : Enabling Busi-
ness Intelligence with Integrated Instance Graphs. In Workshops Proceed-
ings of the 30th International Conference on Data Engineering Workshops,
ICDE 2014, Chicago, IL, USA, March 31 - April 4, 2014 (2014), pp. 4–11.

2. Petermann, A., Junghanns, M., Müller, R. and Rahm, E. FoodBroker - Gen-
erating Synthetic Datasets for Graph-Based Business Analytics. In Big Data
Benchmarking - 5th International Workshop, WBDB 2014, Potsdam, Ger-
many, August 5-6, 2014, Revised Selected Papers (2014), pp. 145–155.

3. Petermann, A., Junghanns, M., Müller, R. and Rahm, E. Graph-based data in-
tegration and business intelligence with BIIIG. PVLDB 7, 13 (2014), 1577–1580.

4. Junghanns, M., Petermann, A., Teichmann, N., Gómez, K. and Rahm, E. An-
alyzing Extended Property Graphs with Apache Flink. In Proceedings of the
1st ACM SIGMOD Workshop on Network Data Analytics, NDA@SIGMOD
2016, San Francisco, California, USA, July 1, 2016 (2016), pp. 3:1–3:8.

5. Petermann, A. and Junghanns, M. Scalable Business Intelligence with Graph
Collections. it - Information Technology 58, 4 (2016), 166–175.

6. Petermann, A., Junghanns, M., Kemper, S., Gómez, K., Teichmann, N., and
Rahm, E. Graph Mining for Complex Data Analytics. In IEEE International
Conference on Data Mining Workshops, ICDM Workshops 2016, December
12-15, 2016, Barcelona, Spain. (2016), pp. 1316–1319.

7. Junghanns, M., Petermann, A., Neumann, M. and Rahm, E. Management
and Analysis of Big Graph Data: Current Systems and Open Challenges.
In Handbook of Big Data Technologies. 2017, pp. 457–505.

8. Junghanns, M., Petermann, A. and Rahm, E. Distributed Grouping of Prop-
erty Graphs with Gradoop. In Datenbanksysteme für Business, Technolo-
gie und Web (BTW 2017), 17. Fachtagung des GI-Fachbereichs „Datenbanken
und Informationssysteme" (DBIS), 6.-10. März 2017, Stuttgart, Germany, Pro-
ceedings (2017), pp. 103–122.

9. Junghanns, M., Petermann, A., Teichmann, N. and Rahm, E. The Big Picture:
Understanding large-scale graphs using Graph Grouping with Gradoop.
In Datenbanksysteme für Business, Technologie und Web (BTW 2017), 17.
Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme"
(DBIS), 6.-10. März 2017, Stuttgart, Germany, Proceedings (2017), pp. 629–632.

10. Kemper, S., Petermann, A. and Junghanns, M. Distributed FoodBroker: Skalier-
bare Generierung graphbasierter Geschäftsprozessdaten. In Datenbanksys-
teme für Business, Technologie und Web (BTW 2017), 17. Fachtagung des GI-
Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 6.-10. März
2017, Stuttgart, Germany, Workshopband (2017), pp. 105–110.

11. Junghanns, M., Kiessling, M., Averbuch, A., Petermann, A. and Rahm, E.
Cypher-based Graph Pattern Matching in Gradoop. In Proceedings of the
Fifth International Workshop on Graph Data-management Experiences &
Systems, GRADES@SIGMOD/PODS 2017, Chicago, IL, USA, May 14 - 19,
2017 (2017), pp. 3:1–3:8.

12. Petermann, A. Graph Pattern Mining for Business Decision Support. In Pro-
ceedings of the VLDB 2017 PhD Workshop co-located with the 43rd Interna-
tional Conference on Very Large Databases (VLDB 2017), Munich, Germany,
August 28, 2017. (2017).

13. Petermann, A., Micale, G., Bergami, G., Pulvirenti, A. and Rahm, E. Min-
ing and Ranking of Generalized Multi-Dimensional Frequent Subgraphs. In
2017 Twelfth International Conference on Digital Information Management
(ICDIM) (Sept 2017), pp. 236–245.

14. Petermann, A., Junghanns, M. and Rahm, E. DIMSpan - Transactional Fre-
quent Subgraph Mining with Distributed In-Memory Data�ow Systems. In
Proceedings of the Fourth IEEE/ACM International Conference on Big Data
Computing, Applications and Technologies (Austin, TX, USA, 2017), BDCAT
’17, ACM, pp. 237–246.

15. Bergami, G., Petermann, A. and Montesi, D. THoSP: an Algorithm for Nest-
ing Property Graphs. In Proceedings of the 1st ACM SIGMOD Joint In-
ternational Workshop on Graph Data Management Experiences & Systems
(GRADES) and Network Data Analytics (NDA), Houston, TX, USA, June 10,
2018 (2018), pp. 8:1–8:10.

16. Junghanns, M., Kiessling, M., Teichmann, N., Gómez, K., Petermann, A., and
Rahm, E. Declarative and distributed graph analytics with Gradoop. PVLDB
to appear (2018).

Contents

1 Introduction 10

1.1 Relational Data vs. Graph Data . 10
1.2 Graphs for Business Intelligence 16
1.3 Contributions and Publications . 20
1.4 Structure of Dissertation . 22

2 Background and Related Work 24

2.1 Graph Data Structures . 24
2.2 Comparison of RDF and Property Graphs 30
2.3 Distributed Data�ow Systems . 34
2.4 Graph Processing . 36
2.5 Graph Databases . 37
2.6 Graph Transformation of Relational Data 42
2.7 Graph-based Data Warehousing 44
2.8 Graph Pattern Mining . 46
2.9 Data Generators . 53

3 Analytical Framework 55

3.1 Master and Transaction Data . 55
3.2 Business Transaction Graphs . 56
3.3 Example Scenario . 58
3.4 Measures and Dimensions . 59
3.5 Characteristic Subgraph Mining 61
3.6 Requirements . 64

4 Extended Property Graph Model 65

4.1 Motivation . 65
4.2 Data Structure and Operators . 67
4.3 The Gradoop Framework . 70
4.4 FoodBroker Data Generator . 72
4.5 Conclusion . 79

1

5 Graph-based Transformation and Integration of Data 80

5.1 Overview . 80
5.2 Metadata Management . 84
5.3 Graph Transformation . 90
5.4 Data Integration . 91
5.5 Business Transaction Graphs . 96
5.6 Experimental Evaluation . 99
5.7 Conclusion . 104

6 Frequent Subgraph Mining in Distributed Graph Collections 105

6.1 Motivation . 105
6.2 Frequent Subgraph Mining in

Collections of Directed Multigraphs 107
6.3 Frequent Subgraph Mining with

Distributed Data�ow Systems . 115
6.4 Comparison to MapReduce-based Approaches 124
6.5 Experimental Evaluation . 129
6.6 Conclusion . 134

7 Generalized Multidimensional Frequent Subgraph Mining 135

7.1 Motivation . 135
7.2 Problem, Data Model and Terminology 138
7.3 Path Substitution Method . 140
7.4 Pattern Decomposition Method 142
7.5 Experimental Evaluation . 149
7.6 Conclusion . 153

8 Real-World Applications, Conclusion and Outlook 154

8.1 BIIIG for Real Estate Fraud Detection 154
8.2 BIIIG for Security Threat Analysis 156
8.3 Conclusion . 159
8.4 Future Research Directions . 162

2

List of De�nitions

2.1 Undirected Simple Graph . 27
2.2 Directed Simple Graph . 27
2.3 Directed Multigraph . 27
2.4 Labeled Directed Multigraph . 28
2.5 Property Graph . 28
2.6 RDF Triple Graph . 29
2.7 RDF N-quad Graph Collection . 29
2.8 Hypergraph . 29
2.9 Hypervertex Graph . 30
3.1 Master Data . 55
3.2 Transaction Data . 56
3.3 Business Process . 56
3.4 Business Case . 56
3.5 Business Transaction Graph . 58
3.6 Measure . 59
3.7 Dimension . 59
3.8 Dimension Relationship Pattern . 60
4.1 Property Graph Collection . 67
4.2 EPGM Operator . 67
4.3 Graph Collection Copy . 68
4.4 Aggregation . 68
4.5 Selection . 69
4.6 Property Transformation . 69
6.1 Subgraph . 108
6.2 Path . 108
6.3 Pattern . 108
6.4 Isomorphism . 108
6.5 Embedding . 108
6.6 Support . 109
6.7 Frequent Subgraph Mining . 109
6.8 Parent-Child Relationship of Graphs 109
6.9 DFS Code . 113

3

6.10 DFS Embedding . 113
6.11 DFS Extension . 113
6.12 Parent-Child Relationship of DFS Codes 114
6.13 Minimum DFS Code . 114
7.1 Taxonomy/Taxonomy Path . 139
7.2 Label Generalization . 139
7.3 Top-level Label . 139
7.4 Bottom-level Label . 139
7.5 Multidimensional Graph . 140
7.6 Graph Generalization . 140
7.7 Top-level Graph . 140
7.8 Bottom-level Graph . 140
7.9 Generalized Multidimensional Frequent Subgraph Mininig 140
7.10 Global Order of Labels . 143
7.11 Taxonomy Path Vector . 144
7.12 Vector Generalization . 145
7.13 Generalized Frequent Vector Mininig 145

4

List of Figures

1.1 Schema (Metadata) of a relational database: Every rectangle represents
a table de�nition including the table name (e.g. SalesOrder) and all
columns, their data type and primary key position (PK). Further on,
each table contains foreign keys including their columns and target
table. 11

1.2 Comparison of the same instance data in relational and graph repre-
sentation. 12

1.3 Comparison of a pattern mining result in graph and relational repre-
sentation. Both representations contain the same information. 14

1.4 Example graph collection with shared vertices. Dotted lines represent
graph boundaries. Solid rectangles overlaying the graphs’ boundaries
contain graph properties. Bold properties contain measure values and
normal font ones dimensional values. 17

1.5 Example Taxonomy of dimension Employee. 18
1.6 Example generalization of a graph pattern. 19

2.1 Graph structures with di�erent edge characteristics. 27
2.2 Graph structures with di�erent attached data formats. 28
2.3 Hypergraphs and hypervertices. 30
2.4 Comparison of an example property graph with mandatory label prop-

erties (italic font) and its schema-less RDF representation by standard
rei�cation. 32

2.5 Comparison of pattern matching queries. 40

3.1 Example business transaction graphs with aggregated graph measures
isClosed and soCount [139] . 57

3.2 Example relationship patterns with dimension values as label-properties. 59
3.3 Business transaction graph (id=1) after normalization for pattern mining. 62

4.1 Example graph collection with shared vertices. Dotted lines represent
graph boundaries. Solid rectangles overlaying the graphs’ boundaries
contain graph properties. Bold properties contain measure values and
normal font ones dimensional values. 66

4.2 Gradoop architecture [85]. 69

5

4.3 FoodBroker Schema : The outer rectangles show the boundaries of two
systems ERP and CIT. Database tables correspond either to classes or
n:m relationship types (*Line). Primary keys are highlighted by italic
letters. Relationship types are shown as solid lines. Foreign keys are
attached to relationship types. Implicit relationship types in between
both databases are represented by dotted lines. For each implicit rela-
tionship type, there is a corresponding column with pre�x erp. 74

5.1 Overview of the BIIIG framework. 81
5.2 Example uni�ed metadata graph with associated relational database. 83
5.3 Example uni�ed metadata graph with metadata from multiple sources.

Vertices represent classes and edges represent relationship types. Gray
vertices represent master data classes. Dashed rectangles represent
source boundaries and correspond to the ds properties of vertices. . . 92

5.4 Example integrated instance graph with data from multiple sources.
Vertices represent data objects and edges represent relationships. Gray
vertices represent master data. Dashed rectangles represent source
boundaries and correspond to the pre�x of sid properties of vertices.
The instance graph was generated based on the uni�ed metadata graph
shown by Figure 5.3 . 93

5.5 Example instance graph of Figure 5.4 after vertex fusion. 94
5.6 Example of the relationship integration problem. 96
5.7 Visualization (Gephi [224]) of the integrated instance graph extracted

from a dataset that was created by the real-world business information
systems ERPNext. 100

5.8 Visualization (Neo4j frontend [232]) of a business transaction graph
extracted from a dataset created by the FoodBroker data generator. . 101

5.9 Visualization (Gephi [224]) of a business transaction graph extracted
from a dataset created by a real-world business information system.
Zoom factor is to low to render labels. 102

5.10 Clipped view on the graph of Figure 5.9 with a higher zoom factor
(Gephi [224]). Black vertices show master data and gray vertices show
transaction data. The displayed label is the class property of transac-
tion data and a manually chosen business identi�er for master data. . 103

6.1 Example illustrations for a collection of labeled graphs, a subgraph
(gray background), a frequent pattern lattice and embeddings. The
values attached to vertices and edges represent id:label pairs 107

6.2 Pattern lattice search strategies. Bullets represent patterns and lines
represent parent-child relationships where parents are shown above
children. Red lines are those actually processed by the particular search
strategy. 109

6

6.3 Dataset element representing graph g3, pattern p21 and embedding
map µ(g3, p21) of Figure 6.1. 122

6.4 Illustration of our couterexample showing two graphs g1, g2. Each one
contains a 3-edge subgraph with automorphisms (black lines) and an
extension to a 4-edge subgraph (red lines). Roman numbers are vertex
identi�ers. 127

6.5 Example graph of Gradoop’s predictable transactions graph genera-
tor. Colored rectangles represent subgraphs and their guaranteed sup-
port. 130

6.6 Scalability for varying input size. 131
6.7 Scalability for varying result size. 132
6.8 Horizontal scalability for varying cluster sizes. 133

7.1 Example multidimensional subgraph and patterns. 136
7.2 Path-substitution method: Taxonomy paths are represented by dedi-

cated vertices and edges (blue lines). 137
7.3 Example taxonomies of Figures 7.1 and 7.2. Bold fonts highlight dummy

roots. 138
7.4 Comparison of taxonomy path representations in frequent graph pat-

terns. The gray �lled vertex can be assigned to a taxonomy path. Red
color indicates infrequent parts of a pattern. 141

7.5 Generalization search lattice for a 2-dimensional example vector set
L = {(111, 2111), (111, 2112), (112, 2112)}. Common pre�xes indi-
cate label generalizations (e.g., 11 <T 112). Edges represent vector
generalization from bottom to top. 143

7.6 Bottom-up search in the example lattice of Figure 7.5. Edge labels cor-
respond to umin of Algorithm 7.1. Red lines indicate paths that have
been traversed unnecessarily at φmin = 3. 144

7.7 Top-down search in the example lattice of Figure 7.5. Edge labels cor-
respond to umin of Algorithm 7.2. Gray lines indicate pruned paths at
φmin = 3. 147

7.8 GM-FSM evaluation results for variable minimum support threshold
φmin and a �xed maximum edge count kmax = 6. 150

7.9 GM-FSM evaluation results for �xed minimum support thresholdφmin =
0.2 and a variable maximum edge count kmax. 152

7

List of Tables

2.1 Glossary of symbols part 1 (greek letters) 25
2.2 Glossary of symbols part 2 (further symbols) 26
2.3 Selected Unary Transformations. I represents the input and O repre-

sents the output data set. A..D are distinct data spaces and W is a set
of worker threads. 34

2.4 Comparison of Graph database systems. 38
2.5 Citation count of FSM algorithms on Google Scholar (June 2018). . . 50

3.1 Examples transaction data classes, master data classes, measures and
dimensions of di�erent business processes. 58

4.1 Operators supported by Gradoop at the time of May 2018. 68
4.2 FoodBroker Con�guration Parameters 77
4.3 Measures of FoodBroker datasets for di�erent scale factors (SF) 78

6.1 Methodical comparison of DIMSpan and approaches based on MapRe-
duce. 123

6.2 Cost comparison of DIMSpan and approaches based on MapReduce. . 126
6.3 Embeddings and DFS codes during the pattern growth from 3-edge

subgraphs (black lines) to 4-edge subgraphs (red lines) in the graphs
of Figure 6.4. 128

8

List of Algorithms

5.1 Relational Metadata Acquisition (Part I - Classes) 86
5.2 Relational Metadata Acquisition (Part II - Relationship Types) . . 87
5.3 Method addRelationshipType . 88
5.4 Automated Graph Transformation 89
5.5 Vertex Fusion . 95
5.6 Business Transaction Graph Isolation 97
6.1 A priori (BFS) approach to frequent subgraph mining 110
6.2 Pattern growth (DFS) approach to frequent subgraph mining . . . 112
6.3 Level-wise pattern growth (LDFS) approach to FSM 116
6.4 DIMSpan data�ow. 117
6.5 Pattern growth map function . 120
7.1 Bottom-up search GFVM . 145
7.2 Top-down search GFVM . 148

9

Chapter 1

Introduction

To make good decisions, enterprises have a permanent desire to understand the
reasons for success or failure of their business. Nowadays, enterprises use soft-
ware systems to support this task, so-called decision support systems (DSS) [151].
A popular class of these systems, data-driven DSS, analyze data that is available in
databases to extract information relevant to decision-making. Databases are typi-
cally used to store domain objects, for example, a trade company stores customer
and sales order data. Additionally, databases store relationships among domain
objects, for example, for each order there is a relationship to the ordering cus-
tomer. Today, the dominating data models of data-driven DSS are the relational
data model [37] and its descendants that are tailored to analytical applications, for
example, data warehouse models [61]. In fact, DSS data models were not changed
in the last two decades.

The present dissertation examines to which extend the application of a graph
data model can be useful to support decision-making. The remainder of the cur-
rent chapter o�ers the reader a basic introduction to graph database models and
graph data mining (Section 1.1) and will motivate the research goal (Section 1.2).
Further on, it will state the dissertation’s contributions including related publica-
tions (Section 1.3) and end with an overview of the dissertation’s structure (Section
1.4).

1.1 Relational Data vs. Graph Data

The major di�erence between relational and graph databases is the handling of
relationships. In the relational model, all data is stored in tables (relations). Figure
1.2a shows a relational database that stores data of a trade company such as sales
orders, customers or products. Basically, there is one table for each class of data
objects (e.g., Customer) and every row describes a single instance. The columns of
a table represent attributes (e.g., Customer.name). All values of a column have the
same data type. Further on, there are keys to mark attributes to represent identity
or relationship information.

10

SalesOrder

column type PK
country varchar 1
id int 2
created date
campaign_id int
created_by_id int
customer_id int
revenue decimal

foreign key columns target
campaign [campaign_id] Campaign

createdBy [created_by_id] Employee

customer [country, customer_id] Customer

Campaign

column type PK
id int 1
name varchar

Employee

column type PK
id int 1
name varchar
team varchar

Customer

column type PK
country varchar 1
id int 2
name varchar
contact_id int

foreign key columns target
contact [contact_id] Employee

contains

column type PK
country varchar
order_id int
product_id int
quantity int

foreign key columns target
order [country, order_id] SalesOrder

product [product_id] Product

Product

column type PK
id int 1
name varchar

Figure 1.1: Schema (Metadata) of a relational database: Every rectangle represents a ta-
ble de�nition including the table name (e.g. SalesOrder) and all columns,
their data type and primary key position (PK). Further on, each table contains
foreign keys including their columns and target table.

11

SalesOrder

country id created campaign_id created_by_id customer_id revenue
UK 1 2018-01-02 1 2 1 1,000.00
UK 2 2018-01-03 NULL 2 1 500.00

Campaign

id name
1 Eat apples!

Employee

id name team
1 Alice Sales
2 Bob Sales

Customer

country id name contact_id
UK 1 ACME 1

contains

country order_id product_id quantity
UK 1 1 10
UK 1 2 10
UK 2 2 20

Product

id name
1 Apples
2 Pears

(a) Sample relational database with the schema of Figure 1.1: Every rectangle represents a
table with sample data.

(b) Sample graph database with the same data as the relational database of Figure 1.2a.
Circles represent vertices with global identi�ers and their connections represent edges.
Arrowheads indicate an edge’s direction. Classes, relationship types and attributes are
shown by key-value pairs close to vertices and edges (property graph model). Primary
keys of the relational database were not taken over.

Figure 1.2: Comparison of the same instance data in relational and graph representation.

12

For each relational database, there is a schema that describes all tables in terms
of columns and keys. Figure 1.1 shows the schema for the database of Figure 1.2a.
For each table there may be a primary key whose values identify objects. Primary
keys may consist of one or more columns and any distinct combination of their
values is unique per table, for example, according to Figure 1.2a a SalesOrder
is identi�ed by a 〈country_id, id〉 pair. Further on, there are foreign keys whose
values reference primary keys, for example, to store a customer reference for each
sales order. Our example shows two possible constellations of foreign keys:

For relationship types where one party can be referenced only once, e.g., the
employee who created a sales order, foreign keys are part of the referencing row.
For example, values of SalesOrder.created_by_id reference values of Employee.id.
This constellation is called one-to-many (1:n) since one employee may create multi-
ple sales orders but every sales order was created by exactly one employee. Besides
this, there is the so-called many-to-many (m:n) constellation. Here, both parties
may be involved arbitrarily often. For example, the same product may be contained
in multiple orders and vice versa. To store instances of this relationship type a ded-
icated table is required (e.g., contains). Further on, since relationships may also
have attributes these tables may have additional columns (e.g, contains.quantity).

In a relational database relationships are implicit, i.e., the schema must be eval-
uated to decide whether a table represents a class of objects or a relationship type
and whether a column stores basic attributes or keys. By contrast, in a graph
database, relationships are explicit, so-called �rst-level citizen. Figure 1.2b shows
the same data as Figure 1.2a in a graph format. Among di�erent graph models
[6], we choose the property graph model [157] for our running example due to its
wide acceptance in both industry and academia [87]. In this model, domain objects
are represented by vertices and relationships are represented by edges. Attributes
may be attached to vertices and edges in the form of key-value pairs called proper-
ties. Typically, there are no constraints among property keys, property values and
possible relationships, i.e., there is no schema.

The major advantage of graph databases over relational ones are additional
query capabilities. A basic graph query operation is traversing. For example, a
neighborhood traversal allows to access vertices that have a common edge with
a given start vertex. An equivalent relational solution would require full schema
knowledge to create a single query for every possible foreign key. While traversing
a graph database leads to homogeneous results, for example, a collection of vertices
or subgraphs, the relational pendant leads to one result per queried foreign key. If
neighbor vertices are originated from di�erent tables, they cannot be represented
in a single result table due to di�erent attributes and primary key spaces. The
problem intensi�es in the case of multi-hop traversals since every combination of
n traversed vertices may have a di�erent structure.

13

SalesOrder

pa�ern_id id created_by_id customer_id
1 1 1 1
2 1 1 1
3 1 NULL NULL

Employee

pa�ern_id id team
1 1 Sales
1 2 Sales
2 1 Sales

Customer

pa�ern_id id country mainContact_id
1 1 UK 2
2 1 UK 1

contains

pa�ern_id order_id product_id
3 1 1

Product

pa�ern_id id name
3 1 Apples

(a) Patterns of Figure 1.3b in relational representation. Numbers above patters in Figure
1.3b correspond to pa�ern_id columns. All primary and foreign keys include pa�ern_id

columns, e.g., SalesOrder.〈pa�ern_id, customer_id〉 references Customer.〈pa�ern_id,

id〉.

(b) Collection of three graph patterns. Dotted lines represent pattern boundaries. Patterns
1 and 2 represent sales orders placed by a customer from the UK. In both patterns, the
orders were created by employees of the sales team. Further on, in both cases customers
have a contact persons from the sales team. However, in pattern 2 the sales order was
created by the contact person, too, while the employees were distinct in pattern 1.
Pattern 3 shows a sales order that contains apples.

Figure 1.3: Comparison of a pattern mining result in graph and relational representation.
Both representations contain the same information.

14

The traversal operation already clari�es the advantage of explicit relationships
and schema-freedom for exploratory queries. Another similar yet powerful op-
eration is graph pattern matching [52]. This technique enables a user to identify
subgraphs that are equal or similar to a given pattern. The other way around,
graph models also allow the extraction of patterns. For example, an analyst may
be interested in frequent relationship patterns of lossy sales orders. A solution
based on a relational database is facing the same problems as those of traversal
queries since relational patterns across tables must be determined by querying all
possible schema fragments [46] and represented in multiple tables.

Let’s take the example of a not further explained algorithm that returns 3 pat-
terns of interest from a database with the schema of Figure 1.1. Let it be assumed
that these patterns are heterogeneous with regard to quantity and structure of re-
lationships. Figure 1.3 shows such patterns in both multi-relational (Figure 1.3a)
and graph (Figure 1.3b) representations. The most obvious di�erence of both rep-
resentations is the main criterion of data organization. While in Figure 1.3b every
pattern is represented by a single graph and all results form a graph collection,
in Figure 1.3a patterns are fragmented within a single set of tables. These tables
are derived from the schema of Figure 1.1. More precisely, these tables cover all
columns of all tables that match at least one pattern’s data. Additionally, all pri-
mary keys have an additional pattern id component (e.g., Customer.pa�ern_id).

The obvious advantage of graphs for this scenario is a more intuitive result
representation. The graph representation clearly shows the semantic meaning as
well as the di�erences between the three patterns while the relational represen-
tation requires further interpretation. Besides the patterns-centric data organiza-
tion graphs also directly show the di�erence between cyclic and acyclic relation-
ship patterns (e.g., patterns 1 vs. pattern 2) due to the fact that relationships are
�rst-level citizen. Further on, graph patterns show no absence of possible objects
and relationships (e.g., NULL values in SalesOrder.customer_id). Especially for
highly heterogeneous results, a relational representation might be confusing due
to a dominance of NULL values.

However, these advantages are not solely an issue of result representation.
Even data mining algorithms can already take advantage of schema freedom, ex-
plicit persistence of relationships and cycle detection, for example, the extraction
on frequent patterns [1]. The most famous approach for relational data is frequent
itemset mining [2] also known as shopping basket analysis. This approach de-
termines frequent patterns of coexisting attribute values but completely ignores
relationship structure. More elaborate approaches such as multi-relational mining
[46] consider patterns across multiple tables but provide no mechanism to handle
cyclic relationships. However, there are e�cient graph-based algorithms that al-
low the extraction of patterns that include not only attributes but also arbitrary
relationship structures [82].

15

1.2 Graphs for Business Intelligence

The research goal of this dissertation is a framework that enables decision-makers
to bene�t from the �exibility of graph-based data representation and from the
novel capabilities of graph mining algorithms. Therefore, we started the devel-
opment of BIIIG (Business Intelligence with Integrated Instance Graphs). BIIIG is a
conceptual framework of a graph-based data-driven DSS [141]. We have chosen
Business intelligence (BI) as an umbrella term that covers all technologies required
by a respective system [33]. BIIIG provides solutions to di�erent problems:

First, BIIIG should support the holistic analysis of data from multiple sources
with arbitrary structures, e.g., data from relational databases or from web services
that serve formats such as JSON and XML. Thus, BIIIG uses the property graph
model which is very suitable for this task. Domain data objects are transformed
into vertices, all relationships among them are re�ected by edges and all attributes
are directly attached to vertices and edges in form of properties. Further on, there is
a data integration [107] strategy. For example, it is possible to add edges between
vertices that represent the same conceptual entity (sameAs). Such edges can be
added either on the instance level (object matching [99]) or on the schema level and
either by an expert or by automated approaches [155]. Since these relationships
are materialized by edges in a single graph, they can be used to analyze data across
sources or to fuse vertices that correspond to each other.

BIIIG shall further allow the evaluation of patterns in a context, for example,
patterns that occur frequently together with sales orders that lead to �nancial loss.
Therefore, some established concepts from data warehousing [96] were adopted to
the graph model. In a data warehouse measures of facts are evaluated by dimen-
sional values. A fact is typically a tuple that represents a business transaction (e.g.,
a sales order) and whose �elds are either measure values (e.g., pro�t) or foreign
keys to dimensions (e.g., customers or products). Thus, it is possible to aggre-
gate measures by dimensional values (e.g. total pro�t by customer country). BIIIG
transfers those concepts to a graph model. To preserve relationship information
BIIIG’s facts are not tuples but graphs that represent, for example, a well de�ned
neighborhood of sales order vertices. For the application domain of business in-
formation systems BIIIG even includes an algorithm to automatically extract such
fact graphs called business transaction graphs (BTGs) [141].

Figure 1.4 shows an example collection of two BTGs. Both, dimensional values
(normal font properties) and measure values (bold font properties) are attached to
the graph structure. Common dimensional values of multiple graphs are re�ected
by shared vertices (e.g. apples). Since there is no schema, not only the actual
property values (e.g., name: Apples) but also semantic information are considered
as dimensional values (e.g., type: contains and class: Product). Further on, there

16

Figure 1.4: Example graph collection with shared vertices. Dotted lines represent graph
boundaries. Solid rectangles overlaying the graphs’ boundaries contain graph
properties. Bold properties contain measure values and normal font ones di-
mensional values.

are aggregated measures (e.g., result: 1,000) attached to graphs1. These so-called
graph measures allow �ltering and categorizing graphs, for example, to select only
lossy graphs. In consequence, a suitable graph model must support multiple graphs
as �rst-level-citizen as well as collections of those. Further on, graphs must support
properties. The existing property graph model lacks these concepts.

Before BIIIG, there was neither an academic graph database model [9] nor a
productive graph database [87] with support for multiple attributed graphs (graph
collections) and graph attributes. Because of this situation, we developed a new
graph database model called Extendend Property GraphModel (EPGM). As the name
already implies, it is an extension to the existing property graph model [157]. In
particular, its data structure adds support for graph collections and graph prop-
erties, so-called property graph collections. Beyond meeting the requirements of
BIIIG, EPGM includes a set of operators that were majorly developed by Martin
Junghanns in the context of the Gradoop framework [89]. Gradoop is a system
for declarative graph analytics based on the distributed data�ow system Apache
Flink [30].

To extract knowledge from property graph collections the determination of
1The measure of our example is calculated by

BTG.result←
∑

(SalesOrderLine.revenue)−
∑

(PurchaseOrder.expense).

17

Figure 1.5: Example Taxonomy of dimension Employee.

pattern frequencies is a crucial primitive. With regard to graphs, this process
is called frequent subgraph mining (FSM) [82]. A number of e�cient FSM algo-
rithms were developed in the 2000s [130, 190]. However, these algorithms were
only applied to a single use case: chemical compounds. In graphs that represent
compounds vertices re�ect atoms and edges their bonds. However, chemical com-
pounds and business information data show two fundamental di�erences: First,
relationships in business data are mostly directed, i.e., there is a semantic di�er-
ence between A references B and vice versa. In compounds, bonds have no di-
rection. Second, business data may contain multiple relationships between two
distinct entities. For example, the bottom graph of Figure 1.4 contains a pair of
parallel edges that is expressing that employee Alice aquired and created a sales
order. A graph with support for parallel edges is called multigraph. In compounds,
any pair of atoms can only be connected by exactly one bond.

To the best of our knowledge, prior to BIIIG there was no frequent subgraph
algorithm that was capable to extract patterns from directed multigraphs. To make
a respective algorithm available, we followed a straightforward approach and ex-
tended existing techniques. However, the bare extraction of frequent patterns is
still not su�cient to answer complex questions relevant to decision support. Thus,
BIIIG includes further algorithmic and technical extensions. From the technical
point of view, we proposed an e�cient parallelization under consideration of the
constraints of shared nothing clusters, i.e., following a bring the computation to the
data approach. With this approach, FSM can also be applied to Big Data scenarios.

An important algorithmic aspect of frequent pattern mining refers to dimen-
sional taxonomies. In a data warehouse [96] based on the multidimensional model,
a special variant of the relational model, measures are associated to multiple di-
mensions. For example, sales can be evaluated by customer and employee informa-
tion (2 dimensions). For some dimensions, the �nest granularity (e.g., an employee
with name Alice) can be attached to a taxonomy as shown by Figure 1.5. By the use
of taxonomies the granularity of single dimensions can be generalized, for exam-

18

Figure 1.6: Example generalization of a graph pattern.

ple, to calculate the total revenue of all sales people instead of the one of Alice. The
generalization of dimensional values has already been applied to frequent itemset
mining [67]. For example, the pattern {bread, bu�er} could be infrequent while
the more general one {bakery product,milk product} is frequent.

Generalization has also already been applied to graphs (chemical compounds)
[76], but without support for directed multigraphs and under the assumption that
all vertices belong to the same dimension. However, the data of most applica-
tions involves multiple dimensions, for example, to �nd out that {bread, bu�er} is
mostly bought in the morning in suburban stores. With BIIIG, we enabled general-
ized subgraph mining with support for multiple dimensions. Therefore, dedicated
vertex properties are attached to taxonomies and generalized during the mining
process [145]. For example, the left graph of Figure 1.6 shows a pattern with four
dimensions while the right graph shows one example of its generalizations at dif-
ferent levels for each dimension. In particular, it shows that Alice sold apples to
Germany.

The remainder of the present dissertation will discuss the contributions of BI-
IIG in more detail. Although there is no software system that includes all BIIIG
components yet, there are prototypes and experimental evaluations for all of its
building blocks. Most of the prototypes were turned into Open Source software
and made available to the public. Due to the limited availability of real word busi-
ness data, most evaluation were done using synthetic data. Therefore, a dedicated
data generator based on business process simulation [142] was developed. How-
ever, parts of BIIIG have been evaluated in real-world scenarios in cooperation
with Siemens AG and Immowelt AG.

19

1.3 Contributions and Publications

This section provides an overview of the contributions made in the context of this
dissertation. All of them were peer-reviewed and published in journals or pro-
ceedings of conferences and workshops. Additionally, a summary of most contri-
butions was presented on the VLDB 2017 PhD workshop [138].

Comparison of recent graph database systems: Before the development of
BIIIG started, both academic and commercial graph database systems were sys-
tematically compared with regard to their suitability. In chapter two of Manage-
ment and Analysis of Big Graph Data: Current Systems and Open Challenges [87],
published in 2017, we provide an in-depth comparison of their data models and
analytical capabilities.

Graph-basedDataTransformation and Integration: Although a typical com-
pany’s business data implicitly describes a graph it is usually stored in business in-
formation systems based on relational databases. Further on, companies often use
multiple of these systems and there are implicit cross-system relationships. To the
best of our knowledge, we proposed the �rst semi-automated approach to trans-
form data from multiple relational databases into a single graph whose vertices
represent domain objects and whose edges represent their mutual relationships.

We further proposed a graph-based approach to data integration. The process
is executed after the transformation and consists of two steps. First, correspon-
dence edges among vertices of di�erent graphs are added and, second, clusters
of vertices that correspond to each other are fused into a single vertex. The ap-
proach was initially proposed on the GDM 2014 workshop and published within
the ICDM 2014 workshop proceedings [141]. Further on, an initial prototype was
demonstrated on the VLDB 2014 conference [143].

Collections of Property Graphs: In established data mining approaches in-
terrelated input data is mostly represented by tuples of measure values and di-
mension values. In the context of graphs these values must be attached to the
graph structure and aggregated measure values are graph attributes. Since the lat-
ter was not supported by any existing model, we proposed the use of collections of
property graphs. They act as data structure of the novel Extended Property Graph
Model (EPGM). The model supports vertices and edges that may appear in di�erent
graphs as well as graph properties. Further on, we proposed some operators that
bene�t from this data structure, for example, graph-based aggregation of measure
values. The initial idea was already presented on the GDM 2014 workshop [141].
A more elaborate introduction to the concept of EPGM appeared on the NDA 2016
workshop, co-located with the SIGMOD 2016 conference [89].

20

FoodBroker Data Generator: Since real business data is not available to the
public, we designed a simulation-based generator for data that shows the charac-
teristics of data from business information systems. The structure of FoodBroker
graphs is based on a statistical model and contains correlations between single
vertices and the surrounding graph structure. Thus, it can be used in experimental
evaluations of analytical techniques. FoodBroker was initally| published within
the proceedings of the WBDB 2014 workshop [142].

Frequent PatternMining for DirectedMultigraphs: An primitive operation
of graph pattern mining is frequent subgraph mining (FSM). However, existing al-
gorithms provided neither support for directed graphs nor those containing multi-
ple edges between a pair of vertices. With the development of Directed Multigraph
gSpan (DMGSpan), a respective extension of the popular gSpan algorithm [196],
we proposed an algorithm without these limitations. The extension of gSpan to
support directed multigraph was initially published in the context of a Gradoop
Demonstration on the ICDM 2016 conference [140].

Distributed Frequent Subgraph Mining: Parts of this work were done in the
context of Gradoop, a framework for distributed graph analytics [85]. To make the
primitive operation of frequent subgraph mining available to this framework, we
developedDistributed In-Memory gSpan (DIMSpan), a variant of DMGSpan tailored
to characteristics of shared-nothing clusters and distributed in-memory data�ow
systems. Details about DIMSpan were published in the proceedings of the BDCAT
2017 conference [144].

Generalized Frequent Subgraph Mining: Some patterns might not be fre-
quent while their generalizations are. Generalized graph patterns can be mined
by attaching vertices to taxonomies. We proposed a novel approach to General-
ized Multidimensional Frequent Subgraph Mining (GM-FSM), in particular the �rst
solution to generalized FSM that supports not only directed multigraphs but also
multiple dimensional taxonomies. The work was presented on the ICDIM 2017
conference [145].

Characteristic Subgraph Mining (CSM): In scenarios that compare patterns
of di�erent categories, e.g., fraud or not, FSM is not su�cient since pattern fre-
quencies may di�er by category. Further on, determining all pattern frequencies
without frequency pruning is not an option due to the computational complexity
of FSM. Thus, we developed an FSM extension to extract patterns that are charac-
teristic for a speci�c category according to a user-de�ned interestingness function.
The method was already described and published in journal article that appeared
in 2016 in it - information technology [139].

21

Open Source Implementations: All data mining algorithms developed during
the research that lead to this dissertation are available as Open Source software.
Thread-parallel implementations of DMGSpan, GM-FSM and CSM based on both
algorithms are available as part ofDirectedMultigraphMiner2. DIMSpan and Food-
Broker are part of the Gradoop3 framework. Further on, there is a single-machine
version of FoodBroker 4.

1.4 Structure of Dissertation

The remainder of this dissertation consists of the following seven chapters:

Chapter 2 provides the reader with background knowledge relevant to this dis-
sertation. It starts with a formal introduction of all graph structures mentioned and
used in the remainder of this work. Afterwards, it will provide a technical intro-
duction into di�erent relevant software systems such as recent graph databases.
Finally, there will be a discussion of related work in the �elds of relational-to-
graph data transformation, graph-based data warehousing, graph pattern mining
and graph data generators.

Chapter 3 will introduce our analytical framework, in particular its basic con-
cepts and all relevant terminology such as measures, dimensions and business
transaction graphs. It will further present an analytical method that is capable to
extract patterns that correlate with business measures, called characteristic sub-
graph mining. We will use the method together with an example scenario to fur-
ther motivate BIIIG’s application and list the requirements that lead to BIIIG’s de-
velopment.

Chapter 4 will study the Extended Property Graph Model (EPGM) which sup-
ports BIIIG’s data model requirements such as the representation of business trans-
action graphs as well as all relevant operations. It will also take a look at Food-
Broker, a data generator for data that contains business transaction graphs, and
Gradoop, the �rst system that implements EPGM.

Chapter 5 is dedicated to graph-based transformation and integration of busi-
ness data, the foundation of the BIIIG approach. After an introduction of its spe-
ci�c data model, all relevant techniques will be discussed in more detail. Finally,
the results of an experimental evaluation with data originated from a real business
information system will be presented.

2https://github.com/p3et/dmgm
3https://github.com/dbs-leipzig/gradoop
4https://github.com/dbs-leipzig/foodbroker

22

Chapter 6 studies the core problem of frequent subgraph mining (FSM). After
a review of existing methods we will discuss our extensions to support directed
multigraphs. Additionally, we will discuss the parallelization of FSM in the con-
text of multi-core CPUs and in particular distributed data�ow frameworks for Big
Data processing. Due to their programming paradigms both approaches to paral-
lelization di�er fundamentally. Finally, results of an experimental evaluation will
show the scalability of our approach.

Chapter 7 studies the problem of generalized frequent subgraph mining. Mul-
tiple approaches to solve this problem will be introduced and discussed. The most
elaborate algorithm decomposes the problem into frequent subgraph mining of
most relevant generalizations and mines all frequent specializations by a less costly
approach to vector mining. The results of an experimental evaluation will con�rm
the e�ectiveness of this approach.

Chapter 8 concludes the dissertation. First, the results of use case evaluations in
cooperation with a large scale enterprise will be presented. This includes a report
of practical experiences gained in implementation and application of the proposed
algorithms. Finally, after a summary of the previous chapters it will name open
research questions based on the outcomes of this dissertation.

23

Chapter 2

Background and Related Work

This chapter will provide background knowledge that will be useful to understand
the remainder of this dissertation. Further on, it will discuss related work.

We will start with an overview of graph data structures (Section 2.1) and, due to
to their importance, a detailed comparison of the two most popular graph models
(Section 2.2). Nowadays, business intelligence is often related to Big Data tech-
nologies. Thus, we will provide an introduction to the programming model of dis-
tributed data�ow systems (Section 2.3). Since this dissertation is about graphs, we
will also discuss recent graph-related software systems and their analytical capa-
bilities. Due to their fundamental di�erences, we will do this separately for graph
processing systems (Section 2.4) and graph database systems (Section 2.5).

Since BIIIG includes multiple aspects of business intelligence we will also study
di�erent �elds of related work. The �rst one is graph-based data transformation
and integration (Section 2.6.2). Afterwards, we will study two �elds related to data
analytics, in particular graph-based OLAP (Section 2.7) and graph pattern mining
(Section 2.8). Since we also developed a data generator, we will also cover this �eld
(Section 2.9).

2.1 Graph Data Structures

In this section, all characteristics of graph structures mentioned or used in the
remainder of this dissertation will be precisely de�ned. We will use a common
formalism of elements, sets of these and functions. This may appear unfamiliar
to some readers as it di�ers from established formalisms for speci�c structures.
However, the formalism was chosen to ensure comparability and to facilitate un-
derstanding of more complex de�nitions later on in this dissertation. Tables 2.1
and 2.2 provide a glossary of all used symbols.

Basically, a graph [44] is a set of identi�ers (vertices) and connections among
them (edges). In a simple graph edges have no explicit identi�er. Figure 2.1a shows
an undirected simple graph.

24

Symbol Meaning Examples
α undirected adjacency α(v1) = {v2, v3}
αo outgoing adjacency αo(v1) = {v2, v3}
αi incoming adjacency αi(v1) = {v2, v3}
β bottom level label β(Employee) = false

Γkf Graph aggregation operator C ′ = ΓvertexCount
|Vg | (C)

γ graph containment γ(v) = {g1, g2}
ε empty element (NULL) π(v, age) = ε

ζ vertex taxonomy association ζ(v) = T

η label parent η(Employee.Alice) = Employee
ιv/ιe vertex / edge bijection ιv : {v1, v2} ↔ {v3, v4}
κ edge time bijection κ(2) = e

Λ label property key π(v,Λ) = User , π(e,Λ) = friendOf
λ labeling function λ(v) = User , λ(e) = friendOf
µ embedding map µ(g, p) 7→ {m1,m2}
ν vertex time bijection ν(2) = v

Πf Property transformation op. C ′ = Π∀v∈V.π′(v,label)=π(x,name)(C)
π property function π(v, age) = 42, π(e,weight) = 0.7
ρ taxonomy path function ρ(A.A.B) = {A,A.A,A.A.B}
Σf Graph selection operator C ′ = Σπ(g,vertexCount)≥3(C)
ς source of an edge ς(e) = v

τ target of an edge τ(e) = v

φ absolute support φ(G, p) = 42
φrel relative support φrel(G, p) = 0.7
φmin minimum support threshold φmin = 42
φrelmin rel. min. support threshold φrelmin = 0.7
ψ hyperedge function ψ(e) = {v1, v2, v3}
Ω EPGM Operator C ′ = Ω(C)
ω top level label ω(Employee) = true

Table 2.1: Glossary of symbols part 1 (greek letters)

25

Symbol Meaning Examples
Ab element of heterogeneous tuple g = 〈Vg, Eg〉
C property graph collection see Chapter 4
d/D property value / set of D = {”Alice”, 42, true}
e/E edge / set of E = {e1, e2, . . . , en}
g/G graph / set (collection) of G = {g1, g2, . . . , gn}
k/K edge discovery time / set of K = {1, 2, 3, 4}
`/L/L label / set of / space of L = {User, friendOf}
~̀/L vector / set of see De�nition 7.11
<T label generalization Employee <T Employee.Alice
<T graph generalization g1 <T g2

~<T vector generalization ~̀1~<T ~̀2

m embedding see De�nition 6.5
p pattern p ' s = true

' isomorphism relationship p ' s = true

s subgraph s v g = true

v subgraph relationship s v g = true
•
v child of (graph) c

•
v p = true

T/T /T taxonomy / set of / space of see De�nition 7.1
t time t = 5s
v/V vertex / set of V = {v1, v2, . . . , vn}
v path v = 〈v1, v3, v4, v2〉
x DFS extension x = 〈0, 1, from, true, edge, to〉
X DFS Code X = 〈x1, . . . , xn〉
u/U vertex discovery time / set of U = {1, 2, 3, 4}
y/Y property key / set of Y = {age,weight,Λ}

Table 2.2: Glossary of symbols part 2 (further symbols)

26

(a) Undirected Simple Graph (b) Directed Simple Graph

(c) Directed Multigraph

Figure 2.1: Graph structures with di�erent edge characteristics.

De�nition 2.1 (Undirected Simple Graph) An undirected simple graph is de-
�ned as a pair g = 〈V, α〉 of a vertex set V = {v1, v2, . . . , vn} and an adjacency
function α : V → P(V) that connects a subset of other vertices to every vertex s.t.
v /∈ α(v) and v1, v2 ∈ V.

(
v1 ∈ α(v2)⇔ v2 ∈ α(v1)

)
. Thus, an edge can implicitly

be de�ned as a 2-element set of vertices {v1, v2 | v2 ∈ α(v1)}.

Depending on the semantic meaning of vertices and edges, simple undirected
graphs can be used to represent data of di�erent scenarios. For example, for a
social network vertices may represent user identi�ers and edges may represent
their mutual friendships. However, there are also scenarios where an edge has a
di�erent meaning depending on its direction. A graph structure that distinguishes
between the start point (source) and end point (target) of an edge is denoted by the
attribute directed [44]. Figure 2.1b shows a directed simple graph.

De�nition 2.2 (Directed Simple Graph) A directed simple graph is de�ned as
a triple g = 〈V, αo, αi〉 which, in contrast to a undirected graph, contains two
separate adjacency functions describing outgoing αo : V → P(V) and incoming
connections αi : V → P(V) s.t. v /∈ αo(v); v /∈ αi(v) and
v1, v2 ∈ V.

(
v1 ∈ αo(v2) ⇔ v2 ∈ αi(v1)

)
. Thus, an edge can be considered as a

pair 〈v1, v2 | v2 ∈ αo(v1) ∧ v1 ∈ ι(v2)〉.

Besides edge direction, the quantity of edges between a pair of vertices may
carry semantics, for example, di�erent roads (edges) may connect the same pair
of cities (vertices) in a road network. So-called multigraphs [44] support an arbi-
trary number of edges between any pair of vertices as well as connecting a vertex
with itself. Edges of the latter type are called loop. Figure 2.1c shows a directed
multigraph including a loop and a pair of parallel edges.

De�nition 2.3 (Directed Multigraph) A directed multigraph is de�ned as a quadru-
ple g = 〈V,E, ς, τ〉 of vertex identi�ers V = {v1, v2, . . . , vn} , edge identi�ers
E = {e1, e2, . . . , em} as well as two functions mapping a source vertex ς : E → V

and a target vertex τ : E → V to every edge.

27

(a) Labeled Directed Graph (b) Property Graph

(c) RDF Triple Graph

Figure 2.2: Graph structures with di�erent attached data formats.

A further way of adding semantics to a graph is attaching data values to ver-
tices and edges. The simplest form of data values are so-called labels. Figure 2.1b
shows a labeled graph where vertex labels represent cities and edge labels express
a weight (minimal train connection time in minutes).

De�nition 2.4 (Labeled Directed Multigraph) A labeled directed multigraph
is de�ned as a sextuple g = 〈V,E, ς, τ, L, λ〉 containing, in addition to De�ni-
tion 2.3, a set of labels L = {`1, `2, . . . , `n} and a function λ : (V ∪ E) → L

assigning a label to every vertex and edge.

Labels can be used to distinguish types, e.g., users and groups in a social net-
work, or to add speci�c data values, e.g., edge weights. However, especially when
graph structures are used as part of database models [9] simple labels are not suf-
�cient. Thus, two popular extensions of labeled directed multigraphs arose in this
context. The �rst so-called property graph model [157] supports attaching an ar-
bitrary number of key-value pairs to the graph structure. Figure 2.2b shows a
property graph whose vertices and edges show di�erent properties.

De�nition 2.5 (Property Graph) A property graph is de�ned as a septuple g =
〈V,E, ς, τ, Y,D, π〉 containing, in addition to De�nition 2.3, a set of property keys
Y = {Λ, y0, y1, . . . , yn}, a set of data valuesD = {ε, d0, d1, . . . , dn} and a function
π : (V ∪E)×Y → D that maps a data value to every combination of vertex or edge
and property key. D contains the empty value ε to express the nonexistence of a
data value for a given combination. Further on, K may contain a dedicated label
symbol Λ where ∀x ∈ (V ∪ E).π(x,Λ) 6= ε s.t. the property graph is implicitly
labeled by a mandatory label property.

Besides property graphs, there is a second graph model that gained wide ac-
ceptance and application within the research community. The Resource Description

28

Framework (RDF) [238] allows the description of graphs by so-called International
Resource Identi�ers (IRI) as vertices and statements about these as edges. Figure
2.2c shows an example RDF graph. Note, the dotted line does not represent an
edge but shall express that every edge label is actually a vertex (IRI).

De�nition 2.6 (RDF Triple Graph) A RDF triple graph is de�ned as a sextuple
g = 〈V,D,E, ς, λo, λp〉 of a set of IRIs V = {v1, v2, . . . , vn} , a set of literals
D = {d1, d2, . . . , dm} and a set of triples E = {e1, e2, . . . , ep}. Each triple has an
assigned subject ς : E → (V ∪ E), object λo : E → V and predicate λp : E →
(V ∪D).

With regard to the structural properties introduced in De�nitions 2.3 to 2.5,
RDF triple graphs are edge-labeled directed multigraphs with two kinds of ver-
tices - IRIs and literals. Edge sources correspond to subjects and edge targets to
objects. However, the model additionally supports edges whose sources are edges.
While literals correspond to data values of property graphs, IRIs represent not
only vertices but also edge labels. Thus, there is no distinction between these two
concepts on the structural level. Properties are expressed by edges with a literal
predicate. To support collections of RDF triple graphs, there is a extension called
N-quads [239]:

De�nition 2.7 (RDF N-quad Graph Collection) A RDF N-quad graph collec-
tion is de�ned as a septuple g = 〈V,D,E, ς, λo, λp, γ〉 containing, in addition to
De�nition 2.6, an additional graph containment function γ : E → V mapping ev-
ery edge to a single IRI. Because of this fourth function, edges E are called quads
instead of triples.

In comparison to property graph collections according to De�nition 4.1, RDF
collections have no explicit mapping of vertices to graphs and edges are assigned to
exactly one graph. Graphs are identi�ed by IRIs and, thus, there is also support for
graph properties. Since the same IRI may be subject or object in edges of di�erent
graphs, it is possible to represent graphs with overlapping vertices. However, since
properties are edges they are only valid in the context of a speci�c graph.

For the sake of completeness there are two further graph structures worth men-
tioning although neither relevant for the remainder of this dissertation nor widely
applied. First, there are graphs supporting n-ary edges [78]:

De�nition 2.8 (Hypergraph) A hypergraph is de�ned as a triple g = 〈V,E, ψ〉
of vertex identi�ers V and edge identi�ers E analogously to a multigraph (Def-
inition 2.3) but with a speci�c function ψ : E → P(V) that maps an arbitrary
number of vertices to every edge.

Figure 2.3a shows a hypergraph with a 3-ary edge. Second, there are graphs
whose vertices may nest graphs [150]:

29

(a) Hypergraph (b) Graph with Hypervertices

Figure 2.3: Hypergraphs and hypervertices.

De�nition 2.9 (Hypervertex Graph) A hypervertex graph is any graph accord-
ing to De�nitions 2.1 to 2.5 whose vertices may be graphs themselves. Vertices will
be called hypervertices if they are non-empty graphs and simple vertices otherwise.

Figure 2.3b shows an undirected simple graph with two hypervertices.

2.2 Comparison of RDF and Property Graphs

There are two graph data models that gained extraordinary interest by both in-
dustry and academia: Resource Description Framework (RDF) and the Property
Graph Model (PGM). During the research that lead to this dissertation we were of-
ten asked why we favored the latter. To answer this question, this section will pro-
vide an in-depth comparison of both model with regard to their role as a database
model.

2.2.1 Resource Description Framework

In its core, RDF is an machine-readable data exchange format consisting of
〈subject, predicate, object〉 triples. Considering subjects and objects as vertices
and triples as edges, a dataset consisting of such triples forms a labeled directed
multigraph (De�nition 2.6). Labels are either internationalized resource identi�ers
(IRIs), literals like numbers and strings or so-called blank nodes (blank vertices).
The latter is used to re�ect vertices that are not representing an actual resource.
In the following, we will use the format :Identifier to represent IRIs. There
are domain constraints depending on the triple position. Subjects are either IRIs
or blank nodes, predicates must be IRIs and objects may be IRIs, literals or blank
nodes. In contrast to other graph models, RDF also allows edges between edges
and vertices, which can be used to add schema information to the graph. For exam-
ple, the type of an edge :alice,:knows,:bob can be further quali�ed by another
edge :knows,:isA,:Relationship. A schema describing an RDF database is a
further RDF graph of metadata and is often referred to as ontology [222]. RDF is
most popular in the context of the semantic web where its major strengths are
standardization, the availability of web knowledge bases to �exibly enrich user
databases and the resulting reasoning capabilities over linked RDF data [186].

30

2.2.2 Property Graph Model

While RDF is well discussed in research literature, PGM and the de facto standard
Apache TinkerPop [242] found by far lower interest. However, many commercial
graph database products use TinkerPop and the popularity ranking of May 2018
from DB-Engines1 shows a nearly twenty times higher score for the most popu-
lar PGM database (Neo4j, 40.58 [218]) than for the most popular dedicated RDF
store (Jena, 2.32 [219]). As DB-Engines, among other criteria [220], evaluates the
presence of databases in the web and social networks, the score indicates a high
relevance of PGM for productive graph data management. In Section 2.5, we will
present a comparison of current graph database systems. With one exception, all of
the considered PGM databases support TinkerPop. The TinkerPop property graph
model describes a directed edge-labeled multigraph with properties for vertices
and edges. Some systems also require vertices to be labeled, i.e., to have a dedicated
label property. This is used for di�erent purposes. For example, Sparksee uses la-
bels strictly to represent vertex and edges types and requires a �xed schema for
all of its instances. Other systems such as ArangoDB manage schema-less graphs,
i.e., labels may indicate types but may be coupled with arbitrary properties at the
same time. In most graph databases a schema is optional.

The best comparison of both models can be done by the discussion of rep-
resenting RDF using PGM and vice versa. At �rst glance, PGM subsumes RDF.
However, to evaluate edge labels in the context of external ontologies, a distinct
model feature of RDF is its capability to use the same IRI as predicate and as sub-
ject or object, i.e., the support for edges that connect edges and vertices. The PGM
is not designed to cover such application scenarios. The other way around, i.e.,to
represent a property graph using RDF, we identi�ed three major problems that
will be discussed next.

2.2.3 Di�erent Roles of Edges

In PGM, every edge represents a logical relationship. By contrast, RDF edges
(triples) have two roles: First, they are used to represent actual resource rela-
tionships (e.g., db:alice, schema:knows, db:bob). Second, they are used for
technical associations such as vertex properties (e.g., db:alice, schema:name,

"Alice"). In consequence, every PGM vertex is expressed by n triples (one for
each of n properties). In consequence, the interpretation of RDF will always re-
quire schema knowledge to process the graph data correctly, i.e., to decide if an
edge is a logical relationship or something else. To speedup traversals of actual re-
lationships some dedicated RDF databases hold properties separated from vertices.
However, by this approach the retrieval of vertices with all of their properties re-
quires a potentially expensive join operation. We consider the necessity for this
trade-o� as the �rst disadvantage of RDF.

1https://db-engines.com/en/ranking/graph+dbms

31

(a) Property Graph. (b) Schema-less RDF representation. Gray circles represent vertices,
white circles blank nodes and gray squares literals.

Figure 2.4: Comparison of an example property graph with mandatory label properties
(italic font) and its schema-less RDF representation by standard rei�cation.

2.2.4 Edge Properties

Edges in RDF (triples) must have exactly one IRI label (predicate). However, this IRI
is not an edge identi�er but a reference to its semantic type. Adding attributes to
an edge requires rei�cation, i.e., representing a single logical relationship by mul-
tiple triples. In the standard way [240], edges are represented by blank nodes. For
example, the logical relationship db:alice,schema:knows,db:bob can be repre-
sented by a blank node _:bn and separate edges to express subject, object and
predicate (e.g., _:bn,rdf:subject,db:alice). Properties are expressed analo-
gously to vertices (e.g. _:bn,schema:since,2016). In consequence, every PGM
edge is expressed by 3 + m triples, where m is the number of properties. Two
graph databases of Section 2.5 store property graphs using RDF. However, both
are using alternative, non-standard ways of rei�cation. Stardog is using n-quads
[239] for PGM edge rei�cation. N-quads extended triples by a fourth position that
stores an IRI to identify a graph (De�nition 2.7). Applied to rei�cation every edge
is represented by a graph. This one and other approaches to rei�cation are dis-
cussed in [40]. Addtionally, Blazegraph follows a further, non-standard approach
to rei�cation and implements custom RDF extensions [70].

32

We consider the necessity for rei�cation as the second disadvantage of RDF.
In particular, the standard way adds many technical edges which is not only in-
creasing data volume but also leads to an larger number of edges that need to be
processed at the traversal of logical relationships. Further on, the problem seems
to be neglected in popular RDF literature and despite the high standardization ef-
forts of RDF there seems to be no widely accepted approach to represent edge
properties.

2.2.5 Schema-less Data

Property graphs can be schema-less, i.e., property keys are not de�ned by a schema.
PGM data is often referred to as self-descriptive as metadata about type labels and
properties is retrievable directly from vertices and edges. Some database systems
of Section 2.5 support or even require vertex and/or edge labels which could be in-
terpreted as a partial schema. However, we will consider such data as schema-less,
too, as long as there are no constrains between labels and property keys. Figure
2.4 shows a small property graph with a partial schema (vertex and edge labels)
next to an equivalent schema-less RDF triple representation where type labels and
property keys are literals. In PGM, type labels as well as property keys and values
are logically embedded in vertices and edges. Native PGM implementations also
use a respective storage implementation.

In contrast, an equivalent RDF representation requires rei�cation not only for
edges but also for properties. While edge rei�cation is required to support edge
properties, property rei�cation is originated by the restriction of subjects to be
IRIs, i.e., a string literal may not be used as an edge label. For the same reason,
even a mandatory edge label require an additional triple. In the shown standard-
compliant solution, every vertex is represented by 1+3n (1 label and n properties)
and every edge by 4+3m (subject, object, predicate, label andm properties) triples.
Without a partial schema even vertex and edge labels would require 3 triples each.
Since we target a schema-less approach of data transformation (Chapter 5), we con-
sider the massive overhead of technical edges that is required to represent schema-
less data by RDF as a third disadvantage.

2.2.6 Summary

RDF is capable to represent a property graph but not vice versa, i.e., RDF has
greater expressive power. Further on, RDF shows signi�cant advantages for the
integration of web knowledge bases and other semantic applications since there
is a standardized data format. However, expressing (in particular schema-less)
property graphs using RDF leads to a rather voluminous representation and might
cause a poorer traversal performance as many technical edges must be evaluated
in addition to the logical ones. Thus, for all applications that neither need RDF’s

33

Transf. Signature Constraints

single element transformations
Filter I, O ⊆ A O ⊆ I

Map I ⊆ A,O ⊆ B |I| = |O|
Flatmap I ⊆ A,O ⊆ B -
MRMap I ⊆ A×B;O ⊆ C ×D -
element group transformations
Reduce I, O ⊆ A×B |I| ≥ |O| ∧ |O| ≤ |A|
Combine I, O ⊆ A×B |I| ≥ |O| ∧ |O| ≤ |A×W |

Table 2.3: Selected Unary Transformations. I represents the input and O represents the
output data set. A..D are distinct data spaces andW is a set of worker threads.

expressiveness nor web data exchange but require edge properties, support for
schema-less data and e�cient traversal operations, the property graph model is
favorable. Since the latter criteria are not random but apply to BIIIG, we decided
to prefer PGM over RDF.

2.3 Distributed Data�ow Systems

Nowdays, business intelligence is often connected to the term Big Data. The latter
again is frequently associated with distributed data�ow systems such as MapReduce
[42], Apache Flink [30] or Apache Spark [202]. These systems follow the bring the
computation to the data paradigm which has two implications: First, data is parti-
tioned across a cluster of individual computers that are only connected by a local
area network but have no shared memory. Second, complex programs must be
split into local processing and communication steps, for example, to count words
in a distributed collection of text �les there must be one program to count words
per machine and a second one to exchange and aggregate the local results.

In comparison to the development of distributed programs from scratch the
usage of distributed data�ow systems may decrease development time. These sys-
tems provide a functional programming abstraction and handle all technical as-
pects of parallelization. Since we use this programming model to implement dis-
tributed graph mining (Section 6.3) and it will be mentioned at the discussion of
related work this section provides a brief introduction to it.

The fundamental programming abstractions are datasets and transformations
among them. A dataset is an immutable set of data objects partitioned over a clus-
ter of computers. A transformation is an operation that is executed on the elements
of one or two input datasets. The output of a transformation is a new dataset.
MapReduce includes only two transformations (MRMap and Reduce) while Flink

34

and Spark show a wider range. Transformations can be executed concurrently on
W = {w0, w1, .., wn} available worker threads. Every thread executes the trans-
formation on an associated partition of a dataset. There is no shared memory
among threads and all required data must be exchanged over the network by spe-
ci�c transformations.

Depending on the number of input datasets we distinguish unary and binary
transformations. Table 2.3 shows examples of unary transformations. We further
divide them into transformations that process single elements and those that pro-
cess groups of elements. All of the shown functions require the user to provide
a transformation function which will be executed for each element or group. A
simple transformation is �lter, were the function is a predicate and only those el-
ements for that it evaluates to true will be added to the output. Another simple
transformation is map, where the function describes how to derive exactly one
output element from an input element. Flatmap is similar to map but allows an ar-
bitrary number of output elements. MapReduce provides only one single-element
transformation (denoted by MRMap in Table 2.3) which is a variant of �atmap that
requires input and output elements to be key-value pairs.

The most important element group transformation is reduce. Here, input as
well as output are key-value pairs. For each execution all elements sharing the
same key are group. The transformation function describes the generation of a sin-
gle output pair with the same key from each of these goups. Since input pairs with
the same key may be located in di�erent partitions they need to be shu�ed among
threads which is typically causing network tra�c among physical machines. If the
function is associative (e.g. summation), an additional combine transformation can
be used to reduce this tra�c. Combine is equivalent to reduce but skips shu�ing,
i.e., in the worst case one output pair is generated for each key and thread. After-
wards, these partial aggregation results can be passed to a reduce transformation.

As map and �lter can also be expressed using MRMap, MapReduce and the
new generation of distributed in-memory data�ow systems (DIMS) like Flink and
Spark have the same expressive power in terms of unary transformations and the
additional operations could be seen as convenience features. However, in the case
of successive or iterative MRMap-reduce phases intermediate results need to be
read from disk at the beginning and written to disk at the end of each phase. Thus,
MapReduce is not well suited to solve iterative problems and problem-speci�c dis-
tributed computing models arose, for example, to process very large graphs (Sec-
tion 2.4). In contrast, MapReduce and DIMSs are general purpose platforms and
not dedicated to a speci�c problem. However, DIMSs support more complex pro-
grams including iterations, binary transformations (e.g., set operators like union
and join) and are able to hold datasets in main memory during the whole program
execution.

35

2.4 Graph Processing

As already mentioned in the previous section, there is a class of distributed data
processing systems dedicated to graph data called graph processing systems (GPS).
These systems fundamentally di�er from graph database systems (GDBS). While
GDBS such as Neo4j [232] primarily focus on OLTP and query workload, GPS,
such as Google Pregel [117] are dedicated to graph analytics. Although we will
not use GPS in the remainder of this dissertation they are worth discussing in the
context of graph analytics. Thus, in this section, we will have a closer look on
graph processing system. An overview of GDBS will follow in the next section.

In the following we will summarize our recent overview of [87]. Graph process-
ing is especially applied to problems where a whole graph needs to be processed
iteratively. Examples for such algorithms are pagerank [133], triangle counting
or connected components [44]. Since respective graphs are ofter very voluminous
(e.g., the web, social networks) graph processing systems are typically based on
shared nothing clusters. Their programing models are dedicated to graphs and
di�er from general models of distributed data�ow systems. However, even these
systems may provide graph processing capabilities such as Apache Spark GraphX
[64] or Apache Flink Gelly [223]. However, according to a recent comparative
study [181] their performance cannot compete to dedicated systems.

Although programming models of di�erent graph processing systems di�er in
detail there is a general architecture of a distributed graph processing framework.
It consists of a master node for coordination and a set of worker nodes for actual
distributed processing. The input graph is partitioned among all worker nodes.
Depending on the actual algorithm partitioning may impact the overall perfor-
mance [181]. Most common is the vertex-centric model. Here, worker nodes store
vertices together with vertex data values as well as all outgoing edges including
their data values. Further on, also vertex identi�ers (ids) of incoming edges are
stored attached to vertices. Some approaches such as Giraph++ [176] ensure that
copies of all vertices that are adjacent to vertices of a partition will be stored on
the same partition.

The �rst popular vertex-centric programming model was the Think Like a Ver-
tex approach that has been pioneered by Google Pregel in 2010 [117] and adopted
or extended by other frameworks [63, 94, 103, 165, 172, 225]. In this model vertices
send a message to their neighbors iteratively. To write a program in a Pregel-like
model, a so called vertex compute function has to be implemented. This function
consists of three steps: Read all incoming messages, update the internal vertex
state (i.e., its data value) and send information (i.e., messages) to its neighbors.
Each vertex only has a local view of itself and its immediate neighbors. Any other
information about the graph that is necessary for computation has to be sent along
the edges.

36

Many extensions have been made to the vertex-centric programming model.
Powergraph [63] introduced the Gather Apply Scatter (GAS) model. Here, the user
has to provide three functions. First, there is a gather function to aggregate mes-
sages that address the same vertex on the sending worker nodes. Second, there is
an apply function that has the incoming messages as input and updates the vertex
state. Third, there is a scatter function that creates outgoing messages based on
the vertex state. The systems Signal/Collect [172] and Chaos [158] introduced the
Scatter Gather Model. This model requires the user to provide an edge and a vertex
function. The vertex function has all incoming messages as input and can modify
the vertex value. An alternative to vertex-centric approaches is the Think like a
Graph introduced by Giraph++ [176]. Here, a compute function has acess to all
vertices of a whole worker node (partition).

Most graph processing systems work bulk synchronous parallel (BSP), i.e., the
execution of program logic is bound to iterations. However, some algorithms
[97, 127] converge faster or can only be implemented [154] with an asynchronous
execution model. Thus, systems such as GraphLab [113] and GraphChi [103] sup-
port asynchronous execution.

2.5 Graph Databases

For the management of graph data there are dedicatedt graph database systems or
simply graph databases. Graph database systems are based on a graph data model
representing data by graph structures and providing graph-based operators such
as neighborhood traversal and pattern matching [6]. Their recent applications
are manifold, for example, collaborative software development [11], business data
management [159] and knowledge management [208] in biological [115] or medi-
cal applications [110]. Research on graph database models started in the nineteen-
seventies, reached its peak popularity in the early nineties but lost attention in the
two-thousands [9]. Then, there was a comeback of graph data models as part of
the NoSQL movement [31] with several commercial systems [6]. However, these
new-generation graph data models arose with only few connections to early rather
theoretical work on graph database models.

In this section, we will compare recent graph database systems as well as their
analytical capabilities and their potential usage for graph-based business intelli-
gence. Table 2.4 provides an overview of recent graph database systems including
supported data models, their application scope and the used storage approaches.
The selection claims no completeness but shows representatives from current re-
search projects and commercial systems with diverse characteristics.

37

D
at

a
M

od
el

Sc
op

e
St

or
ag

e
RD

F/
PG

M
/

Ge
ne

ric
O

LT
P/

A
na

ly
tic

s
A

pp
ro

ac
h

Re
pl

ic
at

io
n

Pa
rti

tio
ni

ng
SP

A
RQ

L
Ti

nk
er

Po
p

Q
ue

rie
s

A
pa

ch
e

Je
na

TD
B

[2
30

]
X

/X
X

na
tiv

e
A

lle
gr

oG
ra

ph
[2

13
]

X
/X

X
na

tiv
e

X

M
ar

kL
og

ic
[2

31
]

X
/X

X
na

tiv
e

X
X

O
nt

ot
ex

tG
ra

ph
D

B
[2

26
]

X
/X

X
na

tiv
e

X

O
ra

cl
e

Sp
at

ia
la

nd
Gr

ap
h

[2
34

]
X

/X
X

na
tiv

e
X

Vi
rtu

os
o

[5
0]

X
/X

X
re

la
tio

na
l

X
X

Tr
ip

le
Bi

t[
20

1]
X

/X
X

na
tiv

e
Bl

az
eg

ra
ph

[2
16

]
X

/X
X

/X
X

X
na

tiv
e

RD
F

X
X

IB
M

Sy
st

em
G

[2
9,

19
1]

X
/X

X
/X

X
X

X
na

tiv
e

PG
M

or
X

X

w
id

e
co

lu
m

n
st

or
e

St
ar

do
g

[2
41

]
X

/X
X

/X
X

◦
na

tiv
e

RD
F

X

SA
P

Ac
tiv

e
In

fo
.S

to
re

[1
59

]
X

/-
X

re
la

tio
na

l
A

ra
ng

oD
B

[2
15

]
X

/X
X

do
cu

m
en

ts
to

re
X

X

In
�n

ite
Gr

ap
h

[2
28

]
X

/X
X

na
tiv

e
X

X

N
eo

4j
[1

25
]

X
/X

X
na

tiv
e

X

O
ra

cl
e

Bi
g

D
at

a
[2

35
]

X
/X

X
ke

y
va

lu
e

st
or

e
X

X

O
rie

nt
D

B
[2

36
]

X
/X

X
do

cu
m

en
ts

to
re

X
X

Sp
ar

ks
ee

[1
18

]
X

/X
X

na
tiv

e
X

SQ
LG

ra
ph

[1
73

]
X

/X
X

re
la

tio
na

l
Ti

ta
n

[2
43

]
X

/X
X

◦
w

id
e

co
lu

m
n

st
or

e
X

X

or
ke

y
va

lu
e

st
or

e
H

yp
er

gr
ap

hD
B

[7
8]

X
X

na
tiv

e
◦:

vi
a

pl
ug

in
m

ec
ha

ni
sm

T
a
b
l
e
2
.
4
:

Co
m

pa
ris

on
of

Gr
ap

h
da

ta
ba

se
sy

st
em

s.

38

2.5.1 Data Models

The majority of the considered systems support one or both of two data models,
in particular the property graph model (PGM) and the resource description frame-
work (RDF). While RDF is standardized, for PGM there is only the industry-driven
de facto standard Apache TinkerPop (Section 2.2). A few systems use generic graph
models. We use the term generic to denote graph data models supporting arbitrary
user-de�ned data structures (ranging from simple scalar values or tuples to nested
documents) attached to vertices and edges. Such generic graph models are also
used by most graph processing systems (Section 2.4). The support for arbitrary data
attached to vertices and edges is a distinctive feature of generic graph models and
can be seen as a strength and a weakness at the same time. On the one hand,
generic models give maximum �exibility and allow users to imitate other graph
models like RDF or PGM. On the other hand, such systems cannot provide built-in
operators related to vertex or edge data as the existence of certain features like
type labels or attributes are not part of the database model.

2.5.2 Application Scope

Most graph databases focus on OLTP workload, i.e., CRUD operations (create, read,
update, delete) for vertices and edges as well as transaction and query processing.
Queries are typically focused on small portions of the graph, for example, to �nd
all friends and interests of a certain user. Some of the considered graph databases
already show built-in support for graph analytics, i.e., the execution of graph al-
gorithms that may involve processing the whole graph, for example to calculate
the pagerank of vertices [117]. These systems try to include the typical functional-
ity of graph processing systems by di�erent strategies. IBM System G and Oracle
Big Data provide built-in algorithms for graph analytics, for example, pagerank,
connected components or k-neighborhood [29]. The only system that is capa-
ble to run custom graph processing algorithms within the database is Blazegraph
by its gather-apply-scatter (Section 2.4) API . Additionally, the current version of
TinkerPop includes the virtual integration of graph processing systems in graph
databases, i.e., from the user perspective graph processing is part of the database
system but data is actually moved to an external system. However, indicated by
a circle in the analytics column in Table 2.4, we could identify only two systems
currently implementing this functionality.

2.5.3 Storage Techniques

The majority of the considered graph databases is using a so-called native storage
approach, i.e., the storage is tailored to characteristics of graph database mod-
els, for example, to enable e�cient edge traversal. A typical technique of graph-

39

Figure 2.5: Comparison of pattern matching queries.

optimized storage are adjacency lists, i.e., storing edges redundantly attached to
their connected vertices [29]. By contrast, some systems implement the graph
database on top of alternative data models such as relational or document stores.
IBM System G and Titan are o�ering multiple storage options. The used storage
approach is generally no hint for database performance [173]. Most systems can
utilize computing clusters by replicating the entire database on each node to im-
prove read performance. About half of the considered systems also have some
support for partitioned graph storage and distributed query processing. Systems
with non-native storage typically inherite data partitioning from the underlying
storage technique but provide no graph-speci�c partitioning strategy. For exam-
ple, OrientDB treats vertices as typed documents and implements partitioning by
type-wise sharding.

2.5.4 Query Language Support

In [6], Angles named four operators speci�c to graph database query languages:
adjacency, reachability, pattern matching and summarization queries. Adjacency

40

queries are used to determine the neighborhood of a vertex while reachability
queries identify if and how two vertices are connected. Reachability queries are
also used to �nd all vertices reachable from a start vertex within a certain number
of traversal steps or via vertices and edges meeting given traversal constraints.
Pattern matching retrieves subgraphs (embeddings) isomorphic to a given pattern
graph [58]. Pattern matching is an important operator for data analytics as it re-
quires no speci�c start point but can be applied to the whole graph. Figure 2.5a
shows an example pattern graph representing an analytical question about social
network data. Finally, aggregation is used to derive aggregated, scalar values from
graph structures (Section 4.2). In contrast to Angles, we use the term aggregation
instead of summarization, as the latter is also used to denote structural summaries
of graphs (Section 2.7). Such summarization queries are not supported by any of
the considered systems.

Most of the recent graph database systems either support SPARQL for RDF or
TinkerPop Gremlin for PGM. Both query languages support adjacency, reachabil-
ity, pattern matching and aggregation queries. Fig. 2.5c and 2.5d show example
pattern matching queries equivalent to the pattern graph of Fig. 2.5a expressed
in SPARQL and Gremlin. The results are pairs of Users who are members of the
same Group named GDM. Further on, one User should be younger than 25, a mem-
ber since 2016 and already have known the other user before 2016. The query was
chosen to highlight syntactical di�erences and involves predicates related to la-
bels and properties of vertices and edges. To support edge predicates, the SPARQL
query relates to edge properties expressed by standard rei�cation (Section 2.2.4).
While such complex graph patterns in SPARQL are expressed by a composition
of triple patterns and literal predicates (FILTER), the Gremlin equivalent is a com-
position of traversal chains, similar to the syntax of object-oriented programming
languages.

Besides SPARQL and Gremlin, there are also some vendor-speci�c query lan-
guages or vendor-speci�c SQL extensions. However, most of these languages miss
pattern matching. A notable exception is Neo4j Cypher[217]. In Cypher, pattern
graphs are described by ASCII characters where predicates that are related to ver-
tices and edges are separated within a WHERE clause. Currently, Cypher is exclu-
sively available for Neo4j but there are recent activities to turn it into an open
industry standard similar to Gremlin [119]. A common limitation of SPARQL,
Gremlin and Cypher is the representation of pattern matching query results in
the form of tables or single graphs (SPARQL CONSTRUCT). In consequence, it is
not possible to evaluate the embeddings in more detail, e.g., by visual comparison,
and to execute any further graph operations on query results. A recently proposed
solution to this problem is representing the result of pattern matching queries by
a graph collection [84].

41

2.5.5 Summary

There are several databases that support our favoured data model PGM (Section
2.2). However, the application scope of graph databases are primarily data man-
agement applications and there are only few analytical capabilities. As the most
crucial lack, none of the studied graph databases supports graph collections in a
way we require them to implement our analytical approach (Chapter 3).

2.6 Graph Transformation of Relational Data

Domain objects of business information systems as well as their relationships are
usually stored in relational databases. To make them available for graph-based
analytics, they must be turned into graphs beforehand. Since this dissertation in-
cludes a contribution to the �eld of relational to graph transformation (Chapter 5),
this section is dedicated to related work about this problem.

2.6.1 Domain Objects and Relational Databases

Relational databases [37] are often no natural representation of domain objects.
Typically, there is an object-relational mapping (ORM) [5] to describe how main
memory objects are persisted in relational databases. A popular example is the
Hibernate framework [132]. Since objects of programming languages can be arbi-
trarily complex, for example by nesting or inheritance, there are di�erent patterns
of ORM [56]. To give a simple example, inheritance can be implemented by sep-
arate tables for superclasses and their descendants or by a single table where one
column is used to assign each row to its class and some columns are only used by
speci�c subclasses.

The conversion of relational data into other non-relational database models
has been studied before the �rst graph-based approaches: In [54] Fong studied
the problem for object-oriented databases, i.e., the reverse problem of ORM. He
proposed a 2-step solution that creates a schema-translation from the relational to
the object-oriented schema before actual data conversion. He already addressed
the problem of inheritance (isA-relationships) but neglected di�erent implementa-
tion patterns [56]. Later on, in [55] the same author proposed a similar approach
for relational to XML conversion, which is less related to graphs since the central
problems are very speci�c to XML, for example, �le writing. In [116] Maatuk et al.
discussed the transformation from relational to object-relational databases which
is, in the case of business information systems, rather the reversal of ORM than a
conversion into an alien model.

42

2.6.2 Relational to Graph Transformation

There was only few work on relational to graph transformation before 2012, i.e.,
there is a temporal connection to the rise of the second generation of graph data-
bases [6]. But there are also exceptions: First, in the context of RDF there was
the development of languages that map relational schemas to ontologies [19, 166]
which form the base for automated instance transformation. However, as already
discussed in Section 2.2, RDF leads to a very fragmented graph representation even
in the presence of a schema. For example, at least one dedicated technical edge
(triple) will be required to represent a single attribute on the instance level. Re-
cent work on the reversion of this process even shows that existing RDF data can
be analyzed faster, if a relational schema is extracted and data is imported into a
relational database [147].

To the best of our knowledge, the �rst approach of relational to graph transfor-
mation that was not based on RDF was proposed by Soussi [168]. Her tool DB2SNA
aims to enable social network analyses on relational databases. It is based on the
hypervertex model [150], i.e., one of the �rst generation of graph database models
[9]. DB2SNA uses the same model to represent a database schema and to store
instance data. Complex object structures such as inheritance are not resolved and
will remain in the �nal graph, i.e., one logical data object might be represented
by more than one vertex and respective edges. Probably due to the generally low
popularity of the hypervertex model the approach found not much attention.

The neglection of ORM patterns together with the neglection of multi-column
keys can also be found at the early approaches that convert relational databases
into property graphs [41, 134]. With R2G [41] Devirgilio et al. proposed the �rst so-
lution to this problem. R2G is using di�erent graph models to represent a databases
schema and instance data. In the schema graph, just like RDF, attributes are rep-
resented by own vertices while instance attributes are represented by properties.
The approach is treating m:n relationship tables in a special way but represents
them by vertices in the �nal graph. R2G has no support for edge properties but
requires a label for every edge. Our approach to relational to graph transformation
[141] that will be studied in Chapter 5 was published in the same proceedings as
3NF Equivalent Graph (3EG) by Park et al. [134]. The development of 3EG was
driven by a healthcare application. Just as R2G the approach provides no support
for edge properties. In contrast to R2G it works directly on the relational schema
and omits a dedicated schema model.

Later, the approach proposed by Lee et al. [105] added functional features as
well as distributed processing based on MapReduce. Further on, it includes the
support for edge properties, an editable schema mapping and an URI concept, i.e.,
global identi�ers, to support the integration of multiple sources. However, the
approach still assumes an exact correspondence of tables and classes and turns m:n

43

relationships into vertices instead of edges. Schema mappings (XML documents)
must be added manually in advance.

Besides scienti�c work also graph database vendors propose techniques to im-
port relational databases into their products. Neo4j requires the creation of CSV
�les for each class of objects by user-de�ned SQL statements [233]. The database’s
query language Cypher supports to import these �les and to turn them into ver-
tices. Cypher is also used to create edges by joining previously indexed key prop-
erties. The system GraphBase provides a technique called RapidGrapher [237] to
import a relational database into a graph database that is just like [105] based on a
user-de�ned XML schema mapping. Unfortunately, no further details are available
to the public.

2.6.3 Further Related Techniques

There are further studies that are not exactly about relational to graph transfor-
mation but still related enough to be worth mentioning: First, SAP and its research
project Active Information Store [159] integrates a property graph database model
into their relational database HANA to support graph-based queries. However,
at the time of this dissertation neither detailed information about this project is
available nor an announcement for productivity was made. Beyond business ap-
plications, Vasilyeva et al. studied the import of Linked Open Data [128] in RDF
format into the Active Information Store [180].

With GraphiQL [83] Jindal and Madden brought the graph model to the re-
lational database in a di�erent way. In particular, they proposed a graph query
language [7] that is translated on the �y into SQL statements. However, GraphiQL
requires a very speci�c relational schema and cannot be applied to databases that
were made for a di�erent purpose. This is di�erent for GraphGen, an approach
to user-de�ned graph extraction proposed by Xirogiannopoulos and Deshpande
[193]. Their domain speci�c language requires the user to describe vertices and
edges. The approach targets only structural analyses and graph processing ap-
plications. The resulting graphs are rather homogeneous and not suitable to rep-
resent complex domain models. Finally, there is GraphBuilder [80], an ETL Tool
based on MapReduce that supports the user-de�ned construction of graphs. How-
ever, the tool is very generic and includes no speci�c techniques to deal with rela-
tional databases.

2.7 Graph-based Data Warehousing

This dissertation is about business intelligence and graph data models. Probably
the most popular area that connects both worlds is graph-based data warehousing.
In reference to classic data warehousing [96] the terms graph OLAP and graph cube

44

are often used as synonyms. Altough we make no contribution to this �eld this
section will give a brief introduction into it:

Graph-based data warehousing aims to create summaries of an input graph.
We consider a summary (graph) to be a graph whose vertices represent groups
of vertices of an input graph and whose edges represent groups of input edges
that connect members of grouped vertices. We consider the term graph-based data
warehousing as an umbrella term for all approaches that generate user-de�ned
and user-predictable summaries of a graph, i.e., there is a query language or a
similar way to declare a summary with regards to the graph’s data such as labels or
attributes. Typically, these summaries contain classical data warehouse elements
such as aggregated measures, dimensions and their hierarchies.

The existence of a technique to declare summaries is the major criterion to
di�erentiate graph-based data warehousing from graph summarization which is a
data mining technique that automatically creates summaries based on topological
conditions such as a maximum vertex count of the summary graph [177]. A recent
survey about this �eld [112] is provided by Liu et al. However, some approaches
related to graph summarization are also interesting for business intelligence ap-
plications: For example, in [98] Koop et al. use graph summarization to visualize
similar patterns in multiple graphs and in [207] Zhang et al. introduce the CANAL
algorithm that enables grouping by numerical measures by automatically balanced
quantization.

In [34] Chen et al. proposed GraphOLAP, the �rst approach to graph-based
data warehousing, and introduced roll-up/drill-down and slice/dice operations by
overlaying and �ltering graphs. Further on, GraphOLAP provides support for hi-
erarchical dimension values. InfoNet OLAP [153], an approach proposed by Qu
et al., extends GraphOLAP by partial roll-up/drill-down, i.e., parts of a summary
can be expanded or collapsed on demand. Further on Yin et al. developed HM-
Graph OLAP [199] which extends the concepts of GraphOLAP by the support for
heretogenous networks (vertex and edge types) and two further operations called
rotate and stretch.

With GraphCube [209] Zhao et al. extended concepts of GraphOLAP by the
de�nition of crossboid queries which enable analyses at di�erent summary levels.
Denis et al. developed a distributed variant of GraphCube [43] based on Apache
Spark. A further distributed variant is Pagrol [187] by Wang et al. However, Pagrol
further adds support for edge dimensions and allows the multigraph property for
summaries, i.e., there may be more than one edge group between a pair of summa-
rized vertices. Finally, Ghrab et al. extended the concepts of GraphOLAP and Pa-
grol by presenting GRAD [60], the �rst approach to graph-based data warehousing
that supports truly heterogeneous property graphs. In the context of Gradoop we
also proposed a distributed approach to declarative grouping of property graphs
[90, 88].

45

In multiple publications [21, 22, 100] Bleco and Kotidis proposed operators
and technical optimizations for aggregation queries on huge collections of small
graphs. A further approach related but not similar to graph-based data warehous-
ing is the Core-Facets Model [104] proposed by Dung et al. Here, not summaries
but homogeneous views on heterogeneous graphs are the point of interest. Be-
sides the technical solutions to the graph-based data warehousing problem that
have been discussed before there are also Rudolph et al. who proposed summa-
rization templates to declare summaries in [160] as well as notions of terms like
measure, fact and dimension in the context of graph-based data warehousing in
[161].

2.8 Graph Pattern Mining

Some contributions of this dissertation are related to graph pattern mining, in par-
ticular to frequent subgraph mining which is the problem of frequent pattern min-
ing in graph structures. Since many of the approaches to frequent subgraph min-
ing have their origin in di�erent data structures, this section will �rst provide a
brief overview of the history of frequent pattern mining in general (Section 2.8.1).
Afterwards, we will study related work about frequent subgraph mining in more
detail (Section 2.8.2). One of our contributions is an approach to generalized pat-
tern mining. Thus, we will provide a dedicated discussion of this topic with regard
to di�erent data structures (Section 2.8.3). Finally, since our major analytical ap-
proach is related to the problem of process mining we will give a brief introduction
to this area to highlight the di�erences to BIIIG (Section 2.8.4).

2.8.1 Frequent Pattern Mining

Frequent pattern mining is a data mining [68] problem that aims to extract a set
of patterns that occur with a minimum frequency (support) in some kind of input
data. Mostly, the term is related to frequent itemsets. The �rst important work
about this problem [2] was presented by Agrawal et al. together with association
rule mining. In the economic context the problem is also known as shopping basket
analysis. Here, the input data structure is a set of itemsets (transactions) that, for
example, may represent shopping baskets such {bread, bu�er, co�ee}. The aims
of association rule mining are, �rst, to identify frequent itemsets, for example, that
{bread, bu�er} is contained in (supported by) 20% of transactions, and, second, to
detect rules like co�ee is typically bought together with bread and bu�er. Example
applications of these rules are predictions or recommendations.

A recent book by Aggarwal and Han [1] provides an overview of frequent pat-
tern mining. The authors state that frequent pattern mining can be considered with
regard to four dimensions: First of all, there are di�erent algorithmic approaches
to determine pattern frequencies. Second, in the era of Big Data, scalability is an

46

important issue. Third, there are di�erent variations of the problem, for example,
instead of minimum support a di�erent criterion can be used to extract patterns
of interest. Fourth, frequent pattern mining can be applied to di�erent data types.
Frequent pattern mining has been extensively studied in the last two decades an
nowadays forms a whole research area with many specializations with regard to
the stated dimensions. We will focus our discussion on work that is most related
to this dissertation. Section 2.8.2 is dedicated to the most relevant data types of
graphs and will study the other three dimensions in their context. Afterwards, in
Section 2.8.3 we will have a closer look on the problem variation of generalized
pattern mining, again, with regard to the other dimensions. Before, this section
aims to give an introduction to the area and will present important examples for
di�erent variations as well as general concepts that are independent from data type
and variation.

The most important classi�cation of algorithmic approaches distinguishes be-
tween a priori and pattern growth algorithms. A priori algorithms were presented
�rst [1, 3]. These algorithms, �rst, generate candidate patterns and, second, count
their support by pattern matching, i.e., for each transaction that contains a pattern
the support is increased by one. They exploit the anti-monotonic property of the
problem, i.e., they exploit that larger patterns such as {bread, bu�er, co�ee} can
only be frequent if all of their sub-patterns {bread, bu�er}, {bread, co�ee} and
{bu�er, co�ee} are frequent, too. By mutual containment patterns form a lattice.
We will use the term parent for a pattern that is contained and the term child to
denote a pattern that contains another pattern. An a priori algorithm must scan
the database once for each generated candidate. In [25] Brin et al. proposed an im-
proved support counting method that generates children as soon as their parents
are known to be frequent.

However, the biggest bottleneck of a priori algorithms is the lattice-based search
itself. With FP-Growth [69] Han et al. proposed the �rst approach that belongs to
the second class of pattern growth algorithms. The basic concept has been adopted
to other data structures such as sequences [137], trees [204] and graphs [196]. In
contrast to a priori algorithms, these algorithms report canonical forms of actu-
ally supported patterns. By the use of a lexicographical order among patterns these
algorithms ensure that every lattice node can be visited by a tree search. Indepen-
dent from the actual data structure, this leads to a performance gain of pattern
growth approaches over a priori algorithms.

An important variation of the frequent pattern mining problem is constrained
pattern mining. Here, patterns must not only be frequent but also satisfy other
�lter criteria. In [136] Pei and Han provide an overview of this variation. Con-
straints may be related to a pattern’s items, its size, its contained sub-patterns and
aggregated scalar values such as an average label length. If only a certain kind
of constraint is required its characteristics can be used to improve the algorithm’s

47

e�ciency. An important example is closed pattern mining [135, 197, 205]. A pat-
tern will be considered closed, if all of its children are less frequent, i.e., a further
specialization will decrease support. An even more restrictive problem is maximal
frequent pattern mining [27, 65, 175]. A pattern will be considered maximal, if it
has no frequent child, i.e., due to its size it is more discriminative than all of its
parents but still frequent. A pattern must be closed to be maximal [27]. A further
variation is signi�cant pattern mining [108, 156, 188, 194] where the objective is a
threshold that refers not to a pattern’s support but to a signi�cance measure such
as p-values.

2.8.2 Frequent Subgraph Mining

Frequent subgraphmining (FSM) is the problem of frequent pattern mining in graph
data, in particular vertex- and edge-labeled graphs. In this context patterns are
graphs that are isomorphic to subgraphs of the input data with regard to equal
vertex and edge labels. A recent book chapter by Cheng et al. [35] provides an
introduction to this topic. Further on, a survey [82] by Jiang et al. provides an
extensive overview of mining of frequent subgraphs and frequent subtrees.

In contrast to frequent itemsets, FSM has a �fth dimension to categorize al-
gorithms: Depending on their input data algorithms belong either to the graph
transaction setting or to the single graph setting. The graph transaction setting is
the pendant of frequent itemset mining where transactions are graphs instead of
itemsets. By contrast, in single graph setting there is only a single, mostly large,
input graph and the frequency threshold relates to the number of pattern occur-
rences instead of the number of supporting transactions. In the following, we will
discuss the other general dimensions of frequent pattern mining for both settings
separately. Since this dissertation contributes to the graph transaction setting it
will be discussed in more depth than the single graph setting.

Algorithms: Just like frequent itemset mining transactional FSM algorithms can
also be categorized into a priori and pattern growth algorithms with basically the
same characteristics. All frequent subgraphs (graph patterns) form a lattice based
on parent-child relationships. The latter are again based on containment, i.e., a
child contains its parent. However, most frequent subgraph algorithms further
require patterns to be connected, i.e., there must be a path between all pairs of
vertices. Because of the di�erent search strategies in the lattice a priori algorithms
are often refered to as breath �rst search (BFS) algorithms and pattern growth algo-
rithms are also known as depth �rst search (DFS) algorithms. A priori (BFS) algo-
rithms [77, 101] �rst generate candidates and count support by subgraph isomor-
phism testing while pattern growth (DFS) algorithms represent actual subgraphs
by canonical labels. In Section 6.2.3 we will provide a generic comparison of both
strategies.

48

The �rst transaction FSM algorithms followed an a priori approach. First, there
was AGM [77] by Inokouchi et al. To avoid the extraction of duplicates and to en-
sure an e�cient candidate generation AGM is using canonical adjacency matrices
to represent graph patterns. Thus, in contrast to most other algorithms, AGM also
extracts non-connected graph patterns. About the same time and independent
from AGM Kuramochi et al. proposed FSG [101], another a priori approach. In
contrast to AGM, FSG uses a rather expensive join operation in the candidate gen-
eration step. General disadvantages of these a priori algorithms are a high memory
consumption as all patterns of the same size must be hold in main memory before
children can be generated [82], the expensive candidate generation process itself
[35] and that support counting must be done by subgraph isomorphism testing
which is also known as the graph pattern matching problem [58]. Further on, it is
possible that many generated candidates might not even appear.

Thus, all newer approaches use a pattern growth strategy. These approaches
extend parent patterns by single edges and apply constraints and checks to avoid
generating the same child in di�erent ways. Independent from each other, the �rst
two approaches were MoFa [24] by Borgelt and Berthold and gSpan [196] by Yan
and Han. MoFa uses embeddings, i.e., mappings between transactions and pat-
terns as its main data structure. During the mining process these embeddings will
be extended and a canonical representation is used to count pattern support. There
are some label-based constraints to avoid generating the same pattern in multiple
ways. However, MoFa puts out duplicates that must be eliminated by isomorphism
testing among the resulting patterns. By contrast, gSpan uses canonical labels that
represent patterns (DFS codes) as its main data structure and holds only occurrence
lists in main memory. Thus, embeddings must be recovered by subgraph isomor-
phism testing before every extension. However, gSpan is using more elaborate
growth constraints and directly generates canonical forms. gSpan even allows to
verify a pattern to be no duplicate without comparison to other patterns. This
veri�cation happens directly during the mining process [195].

FFSM [74], a further pattern growth approach proposed by Huan et al. uses
canonical adjacency matrices to represent patterns and grows patterns by join-
ing search tree nodes. Like MoFa, it keeps embeddings in main memory and like
gSpan, duplicates can be detected by veri�cation. A further embedding-centric
approach is Gaston [129]. It applies di�erent types of canonical labels for paths,
trees and cyclic graphs. Based on this Gaston e�ciently mines paths and trees be-
fore cycles are closed. Thus, duplicate veri�cation is only required for a subset of
patterns. However, the latter is done by isomorphism testing among the results.

In [190] Wörlein et al. provide a comparison of MoFa, gSpan, FFSM and Gas-
ton with regard to their performance. They draw the conclusion that embedding-
centric approaches speed up support counting but are only bene�cial for large
patterns and cause a signi�cantly higher memory usage. Further on, the time to

49

Algorithm Year of publication Citation count
gSpan [196] 2002 2238
FSG [101] 2001 1338
AGM [77] 2000 1222
FFSM [74] 2003 705
MoFa [24] 2002 497

Gaston [129] 2005 157

Table 2.5: Citation count of FSM algorithms on Google Scholar (June 2018).

generate canonical representations is more important and isomorphism testing
should be avoided. In [130] Nijssen and Kok, the developers of Gaston, compared
Gaston, FFSM, gSpan, FSG and two tree miners. First, They have experimentally
shown that pattern growth approaches are clearly preferable over a priori ones.
Further on, they con�rmed the impact of computing canonical forms and found
gSpan’s DFS codes to be preferable. They also con�rmed the trade-o� between
runtime and memory usage by deciding for or against holding embeddings in main
memory.

Scalability: Besides e�ciency also scalability has always been an issue of fre-
quent subgraph mining and there is active research on this topic until today. Many
works that claim to have improved scalability of frequent subgraph mining actually
relaxed the problem de�nition. Thus, we consider them as variants and not as scal-
ability improvements. With regard to the standard variant of frequent subgraph
mining, it is our impression that since the 2000s no more new e�cient algorithms
have been proposed and that gSpan became the most popular base algorithm for
scalability extensions. A comparison of citation counts (Table 2.5) adds a measure
to this impression. Most work about FSM scalability uses parallelization to speed
up computation. A notable exception is ADI-Mine [184]. Here, Wang et al. ex-
tended gSpan by an adjacency index to provide scalability for scenarios where the
graph database cannot be held in main memory.

The most straight forward parallelization is the one on multiple threads of a
single machine. In [120] Meinl et al. presented respective versions of gSpan and
MoFa. They were able to gain very good speedups for both algorithms. In [183] Vo
et al. proposed another parallel version of gSpan. They also gained good speedups
but reported that main memory consumption is increasing according to the num-
ber of threads. Further successful approaches to parallelize gSpan were proposed
by Kessl et al. for GPUs [93] and by Stratikopoulos et al. for FPGAs [171]. Fur-
ther on, there were several horizontally scalable approaches based on MapReduce
[10, 18, 72, 109, 114]. Due to the close relationship of these approaches to this
dissertation they will be discussed in further detail in Section 6.4.

50

Variants: First of all, there are variants of graph transaction FSM that are al-
ready known from frequent itemset mining: In particular, there are approaches
to constrained [211], closed [197] and maximal [75, 175] mining. However, there
are also variants speci�c to graphs such as the extraction of frequently correlated
subgraphs pairs [91] by Ke et al. Of particular interest for business intelligence
applications are approaches to signi�cant subgraph mining [156, 164, 194] whose
extraction criterion is a signi�cance measure instead of a support threshold. Sig-
ni�cance measures such as p-values [71, 123] are also used to rank graph mining
results. A variant that is closely related to this dissertation is generalized frequent
subgraph mining [76] and will be discussed in the next section.

Single Graph Setting: Frequent subgraph mining in single graph setting is a
much di�erent problem than graph transaction FSM and not much related to this
dissertation. Nevertheless it is worth a brief introduction. Before early approaches
to exact FSM in single graphs appeared Cook and Holder proposed SUBDUE [38],
an approach to compression based on approximate frequent subgraph mining. The
most crucial problem of early approaches to the standard variant [26, 28, 102, 179]
was the de�nition of a suitable and scalable frequency threshold (support mea-
sure). While earlier approaches store patterns and embeddings, GRAMI [48] by
Elseidy et al. uses a novel embedding-free approach with multiple optimizations
that, according to the authors’ evaluation, could outperform the existing approach
by orders of magnitude. Further on, GRAMI supports variants of approximate and
constrained frequent subgraph mining.

Just like the transaction setting, recent work is mostly focusing on scalabil-
ity. For example, Zou and Holder use sampling to overcome memory limitations
for very large graphs [212]. In recent years also many horizontally scalable ap-
proaches have been proposed. In contrast to the transaction setting these are not
limited to approaches based on MapReduce [124, 167]. Graph processing (Section
2.4) has never been applied to the transaction setting because the data model is
unsuitable. However, this is not the case for a single large graph. Thus, there are
multiple approaches to single graph FSM based on graph processing systems and
their programming models [174, 185, 210]. Additionally, in [152] Qiao et al. pro-
pose an approach based on the distributed in-memory data�ow system Apache
Spark.

2.8.3 Generalized and Multidimensional Pattern Mining

Independent from the actual data type all frequent pattern mining approaches eval-
uate labels. For example, itemsets could be seen as sets of labels and a labeled graph
represents a certain topology of labels. In many domains these labels can be asso-
ciated to taxonomies which are also referred to as isA hierarchies. For example, in

51

a shopping basket scenario wholegrain bread and so� white bread could be linked
to a taxonomy that shows that both have a common generalization of bread. In
the problem of generalized frequent pattern mining all labels are assigned to tax-
onomies and frequent pattern candidates are not only constructed from the labels
themselves but also from their generalizations.

Most work on generalized frequent pattern mining was made for frequent item-
sets and respective association rules. For example, {bread, bu�er} is a general-
ization of {wholegrain bread, Irish bu�er}. The �rst approach to generalized fre-
quent itemset mining [169] was proposed by Srikant and Agrawal. In [67] Han and
Fu extended the approach by the use of level-dependent minimum support thresh-
olds. In [198] Yen and Chen used a graph that represents relationships among
patterns to improve the mining process. These �rst solutions were all based on an
a priori approach. In more recent work by Eavis and Zheng [47] as well as Jayan-
thi et al. [81] presented two pattern growth solutions to the problem to speed up
computation.

There are some studies where generalized frequent pattern mining was ex-
tended to di�erent data types. In [170] Srikant and Agrawal proposed a general-
ized approach to frequent sequence mining. Inokuchi even presented an approach
to generalized frequent subgraph mining [76]. His solution is based on an a pri-
ori algorithm based on undirected simple graphs and assumes, just like itemsets,
that all vertices belong to the same taxonomy. To the best of our knowledge no
approach to scalable generalized frequent pattern mining has been proposed yet.

The problem of multidimensional frequent subgraph mining did not �nd not
much attraction yet. However, in our opinion it is very relevant for business intel-
ligence applications since business data typically represents not only a single class
of things. We will consider data to be multidimensional if labels represent di�er-
ent classes, for example, products and locations. In [148] Pinto et al. proposed an
approach to multidimensional sequence mining. However, in this approach not
the sequence labels but the sequence itself is attributed by multiple dimensions.
A further di�erent notion of multidimensional mining [200] was studied by Yu
and Chen. Here, the term is used because they mine nested sequences similar to
multidimensional arrays. However, the approach to multi-relational mining [46]
by Džeroski is closer to our notion since di�erent tables can be used to represent
di�erent dimensions. To the best of our knowledge, the only approach [149] that
combines generalized and multidimensional mining was proposed by Plantevit et
al. Here, the main data structure are sequences of multidimensional vectors.

52

2.8.4 Process Mining

In [178] van der Aalst provides an introduction to this problem and states that
"process mining aims to discover, monitor and improve real processes by extracting
knowledge from event logs". BIIIG can be used for processmining but is not limited to
this single purpose. We will even use a related application, where graphs represent
business process executions, as our running example.

However, typical approaches to process mining use di�erent representations
than graphs, for example, artifact choreographies [51] as proposed by Fahland et
al. There are also some further relationships. For example, Nooijen et al. studied
the automated extraction of interrelated data objects from ERP systems [131]. Fur-
ther on, tailored graph abstractions have also been applied to process mining. For
example, Beheshti et al. [16] and Fazzinga et al. [53] proposed extensions to graph
query languages to analyze process data. In [15] Beheshti et al. even proposed a
RDF-based approach to OLAP on process data.

2.9 Data Generators

One of our contributions is a data generator (Section 4.4). Thus, we will discuss
related work about graph data generators. First of all, there are data generators
for OLAP benchmarks such as TPC [244] and APB-1 [214]. APB-1 and all TPC
benchmarks, except TPC-DS, are focused on a single class of transaction data and,
thus, not suitable to analyze relationships. The data generator of BigBench [59]
by Ghazal et al. extends the TPC-DS data model by related transaction data from
web logs and reviews.

Typical generators for graph data generate graphs by given metrics but with-
out semantic meaning. Respective approaches exist for single graphs, for example,
GTgraph [12] by Bader and Madduri or the data generator of the Graph500 bench-
mark [126], and for collections of graph transactions such as GraphGen [36] by
Cheng et al. Further on, some graph data generators were proposed in the context
of benchmarking graph database systems. In [182] Vicknair et al. used a genera-
tor for directed acyclic graphs to compare relational and graph databases. In [45]
Dominguez-Sal et al. benchmark di�erent GDBMS and use the R-MAT algorithm
[32] to generate synthetic graphs with characteristics of real networks.

There are also graph data generators that focus on domain data. The Berlin
SPARQL benchmark [20] by Bizer and Schultz includes a data generator for prod-
ucts and related information. In [73] Holzschuher and Peinl also compare a rela-
tional and a graph database system and focus on the evaluation of graph query
languages. The generated datasets resemble the structure and content of online
social networks. In [66] Gupta proposes a data generator for heterogeneous multi-
graphs with labeled vertices and edges that represent meaningful data from a drug
discovery scenario.

53

The generators discussed so far generate relationships more or less randomly.
With S3G2 [146] Pham et al. proposed the �rst approach that leads to plausible
structural correlations between domain objects and their relationship structure. In
particular, S3G2 uses dictionaries and correlation rules to generate social networks
with real-world characteristics in terms of relationship and property semantics.
Further on, S3G2 is based on MapReduce and, thus, horizontally scalable. The
Linked Data Benchmark Council (LDBC) [23] is an independent organization with
members from academia and industry that maintains multiple graph benchmarks
and respective data generators. LDBC’s social network benchmark [49] is based on
S3G2. Further on, there is a semantic publishing benchmark [8] whose RDF data
generator includes real linked open data. The most recent one is a benchmark
for graph processing systems [79] which combines real data, S3G2 and the data
generator of Graph500 to generate highly scalable datasets.

Recently, Bagan et al. proposed gMark [13], a query benchmark that includes
a generalized graph data generator for domain data. Here, the user can not only
de�ne schema and size of the resulting graph but also structural constraints related
to di�erent types of vertices and edges.

54

Chapter 3

Analytical Framework

This chapter will introduce the analytical foundations of our framework BIIIG
(Business Intelligence with Integrated Instance Graphs). BIIIG aims to enable ana-
lytical work�ows that rely on the graph abstraction of business data, for example,
to extract meaningful relationship patterns that correlate with a given business
indicator. Example business indicators are �nancial result and the existence of
fraud. BIIIG covers all steps that are required to extract relationship patterns rep-
resented by graphs from source data in relational databases. Details about BIIIG’s
components will follow in the subsequent chapters. This chapter focuses on the
introduction to its complete terminology as well as on giving an overview of its
analytical idea.

First, we will discuss the distinction between master and transaction data (Sec-
tion 3.1). Afterwards, we will introduce business transaction graphs (Section 3.2),
a key concept of BIIIG’s analytical idea, and provide an example scenario that will
be referenced throughout this paper (Section 3.3). Business transaction graphs are
a graph-based alternative to data warehouse models. Thus, we will further discuss
the terms measure and dimension (Section 3.4) as well as pattern mining (Section
3.5) in the context of these graphs. Finally, we will state requirements that need to
be met to implement the BIIIG approach (Section 3.6).

3.1 Master and Transaction Data

The data recorded in a company’s business information systems can be divided
into two superclasses [229]: First, there is master data about internal and external
entities such as employees, products and customers. Second, there is transaction
data about business actions such as sales orders, invoices and phone call logs. This
distinction plays an important role for the BIIIG approach.

De�nition 3.1 (Master Data) "Master data is held by an organization to describe
the entities that are both independent and fundamental for that organization, and
referenced in order to perform its transactions." (text quote from [229])

55

De�nition 3.2 (Transaction Data) Transaction data represents business trans-
actions. A business transaction is the completion of a business action or a course
of action. [229]

In a data warehouse, there are two types of tables that more or less correspond
to this classi�cation. In particular, there are dimension tables to represent master
data and fact tables to represent transaction data [96]. Fact tables include prede-
�ned foreign keys to dimension tables. In BIIIG’s graph abstraction master data
objects are represented by master data vertices and transaction data objects are
represented by transaction vertices. Further on, relationships among all types of
objects are re�ected by edges. More details about our graph-based representation
of business data will follow in Chapter 5.

3.2 Business Transaction Graphs

Business data, and so their graph representation, can be logically partitioned in
di�erent ways, for example, geographically to represent di�erent countries or or-
ganizationally to model access privileges. BIIIG’s main analytical data structure is
business transaction graphs. These graphs re�ect a process-centric data partition-
ing. Some economical background knowledge will be required to understand their
basic concept:

De�nition 3.3 (Business Process) "A business process consists of a set of activ-
ities that are performed in an organizational and technical environment. These ac-
tivities jointly realize a business goal. Each business process is enacted by a single
organization, but it may interact with business processes performed by other organi-
zations." (text quote from [189])

Our example business process is trading goods. Here, the business goal is sell-
ing goods with a maximum pro�t. Related activities are actions to engage cus-
tomers to buy things (e.g., sales campaigns, phone calls, customer visits) as well
as all required steps that ensure that the customer is receiving its goods (e.g., or-
der processing, purchasing, shipping) and the pro�t is booked in the ledger (e.g.,
invoicing, payment, accounting). Instances of a business process are typically re-
ferred to as case [178].

De�nition 3.4 (Business Case) A case of a business process is an actual execu-
tion of its activities. A case leads to a measurable increment of a business goal.

With regard to our example process of trading goods, each case will lead to
an increment of the company’s �nancial result either by pro�t, for example, if
a deal was made, or by loss, if a quotation was not con�rmed by the customer
although �nancial e�orts were already made. For each case there are di�erent

56

Figure 3.1: Example business transaction graphs with aggregated graph measures
isClosed and soCount [139] .

57

Process Transaction Data Master Data Measure Dimension

Trading Phone call, Customer, Financial Order year
goods Sales order Product result
Car Assembly step, Worker, Assembly On time
assembly Car (instance) Car model time
Medical Examination, Doctor, Recovery Age group
treatment Prescription Drug rate

Table 3.1: Examples transaction data classes, master data classes, measures and dimen-
sions of di�erent business processes.

classes of transaction data to represent activities and actions. For example, if the
quotation is con�rmed a sales order will be created and if a payment with a speci�c
amount is received to balance the value of the ordered goods they will be shipped
and a packing slip will be created. Further on, every case includes certain master
data such as employees, customers and products. Table 3.1 shows typical classes
of master and transaction data for di�erent business processes. However, even
relationships are part of case-related data. For example, goods were shipped by a
certain logistics company (involved master data) because they were ordered and
payed (causal connections). In a trade company, the business goal is reached by a
potentially in�nite number of cases. With business transaction graphs we propose
a representation for all data that is directly related to a single case:

De�nition 3.5 (Business Transaction Graph) A business transaction graph re-
�ects all data that was created for exactly one case of a business process. This data
consists of vertices to re�ect transaction data objects and edges to re�ect their re-
lationships. To guarantee consistency, business transaction graphs may also con-
tain vertices (e.g., master data) that were created for more than one case but only
if they are incident to an edge that was created for the case that is represented by
the graph.

In Section 5.5, we will discuss an algorithm to extract business transaction graphs
automatically from graph-integrated business data.

3.3 Example Scenario

Our example scenario is about a �ctive company that is trading food and an analyst
who wants to identify reasons for won and lost quotations in sales cases. Figure
3.1 shows example business transaction graphs of this company. White vertices
are created for exactly one case (transaction data) and gray vertices may be part
of multiple business transaction graphs (master data), for example, vertex 1 which
represents an employee with name Alice. Each graph represents a sales case. The

58

Figure 3.2: Example relationship patterns with dimension values as label-properties.

analytical strategy is to evaluate closed cases to give recommendations for sales
activities in open cases. A case will be considered closed, if there are no open
quotations, i.e., no vertices with class=Sales�otation and status=open.

The �rst three graphs of Figure 3.1 represent closed cases (graph property
isClosed=true) and the fourth graph is an open one (isClosed=false). Further on,
a closed case will be considered won, if at least one sales order was created (graph
property soCount>0). Otherwise, a closed case will be lost. Consequently, the �rst
two graphs of Figure 3.1 represent won cases and the third graph a lost one. The
fourth graph cannot be considered any of both because it is still open. The values
of the numeric graph properties are persisted results of applied aggregate func-
tions. More details about our data model that supports graph collections, graph
aggregation and graph properties will be provided in Chapter 4.

Reasons for won and lost cases should be represented by meaningful patterns
like ’a phone call made by Alice’. However, patterns should not be limited to such
simple statements, but should re�ect also compositions like ’Alicemade a phone call
and Bob sent an email regarding the same quotation’. Figure 3.2 shows respective
graph representations of both patterns. Additionally, patterns must not be trivial.
For example, if a pattern occurs frequently in won cases and also in lost cases,
it cannot be considered to be characteristic for either of the outcome categories.
Details about our analytical approach to gain the targeted result will follow in
Section 3.5.

3.4 Measures and Dimensions

In the context of BIIIG, we use the following notions of measure and dimension:

De�nition 3.6 (Measure) Ameasure is a quanti�able (numeric) property. Amea-
sure value is the actual quantity of a measure. The value range of a measure is
in�nite.

De�nition 3.7 (Dimension) A dimension is a descriptive property with a �nite
range of at least two discrete dimension values. There may exist a taxonomy among
the values of a dimension.

59

An example measure is the revenue of a sales process and an example dimen-
sion is the city of a customer’s address. In a data warehouse, dimensions are the
non-key attributes of dimension tables such as a table of customer data. Addi-
tionally, these attributes may be attached to taxonomies, for example, to group
customers by region and country. In this case parent values such as customers’
countries will be rather stored as redundant attributes instead of a foreign key to a
dedicated table. By contrast, the attributes of a fact table represent either measures
or foreign keys to dimension tables, for example, the revenue of a sales order and
a reference to the ordering customer. Thus, it is possible to evaluate aggregated
measures by dimension values, for example, the sum of all revenue values by cus-
tomer country. Fitting data into a schema of fact and dimension tables typically
includes a loss of relationship information. This is especially the case since trans-
action data is stored in fact tables which are not designed to have foreign keys to
other fact tables. Thus, in particular relationships among transaction data cannot
be evaluated. By contrast, BIIIG explicitly aims to evaluate measures in the context
of not only dimension values but also their relationship patterns:

De�nition 3.8 (Dimension Relationship Pattern) A dimension relationship pat-
tern, in the remainder of this dissertation simply referred to as relationship pattern,
is a graph whose vertices and edges have attached dimension values to re�ect the
relationship structure among them.

Figure 3.2 shows two example relationship patterns. To extract these, dimen-
sion values must be directly attached to the graph structure already in the input
data. In Figure 3.1, we highlighted two example patterns. The pattern in blue color
represents a phone call made by Alice and the one in red color an email sent by Bob.
Comparing both Figures, it can be seen that the same information is encoded dif-
ferently in terms of property usage. Details on that will follow in the next section.
With regard to the input data of Figure 3.1 typical dimensions that provide valu-
able information are vertex classes, edge types or master data entity names. We
use properties to store dimension (key) and dimension values (value), for exam-
ple, name=Alice and class=Sales�otation. The latter shows that BIIIG considers
metadata (classes and relationship types) just as a special dimension. While classes
and types of transaction data re�ect actions and causal connections, master data
names provide context information, for example, which product was sold or which
employee was processing the order. In analogy to dimensions, measure values are
represented by properties of vertices and edges, too. Typically, only transaction
vertices have measure properties. Both dimensions and measures even exist on
the level of business transaction graphs. The graphs of Figure 3.1 have a dimen-
sion isClosed and a measure soCount. Thus, it is possible to �lter graphs. For
example, the last graph has no soCount property as the aggregate function was
only applied to those �ltered by isClosed=true.

60

3.5 Characteristic Subgraph Mining

To identify correlations between the occurrence of relationship patterns and busi-
ness indicators we propose a method called characteristic subgraph mining. It ex-
tracts relationship patterns that are characteristic for di�erent values of a given
case dimension (categories) and consists of the following four steps:

1. Categorize business transaction graphs based on a measure or a dimension.

2. Normalize input properties to emulate a labeled graph.

3. Determine pattern frequencies for all categories.

4. Select patterns that are characteristic for a category.

In the following, we will describe these steps in more detail.

3.5.1 Input Categorization

Our problem can be de�ned as follows: Let G = {g1, . . . , gn} be a collection of
business transaction graphs and let C = {c1, .., cm} be a set of categories with a
mapping ζG : G → C that associates input graphs to categories then we want to
identify a collection of graph patterns P = {g1, .., gk} and a mapping ζP : P → C

that is expressing for which category a pattern is characteristic. While P and ζP
are result of an algorithm that will be introduced in Section 3.5.3, ζG is speci�c to
the particular analysis and, thus, must be de�ned in a preprocessing phase.

For example, the business transaction graphs of Figure 3.1 can be associated to
a category set C = {won, lost} based on the aggregated measure soCount. In par-
ticular, all graphs whose value is greater than zero will be considered won while
the remaining ones will be considered lost. This example shows, that categoriza-
tion is a complex process that requires multiple steps itself. In particular, we must
aggregate soCount for each graph and derive a new property to represent the cat-
egory of each graphs. Further on, since we are only interested in closed cases, we
must aggregate the closed property before and apply our actual aggregation only
to the remaining ones. In Chapter 4 we will present a data model that is capable
of expressing such complex processing of graph data.

3.5.2 Input Normalization for Pattern Extraction

To bene�t from the graph representation we must apply a generic algorithm that
extracts patterns without schema knowledge. Respective graph algorithms such
as those of frequent subgraph mining assume a single label attached to every ver-
tex and edge [82], i.e., labeled graphs but not property graphs. Since the property
graph model subsumes labeled graphs this model glitch can be solved by an ad-
ditional normalization step. In this step, properties of vertices and edges will be

61

Figure 3.3: Business transaction graph (id=1) after normalization for pattern mining.

evaluated to derive a single property with the reserved key label for every vertex
and edge. Although this transformation could be another user input, we also pro-
pose a generic approach based on the distinction of master and transaction data:

After BIIIG’s approach to data transformation and integration (Chapter 5) ev-
ery vertex has a set of reserved properties. First, one of them associates every
vertex to either master or transaction data, represented by gray and white ver-
tices in Figure 3.1. Second, there is a class property to add a semantic type and,
third, there is a sid property to store a domain-speci�c identi�er. For master data,
the latter is typically a meaningful business identi�er or there is at least an exact
mapping to real-world entities such as customers or products. Thus, master data
identi�ers must be included in patterns because, for example, it would not be point
of interest if products were sold but which ones.

By contrast, transaction data identi�ers are only technical, mostly automati-
cally incremented values. Further on, according to De�nition 3.5 they may not
occur in more than one business transaction and, thus, cannot contribute to in-
teresting patterns. By contrast, the class property adds much semantic meaning
since it is expressing which action a vertex represents. The same applies to the
reserved type property of edges which are not shown by Figure 3.1 to keep the
illustration clear. However, it is obvious that di�erent types of relationships add
further semantic meaning to patterns.

In consequence, our normalization process is fairly simple: For all master data
take its source identi�er (sid) as label, for all transaction data use the value of the
class property and for all edges take their relationship type. Figure 3.3 shows the
�rst graph of Figure 3.1 after this transformation process. In this step, even the
properties of the graphs were changed. In particular, categorization was persisted
in a category property. We further see, that also some properties such as the status
of Sales�otations were dropped since they will add no value to the subsequent
pattern mining process. A formal introduction of the property transformation op-
erator that is required to implement our normalization step will follow in Section
4.2.

62

3.5.3 Frequency Determination

The determination of graph pattern frequencies corresponds to the problem of fre-
quent subgraph mining (Section 2.8.2). So, a naive approach would be to determine
frequencies of all patterns in all category subsets and pass the result over to the
pattern selection step (Section 3.5.4). However, since frequent subgraph mining
is a NP-complete problem this would be a very ine�cient approach. Thus, reg-
ular frequent subgraph mining algorithms require a minimum support threshold
to express that only pattern frequencies of patterns that occur more frequently
than this threshold (e.g. 50%) will be extracted. We adopted this idea to char-
acteristic subgraph mining and require a relative minimum support per category
0 ≤ φrelmin ≤ 1 which needs to be speci�ed by the user. Based thereon we extract
a set of candidate patterns P ′ and the category support φrelcat : P ′ × C → Q+ only
for those patterns that will be at least frequent for one category s.t. ∀p ∈ P ′.∃c ∈
C.φrelcat(p, c) ≥ φrelmin. Characteristic subgraph mining can be simply implemented
by adding an alternative pruning criterion based φrelmin and φrelcat to an arbitrary fre-
quent subgraph mining algorithm. We provide an Open Source implementation1

of this approach.

3.5.4 Pattern Selection

Our problem di�ers from frequent subgraph mining as we require patterns not just
to be frequent but to be characteristic for a category as well. For example, the blue
pattern in Figure 3.1 is interesting as it occurs in all of the won cases but not in the
lost one. By contrast, the red pattern occurs in all graphs of both categories and,
thus, is considered trivial. To distinguish interesting from trivial patterns we pro-
pose the use of an interestingness measure comparing the frequency of a subgraph
in di�erent categories. Let P ′ be a set of candidate patterns and φrelcat their cate-
gory support then a simple interestingness measure could be the ratio of category
support and average support in all categories. Based on this measure ζP can be
determined by assigning the category with the maximum value to the pattern. Fi-
nally, a minimum interestingness threshold should be used to �lter trivial patterns
and determine the �nal set of characteristic patterns P ⊆ P ′. We only sketched
this process since interestingness measures will always be domain speci�c, i.e.,
there is no general approach. Further on, this dissertation is about the bene�ts of
graph models but once φrelcat is determined, all further logic to select results will
be plain statistics. We will report our practical experience in pattern selection in
Sections 8.1 and 8.2.

1https://github.com/p3et/dmgm

63

3.6 Requirements

In this chapter, we introduced fundamentals of the BIIIG approach as well as char-
acteristic subgraph mining, an analytical method that is utilizing graph pattern
mining for business intelligence. However, BIIIG is not about a single static data
processing �ow but a general idea of analyzing business data by the use of the
graph abstraction. In the past, this application domain was strongly associated
to relational and multidimensional models. BIIIG shall be �exible, i.e., it must al-
low users to mix their domain-speci�c analytical targets with general graph op-
erations. Characteristic subgraph mining is meant to demonstrate a complex an-
alytical work�ow that covers di�erent aspects of graph-based data analytics and
motivates their application. Based on characteristic subgraph mining, we can state
the following requirements that need to be met to implement BIIIG:

1. To represent business transaction graphs, we need a data model, that sup-
ports collections of directed multigraphs, graph properties and elaborate op-
erators based thereon (Chapter 4).

2. There must be an approach that is capable to turn data that is hold in business
information systems into business transaction graphs (Chapter 5).

3. Since extraction and counting of graph patterns are computationally expen-
sive, we need a respective graph mining algorithm that is not only e�cient
and scalable but also support all features of our data model (Chapter 6).

4. To be competitive to data warehouse models, we also need a way to deal
with taxonomies of dimension values and support patterns of values from
muiltiple taxonomy levels (Chapter 7).

64

Chapter 4

Extended Property Graph Model

In this chapter, we will discuss the Extended Property Graph Model (EPGM). After a
motivation of its development (Section 4.1) we will provide a formal introduction
(Section 4.2). We will further present Gradoop, the �rst framework implementing
EPGM (Section 4.3) and FoodBroker, an elaborate data generator that generates
EPGM data for evaluation and testing purposes (Section 4.4). Finally, we will pro-
vide a brief conclusion (Section 4.5).

4.1 Motivation

Graph data models enable �exible and powerful evaluations of domain objects
and their relationships. Graph analytics and graph mining have become popular
among researchers of di�erent domains, for example, to analyze social networks,
the world wide web or biological networks. An important group of analytical al-
gorithms are those evaluating a graph’s topology such as centrality measures [57].
These algorithms derive single measures to describe a graph on the whole, for ex-
ample, to characterize its structure. Further on, there are many popular algorithms
that focus on the evaluation of single vertices withing a graph’s structure. For ex-
ample, the page rank algorithm [133] is executed to identify highly linked vertices
such as popular websites or in�uencers in social networks.

BIIIG targets the analysis of business data that can be abstracted as a graph. In
a respective graph vertices represent heterogeneous domain objects such as cus-
tomers, products or sales orders and edges represent relationships among those
objects. Just like typical business intelligence based on data warehouses [62] nei-
ther the evaluation of whole databases nor the evaluation of single records are
points of interest. On the contrary, to support decision-making we must system-
atically evaluate the coexistence of records. This is crucial since business measures
such as �nancial pro�t and their in�uence factors such as products, sales people
and marketing activities are stored in di�erent records but the extraction of knowl-
edge requires to analyze them in connection.

65

Figure 4.1: Example graph collection with shared vertices. Dotted lines represent graph
boundaries. Solid rectangles overlaying the graphs’ boundaries contain graph
properties. Bold properties contain measure values and normal font ones di-
mensional values.

In a data warehouse, there is a clear structure of fact and dimension tables [96].
Fact tables hold base data about business measures and dimension tables provide
attributes about potentially in�uencing entities. In this way facts can be evaluated
in the context of one or more dimensions. In a graph there is no correspond-
ing concept due to the lack of a schema. By the observation of typical analytical
questions we found logical subgraphs as an appropriate way to persist meaningful
partitions which contain not only measure relevant data and potential in�uence
factors but also, in addition to data warehouses, their full relationship structure.
An example of logical partitioning are business transaction graphs (Section 3.2).
Figure 4.1 shows an example graph with two logical business transaction graphs.

By the abstraction of logical partitions it is possible to perform comparative
analytics among partitions. For example, we can calculate measures on the graph
level to �lter graphs by these measures (Section 4.2). Further on, we can detect
common graph elements among partitions such as common master data vertices
(e.g., vertices 6, 7, 8 in Figure 4.1) as well as complex patterns that occur frequently
in large collections of such partitions (Chapter 6). Finally, common substructures
of partitions can be analyzed in the context of business indicators (Chapter 3).
However, this abstraction is not only valuable for the business domain. For exam-
ple, country boundaries of railway networks and communities in social networks
[14] can be considered as logical partitions of a single large graph.

66

Despite manifold applications of logical graph partitions, current database sys-
tems lack their support (Section 2.5). Thus, we started the development of a novel
data model. This so-called Extended Property Graph Model (EPGM) includes logical
subgraphs as �rst-level citizen, supports graph properties and enables powerful
operators based on both concepts.

4.2 Data Structure and Operators

The Extended Property Graph Model (EPGM) extends the property graph model
[157] by structural features and operators [89]. With regard to its data structure
EPGM is based on property graph collections. In comparison to the standard prop-
erty graph model, property graph collections include, next to vertices and edges,
logical graphs as a third class of �rst-level citizen. Vertices and edges may be part
of an arbitrary number of logical graphs, i.e., logical graphs may overlap. Just like
vertices and edges, logical graphs have an identi�er and may have arbitrary prop-
erties.

De�nition 4.1 (Property Graph Collection) A property graph collection is de-
�ned as a nonuple C = 〈G, V,E, γ, ς, τ, Y,D, π〉 . It includes three sets of iden-
ti�ers for logical graphs G = {g0, g1, . . . , gk}, vertices V = {v0, v1, . . . , vn} and
edges E = {e0, e1, . . . , em} . Further on, there is a graph containment function
γ : (V ∪ E) → (P(G) \ ∅) that maps each vertex and edge to a graph and two
functions that associate a source vertex ς : E → V and a target vertex τ : E → V

to every edge. To preserve consistency, vertices must also be mapped to all graphs
of their incident edges s.t. ∀e ∈ E.∀g ∈ γ(e).

(
g ∈ γ(ς(e)) ∧ g ∈ γ(τ(e))

)
. Ad-

ditionally, not only vertices and edges but also graphs support properties. Prop-
erties are re�ected by a set of property keys Y = {y0, y1, . . . , yn} , a set of data
values D = {ε, d0, d1, . . . , dn} and a property mapping whose domain includes
also graphs, i.e., π : (G ∪ V ∪ E)× Y → D.

Besides this data structure, EPGM consists of a set of operators based thereon.
At the time of this dissertation, these operators were under continuous develop-
ment within the Gradoop framework (Section 4.3). Table 4.1 presents a current
list of operators. These are categorized into unary and binary operators based on
their domain. While the input of an unary operator is a single property graph
collection, the input of a binary operator are two of them.

De�nition 4.2 (EPGM Operator) In the Extended Property Graph Model an unary
operator is de�ned as a function Ω : C → C whose domain and co-domain are the
space of property graph collections C = {C1, C2, . . . , Cn}. An operator will be
considered binary if its domain is the cross of property graph collections
Ω : C × C → C.

67

Name Description

Unary Operators

Aggregation Add aggregated values to graphs (De�nition 4.4).
Selection Determine a subset of graphs (De�nition 4.5).
Transformation Change properties (De�nition 4.6).
Subgraph Determine subgraphs by vertex and edge predicates.
Pattern Matching Determine all subgraphs that match a given pattern [84].
Grouping Create structurally condensed graphs [88].

Binary Operators

Union Union of graph ids.
Intersection Intersection of graph ids.
Di�erence Di�erence of graph ids.
Combination Union of vertices and edges.
Overlap Intersection of vertices and edges.
Exclusion Di�erence of vertices and edges .
Equality Test for equality.

Table 4.1: Operators supported by Gradoop at the time of May 2018.

In the initial publication of EPGM [89] there is a further distinction between
graph and graph collection operators. In this dissertation, we consider "single
graphs" to be a special case of graph collections where |G| = 1, i.e., those that
contain only a single graph. We further consider property graph collections, in
the following simply denoted by graph collections, to be immutable, i.e., there is no
update of graph collections s.t. every operator execution Ω(C) 7→ C ′ puts out a
copy C ′ of input collection C .

De�nition 4.3 (Graph Collection Copy) LetC,C ′ be two graph collections then
C ′ = 〈G′, V ′, E ′, γ′, ς ′, τ ′, Y ′, D′, π′〉will be copy ofC = 〈G, V,E, γ, ς, τ, Y,D, π〉
if V = V ′ ∧ E = E ′ ∧ ς = ς ′ ∧ τ = τ ′ ∧ Y = Y ′ ∧D = D′ ∧ π = π′.

Only a subset of EPGM operators is required to implement BIIIG. In particular,
these are three operators. First, there is aggregation to calculate business measures
on the graph level. The operator takes advantage of the concept of graph properties
to persist its result. Second, the selection operator allows to �lter graph collections
by a predicate based on graph properties. Third, the transformation operator allows
to create, delete or modify properties. In the following operator de�nitions, we will
describe them in terms of their output’s di�erence to a copy:

De�nition 4.4 (Aggregation) Aggregation is an operator Γkf (C) 7→ C ′ with two
parameters: k is a property key and f : G→ D is an aggregate function that maps
graphs to the set of property values. C ′ is a copy of C , except that the result of f
is persisted for every graph s.t. ∀g ∈ G′.π(g, y) = f(g).

68

Figure 4.2: Gradoop architecture [85].

Speci�c aggregate functions may access all data related to the input graph such
as its vertices, edges and properties. A simple example of an aggregate function is
the vertex count of a graph, formally f(g) 7→ |Vg|; ∀v ∈ Vg.g ∈ γ(v). If applied,
every graph of the result collection will have a property re�ecting its vertex count.
In BIIIG, the aggregation operator is used to calculate business measures (Section
3.4).

De�nition 4.5 (Selection) Selection is an operator Σp(C) 7→ C ′ that is param-
eterized by a predicate p : G → {true, false}. C ′ is a copy of C which contains
exactly those graphs satisfying the predicate
s.t. G′ ⊆ G ∧ ∀g ∈ G.(p(g) = false ∨ g ∈ G′).

The graph selection operator is similar to the relational selection operator [37]
but selects graphs from a collection instead of rows from a table. For example,
suppose a previous aggregation ensures the availability of a vertexCount prop-
erty then all graphs with more than three vertices can be selected by the predicate
p(g) 7→ π(g, vertexCount) > 3. In the context of BIIIG, the operator is, for exam-
ple, used to select graphs by business measures.

De�nition 4.6 (Property Transformation) Property transformation is an op-
erator Πf (C) 7→ C ′with a transformation function f : (G′∪V ′∪E ′)→ P(K ′×D′)
as parameter. The operator preserves graph memberships of vertices and edges as
well as source and target of all edges s.t. V = V ′ ∧ E = E ′ ∧ ς = ς ′ ∧ τ = τ ′.
Function f completely de�nes properties for all elements s.t.(
∀〈x, y〉 ∈ (G′ ∪ V ′ ∪ E ′)× Y ′

)
.
(
π′(x, y) = ε ∨ ∃〈y, π′(x, y)〉 ∈ f(x)

)
.

Property transformation allows a complete change of properties for all ele-
ments of a graph collection. For BIIIG, this is in particular necessary to implement
the input normalization of characteristic subgraph mining (Section 3.5).

69

4.3 The Gradoop Framework

Although great research e�orts have been made to develop e�cient graph min-
ing algorithms, most implementations are stand-alone research prototypes. Thus,
combining graph operators and graph mining algorithms to complex analyses like
characteristic subgraph mining requires the combination of di�erent tools. This
quickly becomes a di�cult task as such tools may di�er with regard to the under-
lying platform, graph models, availability (e.g., source code, binaries, on request
only) or in- and output formats. In consequence, answering a single analytical
question requires excessive development e�ort to set up a toolchain whose execu-
tion can be ine�cient and prone to failures. For non-graph data (e.g., relational or
multidimensional) database systems of large vendors and big data processing plat-
forms [121] already provide toolkits with support for seamless multi-step analyses.
However, there in no graph pendant so far.

To support such multi-step graph analytics in a single system, we started devel-
oping Gradoop [89]. The system shall enable �exible evaluation and modi�cation
of graph data by declarative analytical programs composed from di�erent graph
operators. To reach this goal, Gradoop is the �rst system that implements EPGM.
In particular, Gradoop supports the declaration of complex analytical programs
composed from EPGM operators. Further on, these programs are designed to be
executed on computing clusters without shared memory (shared-nothing clusters).
The development of Gradoop was motivated by missing functionality of graph
processing systems (Section 2.4) and the insu�cient scalability of graph databases
in Big Data scenarios (Section 2.5). At the time of this dissertation, the system
was under active development and new operators were added continuously. The
source code1 of Gradoop is available online under an Open Source license.

4.3.1 Concept

Gradoop is designed to be implemented on top of a big data processing platform
such as Apache Spark [202] or Apache Flink [30]. The fundamental concepts of
these platforms are distributed collections of data objects (datasets) and transfor-
mations of these. In these systems application logic is expressed by data�ow pro-
grams. These are represented by a directed acyclic graph (DAG) where vertices
represent datasets and edges represent transformations. In comparison to MapRe-
duce [42], these frameworks o�er a wider range of operators as well as the pos-
sibility to hold data in distributed main memory between single processing steps.
There are also graph processing libraries based on such systems (e.g., Apache Spark
GraphX [192], Apache Flink Gelly [30]). However, these libraries neither include
a rich data model such as EPGM nor operators based thereon.

1www.gradoop.com

70

Because of this lack, using these systems to answer complex analytical ques-
tions that involve multiple graph operators is still causing notable programming
e�ort. Further on, there is no abstraction of graph collections. By analogy to gen-
eral distributed data�ow programs, Gradoop’s analytical programs also have the
form of DAGs but vertices represent either graphs or graph collections and edges
represent either built-in operators or custom algorithms, e.g., those for graph min-
ing. Additionally, Gradoop supports di�erent data sources and sinks (e.g., �les,
HBase). Programs are declared using a domain speci�c language GrALa (Graph
Analytical Language). Behind the scenes, operators and algorithms are mapped to
datasets and transformations of the underlying big data processing platform and,
thus, are horizontally scalable by default.

4.3.2 Implementation

After an initial prototype [86] based on MapReduce and Apache Giraph [225], the
current version [85] is implemented on top of the distributed data�ow framework
Apache Flink [30], the successor of the former research project Stratosphere [4].
Figure 4.2 shows the architecture of Gradoop. Data is persisted either directly in
the distributed �le system (Apache HDFS) or in the distributed wide column store
Apache HBase [95]. Besides direct HBase storage, Gradoop supports multiple
in- and output �le formats, for example, CSV, JSON and DOT2. It also provides
interfaces to conveniently implement additional sources and sinks for arbitrary
databases or further �le formats.

Data representation and operator execution are tailored to Flink. To express
and run Gradoop programs there is a Java API that re�ects GrALa. Operators are
implemented using Apache Flink’s dataset transformations. In the default repre-
sentation, a property graph collection is represented by three distributed datasets
for graphs (without vertices and edges, so-called graph heads), vertices and edges.
All elements of these datasets include a globally unique indenti�er, a mandatory
and reserved label property as well as further arbitrary properties. The dedicated
label properties are, for example, used to improve query performance by index-
ing vertices of the same semantic class [217]. For large collections of rather small
graphs, it is also possible to keep data in a single dataset of graphs which include all
(potentially redundant) vertices and edges. Depending on the executed algorithm,
di�erent mappings of property graph collections to Flink’s datasets will in�uence
their runtime. However, di�erent implementations will be required if an operator
should be executed on di�erent model mappings.

2http://www.graphviz.org/doc/info/lang.html

71

4.3.3 Analytical Programs

The domain speci�c language GrALa (Graph Analytical Language) is used to ex-
press EPGM programs. GrALa includes the structural concepts of single graphs
and collections of these. Every GrALa program has one or more data sources and
one data sink. Further on there is a distinction between general-purpose operators
that are part of our data model (e.g., the union of two graph collections) and spe-
ci�c algorithms (e.g., for graph pattern mining). To support custom graph mining
algorithms, Gradoop o�ers the generic call operator and �tting Java interfaces
whose implementations can be included in analytical programs. The provided in-
terfaces cover all algorithms with one or two graphs or graph collections as input
and one graph or graph collection as output in arbitrary constellation. For exam-
ple, a graph partitioning algorithm takes a single graph as input and results into
a collection of partitions. To be compatible with EPGM, all algorithm implemen-
tations must be capable to handle multigraphs. Further on, it must be considered
that EPGM edges are always directed. However, to support undirected graph data
(e.g., chemical compounds) algorithm implementations may provide a parameter
to optionally ignore edge directions.

4.4 FoodBroker Data Generator

Data of business information systems is basically unavailable. The main reason
might be data protection concerns of companies. Further on, business data, in
partiular large amounts of it, carry a certain value and will not be provided to
public research. Thus, falling back on synthetic data is the only option. If there is
a suitable data generator, synthetic data will even have the advantage of scalabil-
ity. However, typical data generators (Section 2.9) are designed for performance
evaluations and their data is not complex enough to evaluate elaborate analytics
as targeted by BIIIG. For this reason, we developed FoodBroker, a data generator
that is using business process simulation to create datasets with characteristics
similar to data from business information systems. Although FoodBroker was ini-
tially intended to create relational test data [142] there is also a recent Gradoop
implementation by Kemper [92] that directly creates EPGM data.

4.4.1 Requirements

Business information systems support the operations of a company and store data
related to its business processes. In particular, there are di�erent domain objects
such as employees, products or sales orders as well as mutual relationships. Busi-
ness information systems typically store objects in relational databases. Compa-
nies often use multiple systems for di�erent purposes. For the evaluation of BI-

72

IIG’s data integration component (Chapter 5) FoodBroker can be used to create
relational data that emulates multiple systems. The main analytical goal of BIIIG
is the detection of correlations among domain objects, their relationships and pro-
cess outcomes. For example, the output of a trade process is its �nancial result.
Here, unfriendly sales people could have a negative in�uence while fast logistics
companies may have a positive impact. Thus, data generated by FoodBroker must
re�ect this kind of in�uences. The precise requirements are as follows:

1. The generated data must contain heterogenous domain objects, i.e., they must
belong to di�erent classes representing both master or transaction data.

2. There must be heterogenous relationships among domain, i.e., di�erent rela-
tionship types. Relationships further have to involve master and transaction
data in any combination.

3. The data must represent business process cases.

4. The data must contain transaction data with measure properties, master data
with dimension properties and signi�cant correlations between dimension
properties and measure values, i.e., there shall be master data objects that
will always have a positive or negative impact on the process outcome.

5. The data must emulate origins from multiple interrelated systems to re�ect
jointly used business information systems.

6. To support benchmarking datasets must have scalable size.

To the best of our knowledge, before FoodBroker there was no data generator
that met all of the stated requirements.

4.4.2 Simulation

The FoodBroker simulation re�ects the core business of a �ctive company that
is trading food between producers (vendors) and retailers (customers). The com-
pany only o�ers a brokerage service and has no warehouse. Process-related data
is recorded in an enterprise resource planning (ERP) system and a customer issue
tracking (CIT) system. Before the actual simulation is started, FoodBroker gen-
erates master data in a customizable manner. Transaction data is created during
the simulation of two interrelated subprocesses. One process is for food brokerage
and one is for complaint handling. All data recorded during complaint handling
belongs to an initial case of food brokerage, i.e., there are no cases of only com-
plaint handling.

73

Figure 4.3: FoodBroker Schema : The outer rectangles show the boundaries of two sys-
tems ERP and CIT. Database tables correspond either to classes or n:m rela-
tionship types (*Line). Primary keys are highlighted by italic letters. Relation-
ship types are shown as solid lines. Foreign keys are attached to relationship
types. Implicit relationship types in between both databases are represented
by dotted lines. For each implicit relationship type, there is a corresponding
column with pre�x erp.

74

Schema: The schema for the ERP and CIT systems is shown by �gure 4.3. The
ERP system stores master data objects of the classes Employee, Product, Customer,
Vendor and Logistics. Products are categorized into di�erent product categories
such as fruits, vegetables and nuts. In the CIT system the instances of master class
User refer to employees in the ERP system while master data class Client refers
to ERP class Customer. For each master data object we provide a quality attribute
with one of the values good, normal or bad. We use these attributes at the simu-
lation of business processes to achieve correlations between certain master data
objects and the outcome of process executions. For example, if multiple good mas-
ter data objects are jointly involved, the probabililty of a positive process outcome
(e.g., pro�t) will be increased.

The ERP system further records transaction data related to trading and refunds.
In more detail, these are the classes Sales�otation, SalesOrder, PurchOrder,
DeliveryNote, SalesInvoice and PurchInvoice. The *Line classes Sales�otation-
Line, SalesOrderLine and PurchOrderLine represent n:m relationship types be-
tween the respective transaction classes and Product. The CIT system has only
a single transaction class Ticket to represent customer complaints. All transaction
classes have relationship types to other transaction and master data classes.

Food Brokerage: A food brokerage starts with a Sales�otation sent by a ran-
dom Employee to a random Customer. A quotation has Sales�otationLines that
refer to random products. Each Sales�otationLine provides a salesPrice that is
determined by adding a sales margin to the product’s purchPrice. A Sales�ota-
tion can be either con�rmed or rejected. To simulate the interaction of employee
and customer, the probability of con�rmation as well as the sales margin will be
signi�cantly higher if a good Employee and a good Customer are involved and cor-
respondingly lower for normal or bad master data objects. A con�rmed quotation
results in a SalesOrder and a set of SalesOrderLines. The SalesOrder includes a
reference to the underlying Sales�otation as well as a deliveryDate. To re�ect
partial con�rmations, there may be fewer SalesOrderLines than Sales�otation-
Lines. While the Customer is the same as the one of the Sales�otation, a new
Employee will process the SalesOrder.

For each SalesOrder, one ore more PurchOrders, each with one or more Pur-
chOrderLines, will be placed at random Vendors. A random Employee (purchaser)
is associated per PurchOrder. Actual purchase prices are subject to variations. To
simulate the interaction of purchaser and vendor, a good Employee and a good
Vendor will lead to a lower purchPrice in comparison to normal or bad ones. Fur-
theron, a good Employee will place PurchOrders faster. After a PurchOrder is
processed by the Vendor, the company will receive information about the Deliv-
eryNote, in particular date of delivery, operating Logistics company and operator-
speci�c trackingCode. The delivery time is in�uenced by the quality of both Ven-

75

dor and Logistics company such that good business partners will lead to faster
delivery than bad or normal ones. Finally, one SalesInvoice per SalesOrder will
be sent to the Customer and one PurchInvoice per PurchOrder will be received
from the corresponding Vendor. All transaction data objects created within cases
of food brokerage refer to their predecessor (except Sales�otation) and provide
a date property with a value greater than or equal to the one of the predecessor.

ComplaintHandling: For every customer complaint an instance of class Ticket
that refers to the corresponding SalesOrder object will be created. For the �rst
complaint per Customer, additionally a Client instance will be created. The em-
ployee that handles the complaint is recorded in class User by analogy to Client.
There are two problems which may cause complaints: late delivery and bad prod-
uct quality. Late delivery complaints will occur, if the date of a DeliveryNote is
later than the agreed deliveryDate of the SalesOrder, for example, due to a bad
Employee processing the SalesOrder or a PurchaseOrder, a bad Vendor, a bad Lo-
gistics company or combinations of those. Bad quality complaints may be caused
by bad Products, a bad Vendor, a bad Logistics company or combinations of these.

A Ticket may lead to refunds which are recorded in the form of SalesInvoice
objects with negative revenue. While the constellation of a good Employee allo-
cated to the Ticket and a good Customer may lead to low or no refund, bad ones
will lead to higher refund. If the problem was caused by the Vendor, there will
be also a refund for the company in the form of a PurchInvoice with negative ex-
penses. While the constellation of a good Employee and a good Vendor may lead
to high refund, bad ones will lead to lower or no refund.

Correlations: Due to the in�uence of master data’s quality properties, any Food-
Broker dataset contains complex correlations between master data instances and
the process outcome. The latter can be measured in the form of a �nancial result.
The �nancial result is calculated based on business transaction graphs by aggregat-
ing all revenue- and expense-related properties, in particular those of SalesInvoice
and PurchInvoice. Thus, it becomes possible to analyze the in�uence of the di�er-
ent master objects (employees, customers,vendors, etc.) as well as their interaction
(relationship pattern) on the �nancial result.

4.4.3 Implementation

The initial implementation [142] was written in Java 1.7 and executes process sim-
ulation in parallel on all available threads of a machine. The generated data is
stored in a MySQL database dump with separate databases for the ERP and CIT

systems. To support BIIIG’s basic approach to metadata acquisition (Section 5.2.2),
every class of both databases has a dedicated table with the same name and 1:n

76

Class Con�guration Default Value

Master Data

Employee number of instances 30 + 10× SF
proportions of good/normal/bad inst. 0.1/0.8/0.1

Product number of instances 1000 + 10× SF
proportions of good/normal/bad inst. 0.1/0.8/0.1
list price range 0.5..8.5

Customer number of instances 50 + 20× SF
proportions of good/normal/bad inst. 0.1/0.8/0.1

Vendor number of instances 10 + 5× SF
proportions of good/normal/bad inst. 0.1/0.8/0.1

Logistics number of instances 10 + 0× SF
proportions of good/normal/bad inst. 0.1/0.8/0.1

Food Brokerage

Process number of cases 10000× SF
date range 2014-01-01..2014-12-31

SalesQuotation products per quotation (lines) 1..20
quantity per product 1..100
sales margin/IM 0.05/0.02
con�rmation probability/IM 0.6/0.2
line con�rmation probability 0.9
con�rmation delay/IM 0..20/5

SalesOrder agreed delivery delay/IM 2..4/1
purchase delay/IM 0..2/2
invoice delay/IM 0..3/-2

PurchOrder price variation/IM 0.01/-0.02
delivery delay/IM 0..1/1
invoice delay/IM 2..5/3

Complaint Handling

Ticket probability of bad quality/IM 0.05/-0.1
sales refund/IM 0.1/-0.05
purchase refund/IM 0.1/0.05

SF abbreviates scale factor
number of instance con�gurations are de�ned by linear functions a+ b× SF

IM abbreviates impact per master data instance
IM > 0 means good/bad master data instances increase/decrease value
IM < 0 means good/bad master data instances decrease/increase value

Table 4.2: FoodBroker Con�guration Parameters

77

Master Data Transaction Data
SF Objects Time Objects Relationships Time Dump Size
1 1.1K 4s 73K 380K 4s 42MB
10 1.7K 4s 725K 3.8M 25s 426MB
100 6.8K 4s 7.2M 38M 4min 4.1GB
1000 67K 8s 68M 360M 35min 39GB

Table 4.3: Measures of FoodBroker datasets for di�erent scale factors (SF)
.

associations correspond to foreign keys in class tables where the column names
represent the relationship type. m:n associations are stored in separate tables. The
database dump includes SQL statements for the creation of tables. All instances of
a class are inserted into the tables corresponding to their class. Domain-speci�c
string values such as employee or product names are provided by an embedded
SQLite database.

Scalability in terms of di�erent data sizes is controlled by a scale factor (SF).
This makes it possible to create datasets with equal criteria regarding distribu-
tions, value ranges and probabilities but with a di�erent number of instances. The
number of master data instances and the number of simulated cases are de�ned
by linear functions. The simulation function has a default slope of 10,000 per scale
factor. We take into account that master data instances do not scale proportionally
to cases. For example, there is only a limited amount of logistics companies. Thus,
the functions of all master data classes not only have a speci�c slope but also have
a y-intercept to specify a minimum number of instances.

Besides the scale factor and the resulting data growth, the generation of mas-
ter data but also the process simulation are customizable by several con�guration
parameters. For example, one can set the con�rmation probability of quotations
or the in�uence of master data quality criteria on that probability. All con�gu-
rations are set within a single �le. An overview of the con�guration parameters
is provided in table 4.2. While using FoodBroker for benchmarks requires �xed
con�gurations and variable scale, variable con�gurations at a �xed scale can be
used to evaluate business intelligence applications at di�erent scenarios. Table 4.3
shows dataset measures for di�erent scale factors using the standard con�guration.
With respect to runtime, our current implementation shows a linear behavior for
increasing scale factors. All datasets were generated on a workstation containing
an Intel Xeon Quadcore, 8GB RAM and a standard HDD.

78

Three years after the initial release, Kemper implemented a second version
within the Gradoop framework (Section 4.3) to support a parallel execution on
shared nothing clusters [92]. However, since this version creates EPGM data di-
rectly and cannot be used to evaluate the transformation of relational to graph
data. The source codes of single machine3 and distributed4 versions are available
to the public.

4.5 Conclusion

Multiple logical partitions of a single large graphs as well as collections of these are
especially, but not only, valuable for business data analytics. Graph properties and
respective operators are the base for complex analytical programs on graph data.
With the initial motivation to serve BIIIG’s requirements, we proposed the novel
Extended Property Graph Model with many distinct features. With FoodBroker,
we also created a data generator that allows to test correctness and scalability
of graph-analytical applications. Today, EPGM is the foundation of Gradoop, a
distributed system for declarative graph analytics. At the time of this dissertation
Gradoop has been under ongoing development since 2014.

3https://github.com/dbs-leipzig/foodbroker
4https://github.com/dbs-leipzig/gradoop/tree/master/gradoop-flink/src/main/

java/org/gradoop/flink/datagen/transactions/foodbroker

79

Chapter 5

Graph-based Transformation and

Integration of Data

Before business data can be analyzed by graph algorithms it must be turned into
graphs or collections of these. This section is dedicated to the problems related to
this issue. After an overview (Section 5.1) we will study details about BIIIG’s meta-
data management (Section 5.2), data transformation (Section 5.3) and data integra-
tion (Section 5.4). We will also present a practical algorithm to extract business
transaction graphs from business information data (Sections 5.5) as well as results
of experimental evaluations with FoodBroker and real ERP data (Section 5.6). Fi-
nally, there will be a brief conclusion of these essential parts of BIIIG (Section 5.7).

5.1 Overview

In the last decades business intelligence technologies have been adopted by many
enterprises. Most prevailing are data warehouse and OLAP approaches based on
the relational model and its descendant, the multidimensional model [33]. By con-
trast, graph-based business intelligence is a fairly new approach. Compared to
traditional approaches, graph data models promise signi�cant bene�ts in terms of
analytical �exibility, in particular to evaluate relationships without a prede�ned
and rather static data warehouse schema. In particular, they allow to integrate all
relationships �rst and to select the relevant ones on demand. This is in partic-
ular useful for data scientists who perform experimental analyses whose results
cannot be predicted prior to the data integration process. Powerful graph models
such as the property graph model [157] are promising for the implementation of
this approach as they allow a �exible and uniform representation of heterogeneous
domain objects and their relationships.

80

F
i
g
u
r
e
5
.
1
:

O
ve

rv
ie

w
of

th
e

BI
IIG

fra
m

ew
or

k.

81

By a respective graph model, BIIIG is able to represent basically all structured
data sources. Figure 5.1 illustrates all data processing steps that are performed to
enable graph-based analytics on non-graph source data:

(1) In the �rst step (Section 5.2) the schema of all data sources is represented by
a uni�ed metadata graph (UMG). In the UMG vertices represent classes and
edges represent their relationship types. The UMG combines metadata from
all data sources and serves BIIIG users as an intuitive and generic metadata
model. For relational sources, the UMG can be created automatically in large
parts based on schema information provided by databases.

(2) Afterwards (Section 5.3), instances of classes and relationship types are loaded
into BIIIG’s main data store, the Integrated Instance Graph (IIG). In this graph
vertices represent data objects and edges represent relationships. The IIG
is generated automatically based on the UMG. To make the IIG data self-
descriptive and to achieve a high semantic expressiveness vertices and edges
are associated to classes and relationship types by reserved properties.

(3) Both, the UMG and the IIG play a role in BIIIG’s approach to data integra-
tion (Section 5.4). The UMG may already contain relationship types across
data sources. Such relationship types are possible for both transaction and
master data. For example, tickets in a customer issue tracking system may
be related to sales orders in an ERP system and master data about customers
and employees can be held redundantly in multiple systems. The actual data
integration happens in the IIG where relationships across systems are ma-
terialized by edges. Additionally, groups of vertices that correspond to each
other are fused into a single representative (vertex fusion).

(4) We present a generic algorithm (Section 5.5) to extract business transaction
graphs (Section 3.2) from the IIG. We expect the algorithm to be applicable
to all business information systems under no or with only minor domain-
speci�c modi�cations.

(5) All of BIIIG’s graph structures are valuable for graph-based business analyt-
ics. Analysts can use the UMG and the IIG to access any piece of recorded
data including all of its relationships on both metadata and instance level.
With a framework such as Gradoop, this can be done, for example, by
declarative pattern matching queries [84] or �exible graph summaries [88].
Furthermore, graph mining techniques can be applied to both the IIG or the
set of BTGs (Chapters 6, 7).

82

(a) Example Uni�ed Metadata Graph (UMG). Vertices represent classes and edges repre-
sent relationship types. Source mappings are implemented as SQL queries.

Employee

column type PK
country char(2) 1
id int 2
name varchar
team varchar

SalesOrder

column type PK
country char(2) 1
id int 2
created date
created_by_id int

foreign key columns target
createdBy [country, created_by] Employee

contains

column type PK
country char(2) 1
order_id int
product_id int
quantity int

foreign key columns target
order [country, order_id] SalesOrder

product [product_id] Product

Product

column type PK
id int 1
name varchar

(b) Relational database schema of the UMG of Figure 5.2a.

Figure 5.2: Example uni�ed metadata graph with associated relational database.

83

5.2 Metadata Management

BIIIG is targeting business information systems as its main data source. At the
instance level these systems store domain data objects and their mutual relation-
ships. Data objects are typically classi�ed and there are prede�ned types of rela-
tionships, i.e., there is a domain model. BIIIG re�ects the models of all data sources
in a single Uni�ed Metadata Graph (UMG). The UMG is a uniform representation
of classes and all possible relationship types. The UMG further supports relation-
ship types across sources and, thus, plays an important role for data integration
(Section 5.4). Additionally, the UMG is valuable for data analysts as it reveals avail-
able classes and relationship types in a model of a, compared to an instance graph,
compact size.

Since business information systems use databases to persist data, there is also
a mapping between the domain model and the database’s data organisation. The
UMG stores these mappings in a uni�ed way to enable an automated data transfor-
mation (Section 5.3). For relational databases it is also possible to automate parts
of UMG and mapping generation. The remainder of this section will provide more
details about BIIIG’s metadata management.

5.2.1 Uni�ed Metadata Graph

The Uni�ed Metadata Graph (UMG) represents classes and relationship types of
every data source as well as relationship types across sources. The UMG is a prop-
erty graph according to De�nition 2.5 where vertices V represent classes of domain
data objects and edgesE represent possible relationship types among classes. Fig-
ure 5.2 shows an example UMG of a relational database.

The UMG has a schema, i.e., there is a set of reserved property keys YV for
vertices s.t. ∀y ∈ YV .∀v ∈ V.π(v, y) 6= ε. As illustrated by Figure 5.2a we
store the properties YV = {name,master, ds, pk, a�ributes,mapping}, in partic-
ular the class name, a master data indicator π(v,master) ∈ {true, false}, a data
source identi�er ds, the primary key pk, a list of a�ributes and a source database
mapping. By analogy, there is a set of property keys YE for edges s.t. ∀y ∈
YE.∀e ∈ E.π(e, y) 6= ε. We store the reserved properties YE = {name, source_fk,
target_fk, a�ributes,mapping} that include the relationship type name.

The values of pk, source_fk, target_fk and a�ributes are lists of property keys.
π(v, a�ributes) may be empty. Note, that an empty list has a di�erent meaning
than ε. In particular, ε means the non-existence of a property but if a class or rela-
tionship type has an empty a�ributes value, its instances will have no attributes.
More details about the role of ds,pk, source_fk and target_fk properties will be
provided in Section 5.3.

84

The values of properties with key mapping are mappings between the classes
(or relationship types) and data sources. They enable automated graph transfor-
mation (Section 5.3). Generally, mappings are database queries that return lists of
data objects (or relationships), each represented by a property list. A property list
that represents a data object must contain a value for pk and may contain a value
for all a�ributes. Respectively, for every relationship there must be values for all
source_fk and target_fk.

We will use the most important case, relational databases, as an example. Here,
mappings have the form of SQL queries and column names of a query’s result
correspond to property keys. Figure 5.2 shows an example UMG with a mapped
relational database. In this simple mapping, tables correspond to classes, optionally
with embedded 1:n relationship types, or to m:n relationship types. For example,
table SalesOrderTable persists objects of class SalesOrder as well as relationships of
type createdBy and table SalesOrder_Product holds relationships of type contains.
Since relational databases allow the explicit persistence of non-existence (NULL),
the mapping of createdBy ensures by a NOT NULL predicate that only actually
existing relationships will be selected.

5.2.2 Metadata Acquisition

Metadata mappings are speci�c for every data source. In particular they are not
only dependent on the database type but also on the object mapping strategy of the
source system [132]. In an ideal case, the metadata of a complete data source or at
least a rough proposal can be acquired automatically. Therefore classes, relation-
ship types and their original database mappings must be accessible in the source
system. However, a domain expert will always be required to categorize master
and transaction data, to review the proposal and to add missing relationships such
as those across data sources. For the main use case of business information sys-
tems based on relational databases we propose the following automated approach
to metadata acquisition:

The approach includes two phases: First, all table metadata is scanned to ex-
tract classes. Second, tables are scanned again to extract relationship types. The
two-phase approach is required to ensure consistency since all classes must be
known before relationship types can be added to the UMG. Algorithm 5.1 shows
the class acquisition. The algorithm’s inputs are a data source id (which will be
added to all classes), the relational schema of the source database and the uni�ed
metadata graph. The latter will be empty, if the current one is the �rst acquired
data source but will already contain classes and relationship types otherwise. To
be passed to the second phase, the algorithm �nally returns the UMG. The basic
idea of this approach is that tables either represent classes or m:n relationships.
Each table (line 1) is considered as a class candidate. The criterion for a table

85

Algorithm 5.1 Relational Metadata Acquisition (Part I - Classes)
Input: data source id (ds), relational schema (schema), uni�ed metadata graph (umg)
Output: uni�ed metadata graph (umg)

1: for all table in schema.tables do
2: pk = getPrimaryKey(table)
3: if pk != null then
4: class = new Vertex
5: class[ds] = ds
6: class[name] = table.name
7: class[pk] = pk.columns
8: fks = getForeignKeys(table)
9: for all column in table.columns do

10: if not pk.contains(column) and not fks.contains(column) then
11: class[attributes].add(column)
12: end if

13: end for

14: class[mapping] = createSQLMapping(table, class)
15: umg.vertices.add(class)
16: end if

17: end for

18: return umg

to represent a class is the existence of a primary key (lines 2, 3). Primary key
extraction is represented by the function getPrimaryKey(table). There is no gen-
eral implementation of this function. On the contrary, this is the �rst time where
the particular database system and object mapping strategy must be considered.
Typical approaches are the evaluation of database metadata (e.g., PRIMARY KEY
constraints), the exploitation of naming conventions (e.g., primary keys are always
named id) or lookups in data dictionaries [229] of business information systems.
In the case of an existing primary key, a new vertex will be created (line 4). Besides
the source identi�er (line 5), the table name is used as class name (line 6) and all
columns of the primary key are used to set the pk property (line 7).

Analog to primary keys, the extraction of foreign keys is represented by the
function getForeignKeys(table) and requires a system-speci�c implementation. Here,
the same approaches such as evaluation of database metadata (e.g., FOREIGN KEY
constraints), interpretation of naming conventions (e.g., foreign keys are always
named {tablename}_id) or lookups in data dictionaries have to be applied. In this
part of the algorithm foreign keys play the role of a blacklist for attribute extrac-
tion. More precisely, all columns (line 9) except members of the primary key and
any foreign key (line 10) are added to the a�ributes property (line 11). Finally, the
class mapping is created (line 14) and the vertex is added to the UMG (line 15). The
creation of the source mapping is represented by function createSQLMapping(table,

86

Algorithm 5.2 Relational Metadata Acquisition (Part II - Relationship Types)
Input: relational schema (schema), uni�ed metadata graph (umg)
Output: uni�ed metadata graph (umg)

1: for all table in schema.tables do
2: pk = getPrimaryKey(table)
3: fks = getForeignKeys(table)
4: if pk != null and fks.length > 0 then

5: // embedded 1:n foreign keys

6: for all fk : fks do
7: atts = []
8: addRelationshipType(umg, fk.name, atts, table.name, pk, fk.targetName, fk)
9: end for

10: else if pk == null and fks.length == 2 then

11: // m:n table

12: sourceKey = fk[0]
13: targetKey = fk[1]
14: atts = []
15: for all column : table.columns do
16: if not sourceKey.contains(column) and not targetKey.contains(column) then
17: atts.add(column)
18: end if

19: end for

20: addRelationshipType(umg, table.name, atts,
sourceKey.targetName, sourceKey, targetKey.targetName, targetKey)

21: end if

22: end for

23: return umg

class) which creates a SQL statement that selects all columns that are part of either
the pk or the a�ributes property. Example queries are shown in Figure 5.2a.

Algorithm 5.2 shows the acquisition of relationship types. The algorithm’s in-
puts are again the relational schema of the source database and the uni�ed meta-
data graph which now contains at least all classes of the same data source. Here,
tables are scanned a second time (line 1). To decide, if the table represents either a
class table with potentially embedded 1:n relationships or a m:n relationship table,
primary key (line 2) and foreign keys (line 3) will be determined using the same
functions as Algorithm 5.1. Based on the functions’ results there are two cases:
In the �rst case of embedded 1:n relationships there must be a primary key and a
non-empty set of foreign keys (line 4). In the second case of a m:n table there must
be no primary key but exactly two foreign keys (line 10).

In both cases, �nally the method addRelationshipType will be called. In the
1:n case, this happens for every foreign key (line 8) but only once per table in

87

Algorithm 5.3 Method addRelationshipType
Input: uni�ed metadata graph (umg), relationship type name (name), relationship type at-
tributes (attributes), source class name (sourceName), source key (sourceKey), target class
name (targetName), target key (targetKey)

1: source = umg.getVertexWhere(|class| -> class[name] == sourceName)
2: target = umg.getVertexWhere(|class| -> class[name] == targetName)
3: if source != null and target != null then

4: relType = new Edge(source, target)
5: relType[name] = name
6: relType[attributes] = attributes
7: relType[source_fk] = sourceKey.columns
8: relType[target_fk] = targetKey.columns
9: class[mapping] = createSQLMapping(table, relType)

10: umg.edges.add(relType)
11: end if

the m:n case (line 20). The �rst di�erence between both cases is the type name
(�rst parameter of addRelationshipType). In the 1:n case, the key name will be used
(line 8). Key names are dependent on the implementation of getForeignKeys. In
the m:n case, the table name will be used instead (line 20). The second di�erence
refers to a�ributes. While there are generally no attributes in the 1:n case (line
7) all columns except those involved in the two foreign keys are considered to be
attributes in the m:n case (lines 15-19). The method addRelationshipType further
requires source and target class names as well as respective keys. For the 1:n case,
the source class is set by the table name (line 8) since a class must have been derived
from the same table in Algorithm 5.1. The target class corresponds to the target
table of the foreign key (line 8). Analog to the target of 1:n relationship types, the
target table names of both foreign keys will be used in the m:n case (line 20). The
same logic applies to the passed keys which are primary as well as the current
foreign key in the 1:n case and two foreign keys in the m:n case.

The actual edge creation happens within the method addRelationshipType. The
method body is shown by Algorithm 5.3. First, source and target are queried from
the UMG (lines 1,2). Here, we use lambda predicates (λ : V → {true, false})
to represent queries. If both class vertices could be queried (line 3), a consistent
relationship type can be created (line 4). The properties for name and a�ributes
are taken over from the method’s input (lines 5,6). Further on, the columns of both
keys are set as values of source_fk and target_fk (lines 7,8). By analogy to vertices,
the function createSQLMapping(table, relType) is used to create a mapping (line
9). The function creates a SQL statement that selects all columns that are part of
either source_fk, target_fk or the a�ributes property. Example queries are shown
in Figure 5.2a. Finally, the edge is added to the UMG (line 10).

88

Algorithm 5.4 Automated Graph Transformation
Input: uni�ed metadata graph (umg)
Output: integrated instance graph (iig)

1: iig = new PropertyGraph
2: for all class in umg.vertices do
3: for all properties in dbQuery(class[ds], class[mapping]) do
4: object = new Vertex
5: object[class] = class[name]
6: object[master] = class[master]
7: object[sid] = class[ds] + class[name]
8: for all key in class[pk] do
9: object[sid] = object[sid] + properties[key]

10: end for

11: for all key in class[attributes] do
12: object[key] = properties[key] if properties[key] != NULL
13: end for

14: iig.vertices.add(object)
15: end for

16: end for

17: for all relType in umg.edges do
18: for all properties in dbQuery(relType.source[ds], relType[mapping]) do
19: sourceSid = relType.source[ds] + relType.source[name]
20: for all key in relType[source_fk] do
21: sourceSid = sourceSid + properties[key]
22: end for

23: targetSid = relType.target[ds] + relType.target[name]
24: for all key in relType[target_fk] do
25: targetSid = targetSid + properties[key]
26: end for

27: source = iig.getVertexWhere(|object| -> object[sid] == sourceSid)
28: target = iig.getVertexWhere(|object| -> object[sid] == targetSid)
29: if source != null and target != null then

30: relationship = new Edge(source, target)
31: relationship[type] = relType[name]
32: for all key in relType[attributes] do
33: relationship[key] = properties[key] if properties[key] != NULL
34: end for

35: iig.edges.add(relationship)
36: end if

37: end for

38: end for

39: return iig

89

5.3 Graph Transformation

BIIIG’s graph transformation is fully automated based on the source-mappings
provided by the UMG. The process entails two phases: First, the mappings of all
classes are evaluated and for each data object a new vertex is added to the cen-
tral instance graph. All vertices whose objects are identi�able within the source
system will be queryable by a global source identi�er. Second, the mappings of
all relationships are evaluated and for each relationship a new edge will be added.
During the edge creation process, source identi�ers are used to query incident ver-
tices. The remainder of this section will provide more details about BIIIG’s instance
model and source data transformation.

5.3.1 Integrated Instance Graph

The main data store of BIIIG is called integrated instance graph (IIG). In this graph
each data object is represented by a vertex and each relationship is represented by
an edge. Just like the UMG, the IIG is a property graph where vertices V represent
data objects and edges E represent their mutual relationships.

The IIG has a partial schema, i.e., there are reserved properties as well as an
arbitrary number of data properties for each vertex and edge. We store values
for the keys YV = {master, class, sid}. The values of master data indicator and
class are taken over from an object’s UMG class during data transformation. The
property sid stores a globally unique so-called source identi�er composed from
the data source identi�er, class name and local identi�er (e.g., a table’s primary
key value). It provides provenance information and plays a crucial role for the
automated transformation process. For edges, only a type property is mandatory.
Its value is adopted from an edge’s relationship type in the UMG. The properties
master, class and type are actually metadata but add semantics to the generally
schema-less graph structure. There are no constraints for data properties.

5.3.2 Transformation process

Algorithm 5.4 describes the transformation process in detail. The input of the algo-
rithm is the UMG including data source mappings and the result is the IIG. First, all
source data objects are turned into IIG vertices within a loop over all classes (lines
2-16). The class speci�c source mapping (e.g. SQL statement) is used to query its
instances in the form of property lists (line 3). Every new vertex (line 4) obtains the
class name (line 5) and master data indicator (line 6) from the currently processed
class. The source identi�er is generated in lines 7-10. Initially, it includes only data
source identi�er and class name (line 7). In the subsequent loop a value is added
for every pk value (lines 8-10). This simple concatenation is just for illustration. In
an actual implementation, a more complex multiplexing could be applied. In the

90

next loop all (non NULL) attribute properties are transferred to the vertex (lines
11-13). Finally, the vertex will be added to the IIG (line 14).

Second, all relationships are turned into IIG edges within a loop over all rela-
tionship types (lines 17-38). By analogy to vertices, the type-speci�c mapping is
used to query relationships, represented by property lists (line 18). The connected
vertices will be queried from the IIG by their source identi�ers (lines 27, 28). These
identi�ers are created in the same way as lines 7-10 but from relationship infor-
mation (lines 19-26). However, we will only continue with the current edge, if
vertices exist for both identi�ers (line 29). The new edge (line 30) obtains its type
property from the currently processed relationship type’s name (line 31) and re-
ceives all nonempty property values of the relationship (lines 32-34). Finally, the
constructed edge will be added to the IIG (line 35).

5.4 Data Integration

BIIIG supports the integration of data from multiple sources. BIIIG’s data integra-
tion process entails three steps: First, cross-system edges (relationship types) are
added to the UMG. Second, cross-system edges (relationships) are automatically
added to the IIG since they are based on cross-system relationship types in the
UMG. Third, groups of vertices that represent the same logical entity will be fused
into a single representative. In the following, we will provide more details about
these steps. Note, that logical data integration problems are out of the scope of
this dissertation. Instead, we will only discuss technical advantages of the graph
model for data integration.

5.4.1 Metadata Integration

Figure 5.3 shows an uni�ed metadata graph (UMG) with cross-system relationship
types. There are two reasons for the existence of such edges. First, there could be
transaction references. For example, the edge of type concerns in Figure 5.3 shows
that instances of class Ticket may reference instances of class SalesOrder. In busi-
ness information systems, such references play an important role. For example, if
a customer reports a problem with an order, a ticket will be created. However, it
is possible that the order processing is done with an enterprise resource planning
(ERP) system while tickets are recorded in a customer issue tracking (CIT) system.
Since a ticket cannot always be directly processed by the creating employee, a ref-
erence to the a�ected sales order must be stored. In this way the reference will be
available to all employees processing the ticket.

91

Figure 5.3: Example uni�ed metadata graph with metadata from multiple sources. Ver-
tices represent classes and edges represent relationship types. Gray vertices
represent master data classes. Dashed rectangles represent source boundaries
and correspond to the ds properties of vertices.

The second reason for cross-system relationships is the redundant storage of
master data. Although avoiding redundancy is a general goal for good data man-
agement it cannot be practiced in all cases. For example, if multiple systems are
used some data can be required in both systems. Figure 5.3 shows two edges of
this kind, both of the reserved type sameAs. The following scenario illustrates the
origin of such cases: Tickets are processed in a call center whose employees, for
security purposes, have only access to the CIT system. Human resource manage-
ment maintains all employee data in the ERP system and sales orders are recorded
in the ERP system, too. However, the CIT system requires master data about em-
ployees and customers. About employees, to maintain additional CIT speci�c data
(e.g., external phone number) and about customers to enable the call center sta�
to ensure the caller is really a customer.

For both transaction references and redundant master data a common imple-
mentation are dedicated database �elds that store the primary key values of the
target system. For example, the column so_ref of the table corresponding to the
class Ticket references the primary key of SalesOrder records. There are three po-
tential ways of adding cross-system edges to the UMG. First, they can be extracted
from a middleware that is managing cross-system relationship types, for example,
so-called enterprise service bus systems [122]. Second, they are added manually
by a domain expert. Third, the data provided by the UMG can be made available to
an approach to automated schema matching [155] whose results can be feed back.
Independent of how they were added, cross-system relationship types are stored
in the same format as inner-system edges. In consequence, they are normalized
for the automated data transformation process (Section 5.3).

92

Figure 5.4: Example integrated instance graph with data from multiple sources. Vertices
represent data objects and edges represent relationships. Gray vertices rep-
resent master data. Dashed rectangles represent source boundaries and cor-
respond to the pre�x of sid properties of vertices. The instance graph was
generated based on the uni�ed metadata graph shown by Figure 5.3

5.4.2 Instance Integration

Since the automated data transformation process of Section 5.3 is based on the
integrated UMG cross-system relationships will be created automatically. This is
particularly enabled by our concept of source identi�ers which includes source
systems as well as class information and, thus, ensures globally unique identi�ers.
Figure 5.4 shows an example integrated instance graph (IIG) based on the UMG
of Figure 5.3. The sid properties of vertices show examples for source identi�ers
whose pre�x associates them either to the CIT or the ERP system. For the case of
data redundancy it is also possible to detect clusters of corresponding entities on
the instance level. For example, as a naive solution any approach to object match-
ing [99] could be applied to the vertex set and every correspondence would result
in a new sameAs edge. Clusters of these edges could then be interpreted as a single
logical entity. More elaborate solutions such as FAMER [163] consider correspon-
dences and their weights only as input of more complex clustering algorithms.

These correspondence clusters are only an intermediate step and should be re-
solved eventually (deduplication). Our approach is to separate data integration
problems from general graph problems. Thus, BIIIG only solves the latter. This
approach is called vertex fusion. Here, correspondence clusters are turned into sin-
gle representatives and all edges from the original vertices are redirected to the
representative to ensure consistency. The actual clustering logic (e.g., connected
components [44] of only sameAs edges or the result of FAMER clustering) as well
as the actual data integration logic are speci�ed by the user in the form of a user
de�ned functions (UDFs). The �rst UDF maps a graph to a collection of subgraphs

93

Figure 5.5: Example instance graph of Figure 5.4 after vertex fusion.

(correspondence clusters) and a second UDF maps a graph (correspondence clus-
ter) to a single vertex (representative). Within the second function, potential con-
�icts such as di�erent values for the same property key must be resolved. Further
on, the representative’s properties may contain all required provenance informa-
tion.

Figure 5.5 shows the graph of Figure 5.4 after vertex fusion based on sameAs
connected components as clustering. In particular, vertices 1,4 were fused into
vertex 8 and vertices 3,6 were fused into vertex 9. All edges of the a�ected vertices
were redirected respectively. It can be seen that fused vertices cannot be associated
to a single system anymore. To provide provenance, they encode all original source
identi�ers. The example further shows, that property con�icts were resolved. For
example, vertices 1 and 4 have name properties with di�erent values. For vertex
8, the correct one was chosen by a not further speci�ed method. Vertex fusion
does not only work for pairs of vertices with a single sameAs edge but also for
subgraphs where a path of only sameAs edges exists between any pair of vertices.

Algorithm 5.5 shows the pseudocode of the vertex fusion process. The algo-
rithm’s input is the IIG and user de�ned functions that specify the application-
speci�c clustering and integration logic (e.g., property con�ict resolution). First,
the clustering UDF is applied and each cluster is processed separately (line 1). For
each cluster the integration UDF is executed to create a representative (line 2)
which is added to the IIG (line 3). We assume that all edges that connect vertices
within the same cluster are data integration fragments (e.g., sameAs-edges) and
delete them from the iig (line 4). The deletion happens before the actual vertex
fusion to avoid unnecessary edge redirection. Then, every original vertex is pro-
cessed in a loop (line 5). First, the original source id of the current vertex is added

94

Algorithm 5.5 Vertex Fusion
Input: integrated instance graph (iig), clustering function (clusteringUdf : G→ P(G)),
integration function (integrationUdf : G→ V)
Output: integrated instance graph (iig)

1: for all cluster in clusteringUdf (iig) do
2: representative = integrationUdf (cluster)
3: iig.vertices.add(representative)
4: iig.edges.removeIf (|edge| -> cluster.edges.contains(edge))
5: for all vertex in cluster.vertices do
6: representative[sid] = multiplex(representative[sid], vertex[sid])
7: for all edge in iig.edges.where(|edge| -> edge.source == vertex) do
8: edge.source = representative
9: end for

10: for all edge in iig.edges.where(|edge| -> edge.target == vertex) do
11: edge.target = representative
12: end for

13: iig.vertices.remove(vertex)
14: end for

15: end for

to the representative’s source id by a not further speci�ed kind of multiplexing
(line 6). Second, all edges whose source (lines 7-9) or target (line 10-12) is the orig-
inal vertex will be redirected to the representative, i.e., the representative is set as
source (line 8) or target (line 11). Finally, the at this point isolated original vertex
will be removed from the IIG (line 13).

5.4.3 Deduplication of Relationships

It is possible that vertices of two correspondence clusters are connected by edges
and that these edges may logically correspond to each other. Figure 5.6 shows an
example for a bibliographic scenario. In Figure 5.6a articles and papers as well as
authors and people form disjoint correspondence clusters. Figure 5.6b shows the
same graph after vertex fusion. It can be seen that the resulting parallel edges in
Figure 5.6b correspond to each other, too. BIIIG provides no solution to this prob-
lem yet. However, we want to address deduplication of edges (relationships) as a
further important problem of research about graph-based data integration. One
possible solution strategy could be the application of object matching strategies
among all edges that connect di�erent clusters.

95

(a) Before vertex fusion. Yellow areas represent vertex cor-
repsondence clusters.

(b) After vertex fusion.

Figure 5.6: Example of the relationship integration problem.

5.5 Business Transaction Graphs

We proposed business transaction graphs to analyze business data (Section 3.2).
Business transaction graphs represent all data related to a single business process
execution (case). Thus, we developed a generic baseline algorithm for the extrac-
tion fo these graphs. The algorithm is based on business data characteristics. In
particular, we observed that, with some exceptions (Section 5.5.2), transaction data
objects (e.g., phone calls, sales orders and invoices) are created exactly for one case
while master data objects (e.g., customer, products and employees) are involved
in many cases. We further observed that direct relationships between transaction
data objects re�ect causal connections, i.e., are speci�c to a single case, too. For ex-
ample, an invoice object that refers to a sales order was created to invoice the order.
By contrast, relationships among master data objects (e.g., employee-department)
are never related to cases. However, relationships between transaction data and
master data carry speci�c information about cases since they provide context, for
example, the customer who placed the order of a case.

5.5.1 Algorithm

Based on these observations we developed an algorithm that automatically extracts
a collection of business transaction graphs from an integrated instance graph. The
algorithm implements the following rules to discover a BTG.

1. Every transaction vertex belongs to exactly one BTG.

2. Every edge with at least one incident transaction vertex belongs to exactly
one BTG, in particular, to the same BTG as the transaction vertex.

3. Every edge between two transaction vertices re�ects a causal connection,
i.e., both vertices belong to the same BTG.

96

Algorithm 5.6 Business Transaction Graph Isolation
Input: integrated instance graph (iig)
Output: collection of business transaction graphs (btgs)

1: btgs = new GraphCollection
2: transVertices = iig.vertices.where(|vertex| -> vertex[master] == false)
3: while transVertices 6= ∅ do
4: btg = new Graph
5: seedVertex = transVertices.getAny()
6: btg.add(seedVertex)
7: queue = new Queue
8: queue.add(seedVertex)
9: while queue 6= ∅ do

10: vertex = queue.poll()
11: for all edge in iig.edges.where(

|edge| -> edge.source == vertex || edge.target == vertex) do
12: if not btg.edges.contains(edge) then
13: otherVertex = edge.source == vertex ? edge.target : edge.source
14: if not btg.vertices.contains(otherVertex) then
15: btg.vertices.add(otherVertex)
16: if vertex[master] == false then

17: queue.add(otherVertex)
18: transVertices.remove(otherVertex)
19: end if

20: end if

21: btg.edges.add(edge)
22: end if

23: end for

24: end while

25: btgs.add(btg)
26: end while

27: return btgs

97

4. Master data vertices may be part of an arbitrary number of BTGs.

5. Every edge without an incident transaction vertex has no relationship to a
speci�c BTG.

Thus, our algorithm takes an arbitrary transaction vertex (rule 1) and traverses
all edges since all of its incident edges must belong to the same BTG (rule 2). For
each visited transaction vertex, the traversal will be continued since even vertices
that are indirectly linked by causal connections transitively belong to the same
BTG (rule 3). By contrast, the traversal is stopped for master data vertices since
their incident edges may belong to another BTG (rule 4) or may be even irrelevant
for BTGs (rule 5).

The pseudocode of this algorithm is shown by Algorithm 5.6. The algorithm’s
input is an integrated instance graphs (IIG) and its output is a new collection of
business transaction graphs (line 1). In the IIG, all vertices have a master data
indicator to distinguish master and transaction data (Section 5.3.1). Based on this
property, we �rst extract a set of only transaction vertices (line 2) which have to
be distributed to BTGs. Then, we process this set in a loop until it is empty (line 3).
Every iteration results in a new business transaction graph (line 4). Therefore, a
random transaction vertex (line 5) is added to this graph (line 6) and to a traversal
queue (lines 7,8). The queue represents all vertices of a business transaction graph
whose neighborhood has not been traversed yet.

The queue is processed iteratively until it is empty (lines 9). Each iteration
starts with polling a vertex (line 10). Initially, this is the seed vertex of line 5. Then,
all incident edges of the current vertex are queried and processed (line 11). Edges
that are already contained in the current graph will not be processed again (line
12). Since every incident edge of a transaction vertex must have been created for
exactly one case (rule 1), we will �nally add it to the BTG (line 21) after processing
its adjacent vertex (line 13-20). By analogy to edges, an adjacent vertex will only
be processed if not already contained in the current BTG (line 14). Otherwise,
it will be added to the BTG (line 15). Lines 16 to 18 re�ect the main idea of this
algorithm with regard to the stated rules: Only if the current vertex is a transaction
vertex (line 16), it will be added to the queue (line 17) to trigger the traversal of
its neighborhood and it will be removed from the global set of transaction vertices
(line 18) since it may only be part of a single BTG.

5.5.2 Limitations

There are cases where transaction vertices can belong to more than one case. The
problem was already discussed in the context of artifact choreographies [51]. For
example, if a company’s business includes complex logistics, it will be economical
to combine shipping for multiple orders although their connection is not causal

98

but geographical and temporal. In this case, our algorithm would extract a pseudo-
case, i.e., lead to a single business transaction graph that includes data of multiple
independent cases. The problem can be solved by another reserved property to
mark non-exclusive transaction data. This property must be evaluated in line 16
of Algorithm 5.6 s.t. these vertices as treated just like master data. However, the
problem must not be solved by setting the master data indicator to true since the
indicator might be used for further analytical steps (Chapter 3) and, thus, would
blur analytical results.

In one of out use case evaluations in cooperation with a real estate platform
(Section 8.1) transaction vertices represented website navigation steps and master
data re�ected geographical information, user account data and real estate con-
stants (e.g., housing features). The problem of pseudo-cases was not only con-
�rmed but even intensi�ed. In particular, whole subgraphs of transaction vertices
had to be shared across multiple cases [162]. In this example, a case was de�ned
by property announcement but multiple cases might have been created during a
single web session. However, to reach the analytical goal, session related infor-
mation had to be available for all cases. Generalized, there was a nesting of two
business processes and the evaluation of the inner process’s cases required access
to the data of the outer cases. We found no general solution but a domain-speci�c
variant of Algorithm 5.6 could solve the problem.

5.6 Experimental Evaluation

For a functional evaluation, we used two datasets. First, we used a real-world
dataset whose data originates in a real installation of the Open Source ERP sys-
tem ERPNext [221]. The dataset contains �ctive business activities created during
application development and testing. While the database size is rather small we
found the data realistic and useful for an initial proof-of-concept. Since we were
not able to gain two interrelated real-world business datasets, we used a second
synthetic dataset created by the FoodBroker data generator (Section 4.4). This
dataset emulates data from two systems and allows to evaluate data integration.
The latter was also used for public demonstration of BIIIG [143].

5.6.1 Implementation

Both datasets were stored in MySQL databases and we used Neo4j [232] in version
2.0 to store property graphs. Since Neo4j was lacking support for multiple graphs
in one database, we used separated database instances for the uni�ed metadata
graph (UMG), the integrated instance graph (IIG) and the collection of business
transaction graphs (BTGs). Additionally, Neo4j provides no support for logical
graphs. Thus, we used a workaround and added a reserved property with key

99

Figure 5.7: Visualization (Gephi [224]) of the integrated instance graph extracted from
a dataset that was created by the real-world business information systems
ERPNext.

btg_id to every vertex. Since the used version of Neo4j had no support for multi-
value properties, master data was duplicated for every BTG.

All data processing tasks from metadata acquisition (Algorithm 5.1) to business
transaction graph extraction (Algorithm 5.6) were implemented using Java in ver-
sion 7. With regard to vertex fusion (Algorithm 5.5) the prototype contained only a
simpli�ed version with edge-wise fusion and a simple property con�ict resolution
instead of user de�ned functions. Neo4j was accessed using the native Java API
which is known to provide the best performance [73]. All data processing tasks
were executed remotely by a REST API. There was also a web frontend [143] based
on Ruby on Rails in version 3.0 which allows UMG manipulation, for example, to
rename classes and relationship types or to classify master and transaction data.
Since we were using Neo4j, its stock frontend could be used to browse the graphs
and to access UMG and IIG with the query language Cypher [217].

100

Figure 5.8: Visualization (Neo4j frontend [232]) of a business transaction graph extracted
from a dataset created by the FoodBroker data generator.

5.6.2 Results

For both datasets, we were able to acquire the UMG automatically. However, we
used di�erent implementations of getPrimaryKey and getForeignKeys from Algo-
rithms 5.1 and 5.2. For the synthetic FoodBroker dataset we could extract keys from
the database schema as respective constraints were created by the data generator.
We manually added cross-system relationship types including sameAs edges and
achieved, as expected, an UMG that corresponded to the data generator’s schema.
For the real-world dataset of ERPNext neither key constraints nor a data dictionary
were provided. Thus, we used convention exploits to gather primary and foreign
keys. In particular, foreign key candidates were chosen based on naming patterns
and datatypes. Candidates were automatically validated by table joins, i.e., a join
with a non-empty result was considered valid. By this method we derived 102
classes and 583 relationship types.

For both datasets we could execute data transformation based on the extracted
UMGs to create the respective IIGs. The IIG extracted from the real ERP data had
8,358 vertices, 38,892 edges and 87,746 nonempty properties. Figure 5.7 shows a
visualization of the extracted IIG. In can be seen that data is highly interconnected.
After a closer look at the graph we found that the for this are relatively few mas-
ter data objects (mostly employees) that were often referenced by transaction data
(mostly created by). For FoodBroker vertex and edge counts corresponded, ac-
cording to the current scale factor, to the object and relationship counts of Table
4.3. Vertex fusion on FoodBroker data worked as designed.

101

Figure 5.9: Visualization (Gephi [224]) of a business transaction graph extracted from a
dataset created by a real-world business information system. Zoom factor is
to low to render labels.

We also executed business transaction graph extraction for both datasets. A
synthetic FoodBroker dataset contains a predictable number of business transac-
tion graphs that is set by a scale factor (Section 4.4). We extracted exactly as many
BTGs as con�gured for di�erent scale factors according to Table 4.3. Figure 5.8
shows an example graph in the Neo4j frontend. From the real dataset, we isolated
1,983 BTGs. The BTG size ranges from 2 to 221 nodes and 2 to 883 edges. We ex-
pect real-world BTGs that contain ERP data to have at least the size of the biggest
ones that we have extracted in our experiment. Figure 5.9 and Figure 5.10 show
an example of these biggest graphs in two zoom factors. This graph was already
to large for the Neo4j frontend. The clipping of Figure 5.10 is meaningful for peo-
ple with background knowledge about ERP systems. Further spot tests of BTGs
yielded only reasonable results in the context of business processes. In particular,
we found interrelated transaction data objects from �rst sales activities over prod-
uct purchase and invoicing up to general ledger accounting as well as involved
master data such as employees, customers and products.

102

F
i
g
u
r
e
5
.
1
0
:

Cl
ip

pe
d

vi
ew

on
th

eg
ra

ph
of

Fi
gu

re
5.9

w
ith

ah
ig

he
rz

oo
m

fa
ct

or
(G

ep
hi

[2
24

]).
Bl

ac
k

ve
rti

ce
ss

ho
w

m
as

te
rd

at
aa

nd
gr

ay
ve

rti
ce

ss
ho

w
tra

ns
ac

tio
n

da
ta

.T
he

di
sp

la
ye

d
la

be
li

st
he

cl
as

sp
ro

pe
rty

of
tra

ns
ac

tio
n

da
ta

an
d

a
m

an
ua

lly
ch

os
en

bu
sin

es
si

de
nt

i�
er

fo
rm

as
te

rd
at

a.

103

5.7 Conclusion

Graph-based data transformation and integration are crucial steps to enable graph-
based analytics of business data. With BIIIG, we proposed practical solutions to
these problems. BIIIG utilizes the capabilities of property graphs to uniformly
represent metadata and instance data of diverse sources such as ERP and other
business information systems. Metadata acquisition and instance integration are
largely automatic and retain valuable source relationships for subsequent data ana-
lytics and data mining. We further provide a generic algorithm to automatically ex-
tract business transaction graphs in common applications. An initial prototype for
relational data sources has been implemented based on an existing graph database
and was successfully applied to a real ERP use case. The algorithm to extract BTGs1

was already ported to Gradoop and evaluated in a practical application [162]. This
application con�rmed its value but has also shown its limitations.

1https://github.com/dbs-leipzig/gradoop/blob/master/gradoop-flink/src/main/

java/org/gradoop/flink/algorithms/btgs/BusinessTransactionGraphs.java

104

Chapter 6

Frequent Subgraph Mining in

Distributed Graph Collections

BIIIG aims to identify correlations between business measures and graph patterns.
In the previous chapters we have already discussed how business data can be rep-
resented by graphs and how business measures can be calculated based thereon.
To reach BIIIG’s analytical target counting of graph pattern frequencies is a cru-
cial primitive. The remainder of this chapter is dedicated to this problem that is
usually referred to as frequent subgraph mining (FSM). After a motivation (Section
6.1), we will �rst study the frequent subgraph mining problem with regard to di-
rected multigraphs (Section 6.2). Afterwards, we will propose an approach to FSM
that is tailored to the programming model of state-of-the-art Big Data technology
(Section 6.3) and provide a comparison to competitors based on MapReduce (Sec-
tion 6.4). Finally, we will present results of an experimental evaluation (Section
6.5) as well as a conclusion (Section 6.6).

6.1 Motivation

Although FSM found much research interest in the last two decades [82], the range
of applications was limited to chemical (e.g., chemical compounds) and biological
structures (e.g., protein interaction networks). Data of these scenarios shows dif-
ferent characteristics compared to business data represented by business transac-
tion graphs (Section 3.2). In consequence, existing FSM algorithms are not appli-
cable to BIIIG for two reasons:

First, business data typically describes directed multigraphs, i.e., the direction
of an edge has a semantic meaning and there may exist multiple edges between the
same pair of vertices. To solve the �rst problem, we extended gSpan [196], a leading
sequential algorithm, and developedDMGSpan (DirectedMultiGraph gSpan) which
is to the best of our knowledge the �rst FSM algorithm with support for directed
multigraphs (Section 6.2).

105

Second, the data volume of business applications can be very large and se-
quential algorithms will not lead to acceptable execution times. An established
approach to speed up complex computations on very large data volumes is par-
allelization, i.e., the computation is split up into smaller pieces which can be pro-
cessed concurrently by multiple processors. The problem of parallel frequent sub-
graph mining has already been studied for multiple computing threads [120, 183],
FPGAs [171] and GPUs [93]. We will show, that also DMGSpan can be parallelized
with ease, as far as shared main memory is available.

However, in Big Data scenarios even parallel single machine solutions will
reach their limits, for example, if either input data volume or the size of inter-
mediate results exceed main memory. A common approach to solve this problem
is spreading computation across a cluster of multiple physical machines without
shared memory. The rise of this approach was strongly connected with the MapRe-
duce [42] programming paradigm, which has also been applied to the FSM problem
[10, 18, 72, 109, 114]. Besides the fact that none of these approaches provides sup-
port for directed multigraphs either, MapReduce is not well suited for complex
iterative problems like FSM as it leads to a massive overhead of disk access. Fur-
ther on, existing approaches still leave room for algorithmic improvements such as
minimizing the data shu�ed over the network and the total number of expensive
isomorphism resolutions (Section 6.4).

In recent years, a new generation of advanced cluster computing systems ap-
peared. With Apache Flink [30] and Apache Spark [202] as prominent representa-
tives, these distributed in-memory data�ow systems provide a larger set of operators
than MapReduce and support holding data in main memory between operators as
well as during iterative calculations. We studied how FSM could be e�ciently
parallelized by the use of these systems and developed DIMSpan (Distributed In
Memory gSpan), an advanced approach to distributed FSM (Section 6.3).

DIMSpan inherits the algorithmic foundation of DMGSpan and, thus, supports
directed multigraphs. In the presence of shared memory, the parallelization of FSM
algorithms is result-centric, i.e., input data is globally accessible and every thread
is processing a part of the result. This is not possible in the absence of shared
memory. DIMSpan turns parallelization upside down and follows a data-centric
approach based on the data�ow programming model, i.e., the input is distributed
and the result is globally available. Additionally, we use algorithmic and technical
optimizations that were not applied by former solutions based on MapReduce.

We performed experimental evaluations with real and synthetic datasets based
on a prototype that was implemented within the Gradoop framework. Our results
show that DIMSpan is highly scalable in terms of an increasing data volume and an
increasing number of machines. Further on, we could show the positive runtime
impact of our optimization techniques (Section 6.5).

106

Figure 6.1: Example illustrations for a collection of labeled graphs, a subgraph (gray back-
ground), a frequent pattern lattice and embeddings. The values attached to
vertices and edges represent id:label pairs

.
6.2 Frequent Subgraph Mining in

Collections of Directed Multigraphs

The current section will study frequent subgraph mining algorithms and present
our approach to support directed multigraphs.

6.2.1 Data Model

Frequent subgraph mining is a general problem and neither speci�c to BIIIG nor to
the Extended Property Graph Model. FSM in graph collections is usually referred
to as graph transaction setting (Section 2.8.2). The vast majority of existing FSM
algorithms of this setting are based on collectionsG = {g1, g2, . . . , gn} of n labeled
and undirected graphs without parallel edges [82]. Our contribution is solving an
extended variant of this problem whose graphs are directed and may have parallel
edges (multigraphs). In this chapter we will use a minimal data model that exactly
adds these features to the model that is commonly used in this �eld of research. In
particular, we require all graphs to meet De�nition 2.4, i.e., to be labeled directed
multigraphs. However, our algorithms will be compatible to EPGM datasets with
the only requirement that every vertex and edge has a reserved property with key
Λ that re�ects its label (Section 3.5.2). Formally, the set of labels is a subset of all
property values, i.e., L ⊆ D and ∀x ∈ (V ∪ E).π(x,Λ) = λ(x).

107

6.2.2 Problem De�nition

Frequent subgraph mining (FSM) is a variant of frequent pattern mining [1] where
patterns are graphs. There are two variants of the FSM problem. Single graph FSM
identi�es patterns that occur at least a given number of times within a single graph,
while graph transaction FSM searches for patterns that occur in a minimum number
of graphs in a collection. Our studied approach belongs to the second setting.
Since there are many variations of the FSM problem we will de�ne the problem
and related terminology precisely before we introduce our actual algorithm.

De�nition 6.1 (Subgraph) Let s, g be labeled directed multigraphs graphs ac-
cording to De�nition 2.4 then s will be a subgraph of g, in the following denoted
by s v g , if s has subsets of vertices Vs ⊆ Vg and edges Es ⊆ Eg with matching
sources and targets s.t. ∀e ∈ Es.

(
ςs(e) = ςg(e) ∧ τs(e) = τg(e)

)
.

On the bottom of Figure 6.1, a collection of directed multigraphsG = {g1, g2, g3}
and an example subgraph s1 v g2 are illustrated. Identi�ers and labels of vertices
and edged are encoded in the format id:label, for example, vertex 1:A represents
v1 with label λ(v1) = A.

De�nition 6.2 (Path) Let g be a graph then a path of length n in g is a n-tuple
v = 〈vi | vi ∈ V 〉1≤i≤n of vertices where at least one edge connects each pair of
subsequent vertices s.t.
∀vi, vi+1.∃e ∈ E.

(
ς(e) = vi ∧ τ(e) = vi+1 ∨ τ(e) = vi ∧ ς(e) = vi+1

)
.

De�nition 6.3 (Pattern) A pattern p is a connected graph. A graph with more
than one vertex |V | > 1 will be considered connected, if a path exists between any
pair of vertices s.t. ∀u1, u2 ∈ V.∃v = 〈v1, . . . , vn〉.(u1 = v1 ∧ u2 = vn).

De�nition 6.4 (Isomorphism) Two graphs s, p (e.g., a subgraph and a pattern)
will be considered isomorphic, in the following denoted by s ' p,
if two bijective mappings exist for vertices ιv : Vs ↔ Vp and edges ιe : Es ↔ Ep

with matching labels, sources and targets s.t. ∀v ∈ Vs.λs(v) = λp(ιv(v)) and
∀e ∈ Es.

(
λs(e) = λp(ιe(e)) ∧ ιv(ςs(e)) = ςp(ιe(e)) ∧ ιv(τs(e)) = τp(ιe(e))

)
.

De�nition 6.5 (Embedding) Let g be a graph and p be a pattern, then an em-
bedding is de�ned as a pair m = 〈ιv, ιe〉 of isomorphism mappings which de-
scribe a subgraph s v g isomorphic to p. As a graph may contain multiple sub-
graphs isomorphic to the same pattern (e.g., subgraph automorphisms), we use
µ : G × P → P(M) to denote an embedding map which associates all existing
elements of embedding spaceM to a pair of input graph g ∈ G and pattern p ∈ P .

µ(g, p) = ∅means that graph g does not contain pattern p. Figure 6.1 shows three
di�erently colored edge mappings of example embeddings m21→2,m

1
21→3,m

2
21→3.

108

(a) BFS (b) DFS (c) LDFS

Figure 6.2: Pattern lattice search strategies. Bullets represent patterns and lines represent
parent-child relationships where parents are shown above children. Red lines
are those actually processed by the particular search strategy.

De�nition 6.6 (Support) Let G = {G1, . . . , Gn} be the space of all graph collec-
tions then the absolute support of a pattern p in a collection G denoted by
φ : G × P → N is the number of graphs that contain at least one subgraph that is
isomorphic to the pattern s.t.
∀G ∈ G, p ∈ P.∃Gp ⊆ G.

(
φ(p) = |Gp| ∧ (g ∈ Gp ⇔ ∃s v g.s ' p)

)
.

We will use φrel(G, p) = φ(G,p)/|G| to denote a pattern’s relative support.

De�nition 6.7 (Frequent Subgraph Mining) Let G ∈ G be a graph collection
then frequent subgraph mining is an operator Φ(G, φmin) 7→ F that extracts the
complete set of frequent patterns F ⊆ P from all contained patterns P ∈ G whose
support is greater or equal than a given minimum support threshold φmin s.t.
∀G ∈ G, p ∈ P.(p ∈ Φ(G, φmin)⇔ φ(G, p) ≥ φmin).

6.2.3 Basics of Frequent Subgraph Mining Algorithms

All patterns extracted by frequent subgraph mining (FSM) form a lattice of par-
ent child relationships. The upper part of Figure 6.1 shows an example lattice, in
particular the result of frequent subgraph mining with φmin = 2 for the example
graph collection on its bottom. The results are the non-crossed patterns.

De�nition 6.8 (Parent-Child Relationship of Graphs) A non-empty graph gp
will be considered a parent of a child graph gc, in the following denoted by gc

•
v gp,

if it is a connected subgraph with one edge less. However, for graphs without edges
the parent is an empty graph s.t.
gc
•
v gp ⇔ (|Ec| ≥ 1 ∧ gp v gc ∧ |Ec| − |Ep| = 1) ∨ (|Ec| = 0 ∧ |Vp| = 0).

Because of the anti-monotonic property of frequent pattern mining (Section
2.8.1) children can only be frequent, if their parents are as well. Thus, all frequent
subgraph mining algorithms start from an empty graph, the so-called dummy root,
and grow only children of parents that are known to be frequent. Based on the

109

Algorithm 6.1 A priori (BFS) approach to frequent subgraph mining
Input: graph collection (input), minimum support threshold (minSupport)
Output: frequent pattern support mapping (output)

1: output : Patterns→ N
2: parents : Patterns→ P(input)
3: children : Patterns→ P(input)
4: parents = getFrequentSingleEdgePatterns(input)
5: while parents 6= ∅ do
6: children.clear()
7: children = generateCandidates(parents)
8: parents.clear()
9: for all 〈child, graphs〉 in children do

10: for all graph : graphs do
11: if not subgraphIsomorphism(graph, child) then
12: graphs.remove(graph);
13: end if

14: end for

15: support = graphs.size()
16: if support ≥ minSupport then
17: parents[child] = graphs
18: output[child] = support
19: end if

20: end for

21: end while

22: return output

applied search strategy in the lattice, FSM algorithms can be classi�ed into a pri-
ori and pattern growth algorithms (Section 2.8.2). Particular algorithms of both
classes are further distinguished by the way they generate children and how they
determine their frequency.

6.2.4 Breadth First Search

Breadth �rst search (BFS) in the lattice means that �rst all frequent patterns of one
level, i.e., all patterns with the same edge count k will be determined before any
child with k + 1 edges will be processed. Figure 6.2a illustrates this approach.
Every bullet represents a pattern and every connection represents a parent-child
relationship. Parents are shown above children. This search strategy is typically
applied by a priori algorithms since these visit children by a candidate generation
step which requires all frequent parents to be known in advance. Thus, BFS and
a priori are often used synonym. The actual support is then counted by subgraph

110

isomorphism testing which is also knows as graph pattern matching [58]. The e�-
ciency of an a priori algorithm is determined by its particular candidate generation
technique and by the maximum number of executed subgraph isomorphism tests.

Algorithm 6.1 shows the pseudocode of an a priori approach. The input is a
graph collection and the output are frequent patterns together with their support
(line 1). The algorithm is iterative and there are two mappings that assign sup-
porting graphs to current parents (line 2) and current children (line 3). We omitted
details about the determination of frequent 0-edge and 1-edge parents since these
steps are trivial. Let us just assume, that all 1-edge parents are known after method
getFrequentSingleEdgePatterns has been called (line 4). The actual algorithm is it-
erative and represented by a while loop (lines 5-21) that terminates as soon as no
more frequent parent exists.

As the �rst step of each iteration, the children-graph mapping of the previous
iteration is cleared (line 6). Then, candidate generation is executed to generate
children from the frequent parents determined in the last iteration (line 7). Since
this step is speci�c to the actual algorithm we hide details behind the method gen-
erateCandidates which returns a mapping from child patterns to all graphs that
contain all of their parents. Afterwards, we clear last round’s parents since they
are fully processed (line 8). Now, the actual support of every child is determined
(lines 9-20). Therefore, subgraph isomorphism testing is performed for any candi-
date supporter (lines 10-14). In particular, all of these without a matching subgraph
(line 11) will be removed from the child mapping (line 12). Now, as it corresponds
to the size of the veri�ed supporters the support is determined (line 15) and can
be compared to the minimum support threshold (line 16). Finally, all frequent pat-
terns will be added to next round’s parents (line 17) and to the output (line 18).

6.2.5 Depth First Search

Depth �rst search (DFS) in the lattice means that children will be generated by edge-
wise extension (pattern growth). The search is called depth �rst because children
are generated without knowledge about their parents’ siblings. Since a child may
have multiple independent parents the same child can be reached from multiple
parents. To detect the resulting duplicates, these algorithms use canonical forms
to represent graph patterns, often referred to as canonical labels, and count the
distinct graphs for each label. Further on, they use pattern growth constraints to
even avoid duplicate detection.

Since there is no synchronization among parents, pattern growth algorithms
reduce the search to a tree as illustrated by Figure 6.2b. Red lines draw the ac-
tually processed search tree while black lines are those that can be skipped in
comparison to Figure 6.2a. It has been shown that DFS algorithms are more e�-
cient than BFS ones (Section 2.8.2) and the e�ciency gain is originated in those

111

Algorithm 6.2 Pattern growth (DFS) approach to frequent subgraph mining
Input: graph collection (input), minimum support threshold (minSupport)
Output: frequent pattern support mapping (output)

1: output : Patterns→ N
2: parents : Patterns→ P(input)
3: children : Patterns→ P(input)
4: parents = getFrequentSingleEdgePatterns(input)
5: while parents 6= ∅ do
6: children.clear()
7: 〈parent, graphs〉 = parents.getAndRemove()
8: for all graph in graphs do
9: for all child in growChildren(parent) do

10: children[child].add(graph)
11: end for

12: end for

13: for all 〈child, graphs〉 in children do

14: support = graphs.size()
15: if support ≥ minSupport then
16: parents[child] = graphs
17: output[child] = support
18: end if

19: end for

20: end while

21: return output

skipped parent-child relationships. The e�ciency of an particular pattern growth
algorithm depends on the canonical labeling and the e�ectiveness of the growth
constraints.

Algorithm 6.2 shows the pseudocode of a pattern growth algorithm. Input and
output as well as the required data structures are the sames as those of a BFS
algorithm (Algorithm 6.1). Even the outer while loop shows the same termination
criterion (line 5). However, while in a BFS one iteration is processing a whole
level of the lattice a DFS algorithm is only processing a single parent (line 7). The
mapping from child patterns to graphs can be cleared for every round (line 6) since
our search is a tree. Then, all children are grown from each parent supporter (line
8). Here, particular algorithms di�er. These di�erences are hidden behind method
growChildren (line 9). Afterwards, children are added to the current iteration’s
child mapping (line 10). After all children are grown, their support can be simply
determined by counting their supporters (lines 13,14). Finally, all frequent patterns
will be added to the parent queue (line 16) as well as to the output (line 17).

112

6.2.6 Frequent Subgraph Mining for Directed Multigraphs

Before BIIIG, there was no FSM algorithm with support for directed multigraphs
(Section 2.8.2). To change this we chose a straight forward approach and reused
concepts of existing algorithms. Comparative work [190, 130] has shown that run-
time can be decreased by fast label generation and by holding embeddings (Def-
inition 6.5) in main memory. Thus, we extended the fast append-only canonical
labeling of gSpan (DFS codes) [196] to support directed graphs. However, the origi-
nal gSpan algorithm stores no embeddings between iterations but only occurrence
lists as shown by Algorithms 6.2. Thus, actual embeddings must be restored by
subgraph isomorphism testing before they can be extended to generate children.
To improve this, we developed a speci�c embedding format between DFS codes
and input graphs to supports multigraphs.

De�nition 6.9 (DFS Code) Let g be a labeled directed multigraph according to
De�nition 2.4 with k ≥ 1 edges then its DFS Code representation is a k-tuple
X = 〈x1, . . . , xk〉 of extensions. For each DFS code there are two integer sets
U = {0, . . . , |Vs| − 1} and K = {1, . . . , |Es|} to represent initial discovery times
of vertices and edges, i.e., their traversal orders. Both sets of discovery times have
no gaps s.t. ∀u ∈ U.

(
u = 0 ∨ (u− 1) ∈ U

)
and ∀k ∈ K.

(
k = 1 ∨ (k − 1) ∈ K

)
.

K corresponds to extension indices, i.e., x1 is the �rst and xk is the last extension.

De�nition 6.10 (DFS Embedding) Let g be a labeled directed multigraph ac-
cording to De�nition 2.4 and X be DFS code that describes a subgraph s v g

then a DFS embedding is a pair m = 〈ν, κ〉 where ν : U ↔ Vs maps vertices to
discovery times and κ : K ↔ Es maps edges to discovery times.

De�nition 6.11 (DFS Extension) Let Lv, Le be global sets of vertex and edge
labels, g be a graph, X be a DFS code and M be a set of its embeddings then an
extension is a hextuple xk = 〈ua, ub, `a, d, `e, `b〉 which represents the traversal of
an edge e with label `e ∈ Le at time k ∈ K from a start vertex discovered at time
ua ∈ U to an end vertex discovered at time ub ∈ U . The �elds `a, `b ∈ Lv hold the
respective labels of both vertices. The value of d ∈ {in, out} will indicate, if the
edge is traversed in or against its direction s.t.
∀k ∈ K,m ∈M.(d = out⇔ ς(κ(k)) = ν(ua)).

Pattern p21 of Figure 6.1 could be represented by the following DFS code:

X21 = 〈〈0, 1,A, out, a,B〉1, 〈1, 1,B, out, c,B〉2〉

Let us summarize our extensions: In contrast to DFS extensions for undirected
graphs, ours include a direction indicator d. Further on, DFS embeddings for sim-
ple graphs consist simply of ν since κ could be determined transitively. In partic-
ular, every edge of a simple graph can be identi�ed by its incident vertices va, vb.
Thus, a pair ν(ua), ν(ub) is su�cient to map extensions to edges. However, we
want to deal with multigraphs and, thus, we require κ.

113

DFS codes are generated in a tree search by edge-wise extension. Thus, ev-
ery child has exactly one parent. This parent child relationship can be de�ned as
follows:

De�nition 6.12 (Parent-Child Relationship of DFS Codes) A DFS code
Xp = 〈xp1, . . . , xpk〉 is a parent of a DFS codeXc〈xc1, . . . , xct−1〉 if ∀k ∈ Kc : xpi = xci .

However, due to tree search multiple DFS codes that represent the same graph
pattern may be created. To use DFS codes as a canonical form, gSpan is using a
lexicographic order to determine a minimum one among all possible DFS codes
[195]. This order is a combination of two linear orders. The �rst is de�ned on start
and end vertex times of extensions U ×U , for example, a backwards growth to an
already discovered vertex is smaller than a forwards growth to a new one.

The second order is de�ned on the labels of start vertex, edge and end vertex
Lv×Le×Lv, i.e., if a comparison cannot be made based on vertex discovery times,
labels and their natural order (e.g., alphabetical) will be compared from left to right.
To support directed graphs, we extended this order by direction D = {out, in}
with out < in resulting into an order over Lv ×D × Le × Lv, i.e., in the case of
two traversals with same start vertex labels, a traversal of an outgoing edge will
be considered smaller.

De�nition 6.13 (Minimum DFS Code) There is an order among DFS codes s.t.
∀X1, X2 : X1 < X2 ∨X1 = X2 ∨X1 > X2. Let Xp be the set of all DFS codes that
describe a pattern p and Xmin be its minimum DFS code then
@ Xi ∈ Xp.Xi < Xmin.

Some of the non-minimal DFS codes will never be generated due to pattern
growth constraints [195]. We have taken them over from the original gSpan al-
gorithm without modi�cations. For example, parents may only be extended from
the shortest path between the vertices that have been discovered �rst and last
(rightmost path). By these constraints gSpan directly mines a tree of minimum
DFS codes as indicated by the solid lines in Figure 6.1 s.t. the dotted lines can be
skipped. However, the constraints cannot totally prevent the generation of non-
minimal DFS codes. Thus, there will be an additional veri�cation step to check if a
DFS code is minimal. This step is the only one that is directly facing the subgraph
isomorphism problem. In the worst case, this step requires the complete recal-
culation of the minimum DFS code. With regard to Algorithm 6.2, this step can
be executed directly after pattern growth (line 9) or after support counting (line
14). We will address this problem again in Section 6.3.2 since this decision is more
critical in distributed context.

114

6.3 Frequent Subgraph Mining with

Distributed Data�ow Systems

The current section will present DIMSpan, a frequent subgraph mining algorithm
for distributed graph collections in the absence of shared memory.

6.3.1 Parallel Frequent Subgraph Mining

In the presence of shared memory, the parallelization of pattern growth algorithms
such as gSpan is fairly simple [120]. For example, on a multi-processor system
there are multiple computing slots (threads) which can perform calculations in
parallel. Since search is reduced to a tree, the while loop of Algorithm 6.2 can
be processed in parallel without any synchronizations. To do so, variables output
and parents must be thread safe to support concurrent modi�cation and variable
children must be thread exclusive. The central data structure would then be parents
which acts as a queue. In particular, in a naive implementation every idle thread
simply polls a parent search tree node from the queue and adds all frequent child
nodes until the queue is empty. Since input is globally available and read-only this
approach will prevent any con�ict among di�erent threads.

However, in the absence of shared memory the situation dramatically changes.
So-called Big Data technologies such as MapReduce [42], Apache Flink [30] and
Apache Spark [203] have in common that they follow a bring computation to the
data approach, i.e., data is partitioned among a cluster of machines and algorithms
must be composed by local computations (e.g., map) and synchronization opera-
tions (e.g., reduce). Typically, these machines are connected via a local area net-
work but share no resources, i.e., have separate CPUs, main memory banks and
hard disk drives. The term shared nothing cluster is often used to denote this set-
ting. In consequence, di�erent threads have no access to common data structures.

In the context of FSM bringing computation to the data means that the input
graph collection is partitioned across the cluster. Thus, in contrast to the shared
memory parallelization, a single thread is not su�cient to process a search tree
node as is has only access to a subset of input graphs. The most naive solution
would be processing nodes sequentially in parallel, i.e., lines 6 to 12 of Algorithm
6.2 are executed on each partition and child supports are exchanged and aggre-
gated after line 12. However, for a low minimum support threshold (which can
lead to a huge number of patterns) and a large number of machines in the cluster
data skew can lead to many idle threads, for example, if a single partition holds
all supporters of a pattern. Further on, every synchronization barrier is causing
network tra�c to exchange data and additional waiting times. So, this approach is
per se ine�cient as it is most prone to load imbalances and maximizes the number
of synchronization barriers.

115

Algorithm 6.3 Level-wise pattern growth (LDFS) approach to FSM
Input: graph collection (input), minimum support threshold (minSupport)
Output: frequent pattern support mapping (output)

1: output : Patterns→ N
2: parents : Patterns→ P(input)
3: children : Patterns→ P(input)
4: parents = getFrequentSingleEdgePatterns(input)
5: while parents 6= ∅ do
6: children.clear()
7: for all 〈parent, graphs〉 in parents do
8: for all graph in graphs do
9: for all child in growChildren(parent) do

10: children[child].add(graph)
11: end for

12: end for

13: end for

14: parents.clear()
15: for all 〈child, graphs〉 in children do

16: support = graphs.size()
17: if support ≥ minSupport then
18: parents[child] = graphs
19: output[child] = support
20: end if

21: end for

22: end while

23: return output

To solve these problems we use an approach that we call Level-wise Depth First
Search (LDFS). In this approach, we process all parent nodes of the same size (same
level) in one iteration, i.e., per iteration every thread is processing all current nodes
but only for its partition. Under the assumption that the support of particular pat-
terns can be skewed but every partition contains at least a similar number of em-
beddings of any frequent pattern, LDFS is minimizing the likeliness of idle times.
Further on, it limits the number of synchronization barriers to a minimum. In par-
ticular, we require exactly one iteration per extension. A fewer number of synchro-
nization barriers could only be achieved by giving up level-wise support pruning,
i.e., to grow even children from parents whose support is unknown. However, this
would eliminate the most e�ective pruning technique based on the anti-monotonic
property that is applied by all e�cient frequent subgraph mining algorithms.

116

Algorithm 6.4 DIMSpan data�ow.
Input: graph collection (input), minimum support threshold (minSupport)
Output: frequent pattern support mapping (output)

1: output : Patterns→ N
2: parents : Patterns→ N
3: graphs : input→ P(Patterns)→ P(Embeddings)
4: graphs = initSingleEdgePatterns(input)
5: repeat

6: reports = graphs.�atMap(report supported patterns)
7: parents = reports.combine(count partition support)
8: parents = parents.reduce(sum global support)
9: parents = parents.�lter(support ≥ minSupport)

10: parents = parents.�lter(false positive veri�cation)
11: output = output.union(parents)
12: broadcast(parents)
13: graphs = graphs.map(grow children)
14: graphs = graphs.�lter(embedding map not empty)
15: until parents = ∅
16: return output

Figure 6.2c illustrates LDFS. It shows that although we apply level-wise sup-
port pruning the approach is di�erent to BFS since we logically perform many
independent depth �rst searches in parallel and still bene�t from the e�ciency of
the DFS tree search. For example, in Figure 6.1 we apply the support pruning of
p10, p11, p12 in parallel within the same iteration but use search constraints (Sec-
tion 6.3.3) to grow only from p10 to p20. The general idea of LDFS is shown by
Algorithm 6.3. To focus on the search itself, the pseudocode shows a sequential
version of LDFS. More details about its parallelization on shared nothing clusters
will follow in Section 6.3.2.

Lines 1 to 6 are equivalent to those of a BFS algorithm (Algorithm 6.1) or a DFS
algorithm (Algorithm 6.2). However, in comparison to BFS there is no candidate
generation step and in comparison to DFS all parents are processed within a single
iteration (lines 7). The actual pattern growth and support counting steps are taken
over from DFS (lines 8-12 of Algorithms 6.2 and 6.3 are equal). In contrast to DFS,
at LDFS the mapping parents does not act as a queue and is reset every iteration
(line 14). The actual process of feeding parents back and putting them out based on
childrens’ support is the same as DFS again (lines 15-21). However, while children
in a DFS contains only children of a single parent in a LDFS it will contain all
children of the same level.

117

6.3.2 Distributed Data�ow

Common Big Data systems such as MapReduce, Apache Flink and Apache Spark
apply the so-called distributed data�ow programming model, i.e., programs are
represented by datasets and transformations of those (Section 2.3). Since frequent
subgraph mining is an iterative problem, MapReduce is not suitable as it requires
writing data back to disk after each iteration. By contrast, the more recent gener-
ation of systems such as Flink and Spark can hold data in main memory between
iterations. Additionally, they o�er a wider range of operations. For these reasons,
we choose to develop an algorithm tailored to this class of systems. Further on, it
shall be based on DMGSpan (Section 6.2) to support directed multigraphs. Thus,
we called the approach DIMSpan (Distributed In Memory gSpan). Besides the use
of an in memory system to minimize disk access it also applies LDFS to minimize
synchronization barriers and idle time. We also applied further optimization tech-
niques to minimize the amount of data exchanged over the network and the total
number of isomorphism resolutions. These will be discussed in the remainder of
this chapter.

To provide an overview, Algorithm 6.4 shows the data�ow of DIMSpan. In-
puts are a dataset of graphs and the minimum support threshold. The output is a
dataset of frequent patterns and their support. Just to avoid confusion: In line 1
frequent patterns and their support are represented by a mapping according to the
actual meaning but the actual implementation is a dataset of 〈pattern, support〉
pairs. Graphs are partitioned over multiple machines (workers) and so are their
embeddings. Thus, in comparison to Algorithm 6.3 the variable parents maps pat-
terns only to their support but not to embeddings or occurrence lists (line 2). This
information is kept attached to graphs instead, i.e., for every graph, we store a
mapping from patterns to embeddings (line 3). These maps are initially set with
1-edge patterns and their embeddings (line 4). Then, we start a loop (line 5) that
terminates as soon as no more frequent parents exist (line 15). Each iteration body
represents one level of the LDFS.

In the beginning of each iteration every graph reports all k-edge (k ≥ 1) sup-
ported patterns (DFS codes), i.e., the keys of the last iteration’s embedding map, in
a �atmap transformation (line 6). Then, we use a combine operation to count the
pattern support per partition (line 7) and aggregate its sum in a reduce transforma-
tion (line 8). This is the �rst synchronization barrier and the �rst time where data
is shu�ed among workers, i.e., support counts are repartitioned according to their
patterns s.t. all counts of the same pattern will be processed by the same thread.
Using a previous combine operation is reducing the exchanged data volume enor-
mously because not every single occurrence but only partition supports are sent
along the network.

118

Then, we �lter frequent patterns (line 9) and verify them to be no false posi-
tives (line 10). The latter is done by recalculating the minimum DFS code of the
current DFS code and comparing the both. Since there will be a mismatch for false
positives (non-minimal ones), only the matching ones will pass this step. Since this
is the only part of the algorithm resolving the isomorphism problem, reducing its
cardinality may reduce total runtime [195]. Thus, we placed the veri�cation step
after support pruning. Hence, false positives are counted and shu�ed but the to-
tal number of isomorphism resolutions is minimized. Our experimental evaluation
will con�rm the e�ectiveness of this decision (Section 6.5). After support pruning
and veri�cation, the current frequent patterns are added to the output by a binary
union transformation (line 11).

Now, once the current level’s frequent patterns are determined they must be
made available to all workers. Therefore Apache Flink and Apache Spark provide
a technique called broadcasting12. By their application basically a copy of all fre-
quent patterns is sent to the main memory of all workers (line 12). They will then
be used in the pattern growth process (line 13). In particular, although all embed-
dings of the current level are available at this stage, only those of frequent patterns
will be grown for the next iteration. Finally, we apply another �lter operation (line
14) and only graphs with non-empty embedding maps will pass. Thus, our main
data structure’s content may potentially shrink in each iteration, if only a subset
of graphs accumulates frequent patterns.

6.3.3 Constrained Pattern Growth

Besides gSpan’s canonical labels (DFS codes) we also adopted its growth con-
straints to skip parent-child relationships in the pattern lattice (dotted lines in
Figure 6.1). We refer to [195] for theoretical background and will discuss only
our adaptation to the distributed data�ow programming model. There are two
constraints for growing children of a parent embedding. The �rst, in the following
denoted by time constraint, dictates that forwards growth is only allowed starting
from the rightmost path and backwards growth only from the rightmost vertex,
where forwards means an extension to a vertex that is not contained in the parent
and backwards means an extension to a contained one. The rightmost vertex is
the parent’s latest discovered vertex and the rightmost path is the path of forward
growths from the initial start vertex to the rightmost one. The second constraint,
in the following denoted by branch constraint, commands that the minimum DFS
code of an edge needs to be greater than or equal to the parent’s branch. The
branch of a DFS code is its 1-edge (grand-) parent code, i.e., the initial extension of
a DFS code.

1https://ci.apache.org/projects/�ink/�ink-docs-release-1.2/dev/batch/index.html #broadcast-
variables

2http://spark.apache.org/docs/latest/programming-guide.html#broadcast-variables

119

Algorithm 6.5 Pattern growth map function
Input: graph (graph), parent pattern-embeddings map (parentMap), sorted fre-
quent patterns (parents)
Output: child pattern-embeddings map (childMap)

1: childmap in Patterns→ P(Embeddings)
2: minBranch = new DFSCode
3: extensionCandidates = graph.edges // sorted
4: for parent in parents do
5: parentEmbeddings = parentMap[parent]
6: if parentEmbeddings not empty then

7: parentBranch = parent[0]
8: if parentBranch > minBranch then

9: minBranch = parentBranch
10: extensionCandidates.delete(|e| -> branch(e) < minBranch)
11: end if

12: for parentEmb in parentEmbeddings do
13: for edge in extensionCandidates do
14: if not parentEmb.contains(e) and time constraint satis�ed then

15: childEmb = parentEmb.extend(edge)
16: childMap[childEmb.pattern].add(childEmb)
17: end if

18: end for

19: end for

20: end if

21: end for

22: return childMap

Algorithm 6.5 shows our adaption of these constraints to the distributed data�ow
programming model, i.e., details about line 13 of Algorithm 6.4. Technically, it is
a map-transformation that replaces the pattern-embeddings map of pattern size
k (variable parentMap) by a map of pattern size k + 1 (variable childMap) in line
1. Therefore, the previously broadcasted list of frequent patterns of size k and
the graph itself are required as further inputs. A naive solution would be testing
possible growth for the cross of supported frequent patterns’ embeddings and the
graph’s edges. As an optimization, we use a merge strategy based on the branch
constraint to reduce the number of these tests. Therefore, frequent patterns and
edges are sorted according to their branch. Sorting happens only once per graph
in a preprocessing step as well as once per worker and pattern on broadcast recep-
tion. At the same time, we also cache rightmost paths for each pattern.

120

For each execution of the map function, we keep a current minimum branch
which initially represents the dummy root (line 2) and an extension candidate set
which initially corresponds to the graph’s edges (line 3). First, we will check for
every frequent pattern (line 4) if it is supported by the current graph (lines 5,6). If
a pattern is supported and its branch is greater than the current minimum (line 8),
we will update the minimum branch (line 9) to shrink extension candidates (line
10) since only those may lead to minimum DFS codes. Thus, only for the cross of
embeddings (line 12) and branch-validated edges (line 13) parent containment and
time constraint need to be checked (line 14). In the case of a successful growth
(line 15) the resulting pattern and its embedding will be added to the output (line
16).

6.3.4 Preprocessing and Dictionary Coding

Before executing the data�ow shown in Algorithm 6.4, we apply a preprocessing
that includes label-frequency based pruning, string-integer dictionary coding and
sorting edges according to their 1-edge minimum DFS codes. The original gSpan
algorithm already used these concepts but we improved the �rst two and adapted
the third to our level-wise DFS strategy. In the �rst preprocessing step, we deter-
mine frequent vertex labels and broadcast a dictionary to all workers. Afterwards,
we drop all vertices with infrequent labels as well as their incident edges. Then,
we determine frequent edge labels, in contrast to the original gSpan algorithm,
only based on the remaining edges. Thus, we can potentially drop more edges, for
example, e1 of g2 in Figure 6.1 would be removed. This would not be the case by
just evaluating its edge label since without dropping v2 of g1 before (because v2

has an infrequent label C) the frequency of edge label b would be 2, i.e., considered
frequent.

After dictionaries for vertex and edge labels are made available to all workers
by broadcasting, we do not only replace string labels by integers to save memory
and to accelerate comparison but also sort edges according to their minimum DFS
code (branch). Technically, we use sorted arrays instead of sets to store edges.
We bene�t from the resulting sortedness in every execution of the constrained
pattern growth (Section 6.3.3) as the e�ort of determining branch-valid edge can-
didates (line 10 of Algorithm 6.5) is reduced from a set �lter operation to a simple
increment of the minimum edge index.

6.3.5 Data Structures and Compression

We do not only use minimum DFS codes as canonical labels but also a data struc-
ture based thereon to support all pattern operations (counting, growth and ver-
i�cation) without format conversions. We further store graphs as sorted lists of
1-edge DFS codes to allow a direct comparison at the lookup for the �rst valid

121

Figure 6.3: Dataset element representing graph g3, pattern p21 and embedding map
µ(g3, p21) of Figure 6.1.

edge of a branch in the pattern growth process (line 10 of Algorithm 6.5). Figure
6.3 illustrates a single element of graphs in Algorithm 6.4 representing g3 from
Figure 6.1 together with its embedding map in the 2nd iteration. Graphs and pat-
terns are stored as DFS codes according to De�nition 6.9 but encoded in integer
arrays where all 6 elements store a graph’s edge or a pattern’s extension. For the
sake of readability we use alphanumerical characters in Figure 6.3. The embed-
ding map µ : X → P(M) is stored as a pair of nested integer arrays where equal
indexes map embeddings to patterns. All embeddings of the same pattern p repre-
sented by a DFS Code X are encoded in a single multiplexed integer array where
all |Vp| + |Ep| elements store a single embedding. Here, indexes relative to their
o�set relate vertex ids to their initial discovery time and edge ids to extension
numbers.

This data structure does not only allow fast pattern operations but also en-
ables lightweight and e�ective integer compression. Therefore, we exploit the pre-
dictable value ranges of our integer arrays. First, we use dictionary coding with
limited dictionary sizes. Second, vertex discovery times are bound by the maxi-
mum edge count kmax. Thus, the array’s values may only range from
0..(max(kmax, |Lv|, |Le|) − 1) where Lv, Le are sets of distinct vertex and edge
labels. In the context of FSM, the maximum value will typically be much less than
the integer range of 232. There are compression techniques bene�ting from low-
valued integer arrays by the suppression of leading zeros [39]. In preliminary ex-
periments we found that Simple16 [206] allows very fast compression and gives an
average compression ratio of about 7 over all patterns found in our synthetic test
dataset (see Section 6.5.2). Since also graphs and embeddings have low maximum
values we apply integer compression also to them to further decrease memory us-
age. Embeddings and graphs are only decompressed on demand and at maximum
for one graph at the same time. All equality-based operations (map access and
support counting) are performed on compressed values.

122

P
r
e
.

M
a
p
1

R
e
d
u
c
e
1

M
a
p
2

R
e
d
u
c
e
2

P
o
s
t
.

I-F
SM

[7
2]

(it
er

at
iv

e)
re

ad
su

bg
ra

ph
s

sh
u�

e
su

bg
ra

ph
s,

pa
tte

rn
gr

ow
th

,
w

rit
e

su
bg

ra
ph

s

re
ad

su
bg

ra
ph

s,
a
d
d
c
a
n
o
n
i
c
a
l
l
a
b
e
l
s

sh
u�

e
su

bg
ra

ph
s,

�n
d

fre
qu

en
tl

ab
el

s,
�l

te
rs

ub
gr

ap
hs

by
la

be
l,

w
rit

e
su

bg
ra

ph
s

M
R-

FS
E

[1
14

]
(it

er
at

iv
e)

re
ad

pa
tte

rn
-e

m
be

dd
in

gs
m

ap
,

re
ad

fre
qu

en
tp

at
te

rn
s,

p
a
t
t
e
r
n
g
r
o
w
t
h

,
w

rit
e

pa
tte

rn
-e

m
be

dd
in

gs
m

ap

re
ad

pa
tte

rn
-

em
be

dd
in

gs
m

ap
,

ex
tra

ct
pa

tte
rn

s

sh
u�

e
pa

tte
rn

s,
co

un
ta

nd
�l

te
r,

w
rit

e
fre

qu
en

tp
at

te
rn

s

F&
R

[1
09

]
(2

-p
ha

se
)

re
ad

gr
ap

hs
,

F
S
M

f
o
r
e
a
c
h
p
a
r
t
i
t
i
o
n

sh
u�

e
pa

rti
tio

n
su

pp
or

ts
,

�l
te

rc
an

di
da

te
s,

w
rit

e
ca

nd
id

at
es

re
ad

gr
ap

hs
,

re
ad

ca
nd

id
at

es
,

r
e
�
n
e
p
a
r
t
i
t
i
o
n

s
u
p
p
o
r
t
s

sh
u�

e
pa

tte
rn

s,
co

un
ta

nd
�l

te
r,

w
rit

e
fre

qu
en

tp
at

te
rn

s

D
IM

Sp
an

(it
er

at
iv

e)
re

ad
gr

ap
hs

re
ce

iv
e

fre
qu

en
tp

at
te

rn
s,

pa
tte

rn
gr

ow
th

,
up

da
te

pa
tte

rn
-e

m
be

dd
in

gs
m

ap

ex
tra

ct
pa

tte
rn

s
fro

m
pa

tte
rn

-
em

be
dd

in
gs

m
ap

co
un

tp
ar

tit
io

n
su

pp
or

ts
,

sh
u�

e
pa

rti
tio

n
su

pp
or

ts
,

co
un

ta
nd

�l
te

r,
v
e
r
i
f
y
f
r
e
q
u
e
n
t
p
a
t
t
e
r
n
s
,

se
nd

fre
qu

en
tp

at
te

rn
s

w
rit

e
fre

qu
en

t
pa

tte
rn

s

T
a
b
l
e
6
.
1
:

M
et

ho
di

ca
lc

om
pa

ris
on

of
D

IM
Sp

an
an

d
ap

pr
oa

ch
es

ba
se

d
on

M
ap

Re
du

ce
.

123

6.4 Comparison to MapReduce-based Approaches

To the best of our knowledge, before DIMSpan there were only �ve approaches
to transactional FSM based on shared nothing clusters [72, 114, 10, 109, 18] and
all were based on MapReduce. Since [10, 18] show relaxed problem de�nitions in
comparison to De�nition 6.7, we compare DIMSpan only to I-FSM [72], MR-FSE
[114] and the �lter-re�nement (F&R) approach of [109]. In experimental evalua-
tions the authors of MR-FSE and F&R have each shown that their approaches are
faster than I-FSM. Initially, we wanted to reproduce evaluation results of MR-FSE
and F&R on our own cluster. Unfortunately, MR-FSE is not available to the public.
Regarding F&R, only binaries3 are accessible. However, there is no su�cient En-
glish documentation and the binaries rely on an outdated non-standard Hadoop
installation. Thus, we were not able to execute the binaries without errors despite
support of the author.

For this reason, we qualitatively compare the main execution costs of the MapRe-
duce approaches to DIMSpan w.r.t volume of disk access, network data exchange
(shu�ing) and the total number of isomorphism resolutions. In contrast to an ex-
perimental evaluation this comparison is independent from software development
skills, framework con�gurations, programming language and other implementa-
tion details. From our own experience we can report that in Big Data environ-
ments, which are highly complex software systems, these factors may impact total
runtime at least as much as the actual concept.

6.4.1 Methodical Comparison

Table 6.1 compares the considered methods w.r.t. the steps of preprocessing, two
map-reduce phases and postprocessing. All approaches except one are iterative,
i.e., perform a level-wise search. For these iterative methods, the map-reduce
phases of Table 6.1 represent a single iteration’s body. By contrast, F&R is partition-
based and requires only two map-reduce phases to extract frequent patterns of all
sizes. In the following, we brie�y describe the MapReduce approaches with regard
to Table 6.1:

I-FSM is using full subgraphs (structure and canonical labels) as its main data
structure. In map phase 1 (Map 1) k-edge subgraphs of the previous iteration are
read from disk. In reduce phase 1 (Reduce 1), subgraphs are shu�ed by graph id
and graphs are reconstructed by a union of all subgraphs. Afterwards, k + 1-edge
subgraphs are generated and written to disk. In Map 2 they are read again and
a canonical label is calculated from scratch for every subgraph. In Reduce 2, all
subgraphs are shu�ed again according to the added label and label supports are
counted. Finally, all subgraphs showing a frequent label are written to disk.

3https://sourceforge.net/projects/mrfsm/

124

MR-FSE is using pattern-embedding maps as its main data structure. In Map 1
k-edge maps of the previous iteration are read from disk. Additionally, all k-edge
frequent patterns are read by each worker. Then, graphs are reconstructed based
on embeddings, pattern growth is applied and updated maps are written back to
disk. Reduce 1 is not used. In Map 2 the grown maps are read again and a record
for each pattern and supporting graph is extracted. In Reduce 2, these records are
shu�ed to count their support. After �ltering, frequent patterns are written to
disk.

F&R reads graphs from disk and runs a modi�ed version of Gaston [129], an
e�cient single-machine algorithm, on each partition in Map 1. Then, a statistical
model is used to report partition supports of patterns. In Reduce 1, local supports
are evaluated for each pattern and a set of candidate patterns P including some
support information are written to disk. In Map 2 graphs and information about
candidate patterns are read from disk. For some partitions, local pattern supports
may be unknown at this stage. Thus, they are re�ned by subgraph-isomorphism
testing. In Reduce 2, re�ned pattern supports are summed up, �ltered and written
to disk.

6.4.2 Cost Comparison

Table 6.2 shows a comparison of upper bounds for the three stated dimensions. We
consider our way of comparing iterative and non-iterative methods as valid since
with regard to upper bounds every step can be considered as union of all k-edge
results, e.g., P = P1 ∪ .. ∪ Pk.

Disk access: I-FSM uses the most voluminous data structure of full subgraphs S.
Additionally, these subgraphs are read and written twice. Thus, I-FSM clearly has
the highest cost for disk access. MR-FSE uses embedding maps µ as its main data
structure, which is with regard to vertex- and edge labels an irredundant version
of S that describes subgraphs by patterns and embeddings (Section 6.2.2). This
map is written once and read twice. Additionally, patterns P are read and written
once. Thus, MR-FSE is superior to I-FSM. F&R reads graphs twice but writes no
intermediate results despite rather small pattern information. Since the volume of
G roughly corresponds to the one of S1 or µ1, F&R requires the lowest disk ac-
cess of the three MapReduce approaches. However, DIMSpan further reduces disk
access to a minimum as it is based on a distributed in-memory system. In particu-
lar, graphs are read only once from disk before the iterative part and patterns are
written only once to disk afterwards.

125

Pre M1 R1 M2 R2 Post

disk access

I-FSM ↑ S ↓ S ↑ S ↓ S
MR-FSE ↑ µ, P ↓ µ ↑ µ ↓ P
F&R ↑ G ↓ P ↑ G,P ↓ P
DIMSpan ↑ G ↓ P

network traffic

I-FSM S S

MR-FSE w · P |G| · P
F&R w · P w · P
DIMSpan 2w · P

isomorphism resolution

I-FSM |S|
MR-FSE |S|
F&R w · |P | (|G| − 1) · |P |
DIMSpan |P |

w: number of worker threads (partitions, w = |W |)
P : set of all grown patterns
G : set of input graphs (G� P)
µ : all grown patterns and their embeddings (µ� G)
S : all grown subgraphs (unit of pattern and embedding, S > µ)

Table 6.2: Cost comparison of DIMSpan and approaches based on MapReduce.

Network tra�c: Since I-FSM shu�es the complete set of subgraphs twice, it
clearly causes the most network tra�c. All other approaches only exchange pat-
tern information. However, since MR-FSE is neither partition-based like F&R nor
uses a combine operation like DIMSpan, a record for each pattern and graph (|G| ·
P) may be shu�ed among physical machines. With regard to network tra�c, F&R
and DIMSpan are comparable to each other, especially since both are using com-
pression to further reduce the volume of the few exchanged records.

Isomorphism resolution: All of the four compared approaches resolve the sub-
graph isomorphism problem in di�erent ways and with di�erent cardinalities. The
respective steps are highlighted by bold font in Table 6.1. I-FSM calculates a (in [72]
not further speci�ed) canonical label from scratch for each grown subgraph and,
thus, the isomorphism problem is resolved with maximum cardinality |S|. MR-FSE
is using DFS codes like DIMSpan but in [114] it is clearly stated that no veri�cation
is performed at any time. In Section 6.4.3 we will show that their proposed solution
may lead to an incomplete result. However, with a small modi�cation, their basic
idea could be �xed and false positives would be detected by enumerating all DFS

126

Figure 6.4: Illustration of our couterexample showing two graphs g1, g2. Each one con-
tains a 3-edge subgraph with automorphisms (black lines) and an extension
to a 4-edge subgraph (red lines). Roman numbers are vertex identi�ers.

code permutations of each distinct edge set (subgraph) to choose the minimal code.
We assume the presence of this �x and, thus, even assume isomorphism to be re-
solved for each subgraph, i.e., |S| times. F&R is facing the isomorphism resolution
problem in two steps. First, when running FSM for each partition (w · |P |) and,
second, when counting patterns by a priori like subgraph isomorphism testing in
the re�nement step. Since the local frequency of each pattern must be known for
at least one partition, the upper bound is not fully |G| · |P |. For this dimension,
DIMSpan is clearly superior because no a priori like operations are applied at any
time and every pattern is veri�ed only once.

Summary: DIMSpan shows the lowest costs with regard to all of the stated di-
mensions. Besides this, DIMSpan is the only approach that provides source code
to the public, supports directed multigraphs and already applies �rst pruning steps
in a preprocessing (Section 6.3.4).

6.4.3 Disprove of Isomorphism-free Veri�cation of MRFSE

In this subsection we will provide a disprove by counterexample to show that the
so-called isomorphism-free veri�cation of gSpan’s minimum DFS codes proposed
in [114] is not correct. According to the information provided in the paper the
approach will fail for subgraphs that contain automorphisms. The author did not
answer a source code request.

Proposition: Due to the condition in line 10 of Algorithm 2 of [114] and Lemma
V of [114], a pair of DFS code and embedding gse will only be added to the output, if
a pair in hashset genG covering exactly the same edge set does not already exists.
In consequence, only the �rst gse (notation of [114]) for each distinct edge set will
be added to the output. Thus, the authors propose that for every graph G and
every minimal k-edge DFS code Xmin it is possible to generate the complete set
of minimal k + 1-edge children based on exactly one embedding which maps a
subgraph of G to Xmin.

127

X3
min 〈〈0, 1, A, a, A〉, 〈1, 2, A, a, A〉, 〈2, 0, A, a, A〉〉

X4
min 〈〈0, 1, A, a, A〉, 〈1, 2, A, a, A〉, 〈2, 0, A, a, A〉, 〈2, 3, A, b, B〉〉

k-edge emb. k + 1-edge emb. extension minimal
g1 :
m11 〈i, ii, iii〉 〈i, ii, iii, iv〉 〈1, 3, A, b, B〉 no
m12 〈i, iii, ii〉 〈i, iii, ii, iv〉 〈2, 3, A, b, B〉 yes
m13 〈ii, i, iii〉 〈ii, i, iii, iv〉 〈0, 3, A, b, B〉 no
m14 〈ii, iii, i〉 〈ii, iii, i, iv〉 〈0, 3, A, b, B〉 no
m15 〈iii, i, ii〉 〈iii, i, ii, iv〉 〈2, 3, A, b, B〉 yes
m16 〈iii, ii, i〉 〈iii, ii, i, iv〉 〈1, 3, A, b, B〉 no
g2 :
m21 〈i, ii, iii〉 〈i, ii, iii, iv〉 〈2, 3, A, b, B〉 yes
m22 〈i, iii, ii〉 〈i, iii, ii, iv〉 〈1, 3, A, b, B〉 no
m23 〈ii, i, iii〉 〈ii, i, iii, iv〉 〈2, 3, A, b, B〉 yes
m24 〈ii, iii, i〉 〈ii, iii, i, iv〉 〈1, 3, A, b, B〉 no
m25 〈iii, i, ii〉 〈iii, i, ii, iv〉 〈0, 3, A, b, B〉 no
m26 〈iii, ii, i〉 〈iii, ii, i, iv〉 〈0, 3, A, b, B〉 no

Table 6.3: Embeddings and DFS codes during the pattern growth from 3-edge subgraphs
(black lines) to 4-edge subgraphs (red lines) in the graphs of Figure 6.4.

Counterexample: Given the two graphs g1, g2 of Figure 6.4, in the 3rd iteration
the two black-lined subgraphs are both represented by a single minimum DFS code
X3
min. Extending both by the red edges should result in the same minimal DFS code

X4
min. Both minimum DFS codes are listed on top of Table 6.3. The table further

lists all 6 possible embeddings m11, ..,m16 and m21, ..,m26 for each of the two
graphs before and after pattern growth. We see that not all possible extensions
lead to a minimum DFS code (e.g., m11 does not). These are the ones that have to
be �ltered out in a veri�cation step to be neither added to the result nor to become
extended in the subsequent iteration.

In [114], only the �rst discovered embedding for each distinct edge subset and
minimum DFS code is stored, i.e., only one of m11, ..,m16 and one of m21, ..,m16.
Letm11 andm26 be the stored ones, then the frequency ofX4

min will be incorrect as
the false positive code ofm11 will be counted instead. Letm11 andm22 be the stored
ones then the correct minimum DFS code will never be generated. We see, a single
embedding per distinct edge set and DFS code cannot guarantee to generate all
minimal children. Our counterexample shows that extending DFS codes using an
isomorphism-free append-only approach based on only a single embedding cannot
guarantee the correct result.

128

Contradiction: The isomorphism-free veri�cation of [114] potentially fails for
all subgraphs containing at least one automorphism. Subgraphs similar to our
counterexample occur inter alia in molecular databases, for example, cycloalka-
nes4.

6.5 Experimental Evaluation

In this section we present the results of a performance evaluation of DIMSpan
based on a real molecular dataset of simple undirected graphs and a synthetic
dataset of directed multigraphs. We evaluate scalability for increasing volume
of input data, increasing result sizes (decreasing minimum support) and variable
cluster size. For all experiments, we evaluate the improvement gained by our op-
timizations.

6.5.1 Implementation

We evaluated DIMSpan using Java 1.8, Apache Flink 1.2 and Hadoop 2.6.0. More
precisely we used Flink’s DataSet API5 for all transformations and its bulk iteration
for the iterative part. Apache Flink was chosen because an integration of DIMSpan
into the Gradoop framework (Section 4.3) was one of the initial requirements. We
further used the Simple16 implementation of JavaFastPFOR6 [106] for compres-
sion. The source code of DIMSpan is available on GitHub7 under Apache licence,
version 2.0 (Alv2).

To show the impact of our optimizations, we made them con�gurable. In all
evaluations, the term baseline refers to a con�guration without preprocessing,
without compression and local pattern veri�cation before reporting, i.e., resolv-
ing isomorphism |G| · |P | times. We use Flink’s aggregation to count pattern fre-
quencies (lines 7,8 of Algorithm 6.4). This aggregation operator is already highly
optimized by Apache Flink. Thus, to disable the combine step, we would have had
to re-implement aggregation using the external API without these internal opti-
mizations. Since this would have signi�cantly blurred a potential comparison, the
baseline already contains the combine operation.

4https://en.wikipedia.org/wiki/Cycloalkane
5https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/batch/

index.html
6https://github.com/lemire/JavaFastPFOR
7https://github.com/dbs-leipzig/gradoop; org.gradoop.examples.dimspan

129

Figure 6.5: Example graph of Gradoop’s predictable transactions graph generator. Col-
ored rectangles represent subgraphs and their guaranteed support.

6.5.2 Datasets

We evaluated three data-related dimensions that impact the runtime of a distributed
FSM algorithm: structural graph characteristics, input size |G| and result size |F |.
To show scalability for one of these dimensions, the other two need to be �xed.
While |F | can be increased by decreasing the minimum support threshold, varying
the other two dimensions separately is less trivial. Thus, we decided to use two
base datasets with divergent structural characteristics and just copy every graph
several times to increase |G| under preservation of structural characteristics and
|F |, i.e., an increased number of embeddings at the same number of patterns.

The �rst base dataset is yeast-active8, in the following denoted by molecular,
a real dataset from anti-cancer research. It was chosen to represent molecular
databases because structural characteristics among them do not fundamentally
di�er due to the rules of chemistry. For example, all molecular databases describe
simple undirected graphs with only few di�erent edge labels (e.g., single and dou-
ble bond) and most of the frequent patterns are paths or trees [129]. The base
dataset contains around 10K graphs (9567) and is scaled up to datasets containing
around 100K to 10M graphs. We did not use an optimized version of DIMSpan
for undirected graphs but provide an according parameter. If the parameter is set
to undirected, the direction indicator (see Section 6.2.3) will just be ignored. Dedi-
cated application logic will only be used, if it is unavoidable, for example, an 1-edge
DFS code that describes a non-loop edge with two equal vertex labels (automor-
phism) leads to two embeddings in undirected mode.

The second category of datasets, in the following denoted by synthetic, was
created by our own data generator9. It generates unequally sized connected di-
rected multigraphs where each 10th graph has a di�erent size ranging from
|V | = 10, |E| = 14 to |V | = 91, |E| = 140. There are 11 distinct vertex and
5 + |G|/1000 distinct edge labels. Figure 6.5 drafts their structure.

8https://www.cs.ucsb.edu/~xyan/dataset.htm
9org.gradoop.�ink.datagen.transactions.predictable

130

(a) Molecular dataset
|W | = 96, φrelmin = 5%

(b) Synthetic dataset
|W | = 96, φrelmin = 70%

dataset molecular synthetic
tb/|G| (input size) 100K 1M 10M 100K 1M 10M
baseline runtime total tb (sec) 153 1124 9902 275 2148 19315
optimized runtime total to (sec) 105 712 6193 142 1045 9076
tb/|G| (ms) 1.5 1.1 1.0 2.8 2.1 1.9
to/|G| (ms) 1.1 0.7 0.6 1.4 1.0 0.9
improvement (tb − to)/tb 31% 37% 37% 48% 51% 53%

Figure 6.6: Scalability for varying input size.

For each vertex label, there is an equivalent subgraph whose vertices all show
this label. In particular, all graphs contain the subgraph labeled with As but only
90% the one labeled with Bs and so on. Although all subgraphs are connected via
a vertex with label S this will not lead to frequent patterns since the respective
edges are labeled by a graph identi�er, i.e., are distinct per graph. The result is
predictable and contains 702 frequent patterns with 1 to 13 edges for each min
support decrement of 10% (i.e., 702 for 100%, 1404 for 90% , ..). The patterns contain
loops, parallel edges (in and against direction), di�erent subgraph automorphisms
(e.g., "rotated" and "mirrored") separately as well as in all combinations. The data
generator was not only designed for comparative evaluations but also for testing
the correctness of implementations. To verify the number of contained frequent
patterns we implemented a simple pruning-free brute-force FSM algorithm and
manually veri�ed all patterns of sizes 1..4, 12,13.

6.5.3 Experimental Results

All experiments were performed on our in-house cluster with 16 physical machines
equipped with an Intel E5-2430 2.5 Ghz 6-core CPU, 48 GB RAM, two 4 TB SATA
disks and running openSUSE 13.2. The machines are connected via 1 Gigabit Eth-
ernet.

131

(a) Molecular dataset
|W | = 96, |G| = 1M

(b) Synthetic dataset
|W | = 96, |G| = 1M

dataset molecular synthetic
φrelmin (minimum support) 10% 5% 3% 90% 70% 30%
|F | (result size) 1270 4660 12807 1404 2808 5616
baseline runtime total tb (sec) 458 1124 3166 1198 2148 3478
optimized runtime total to (sec) 288 712 2010 519 1045 2115
tb/|F | (ms) 361 241 247 853 765 619
to/|F | (ms) 227 153 157 370 372 377
improvement (tb − to)/tb 37% 37% 37% 57% 51% 39%

Figure 6.7: Scalability for varying result size.

Input Size: Figure 6.6 shows measurement results for increasing input size |G|
for both datasets under �xed minimum support thresholds on a cluster with 16
machines and 96 worker threads (|W | = 96). To compare runtimes for di�erent
input sizes the charts show the average time to process a single input graph for the
molecular (6.6a) and the synthetic dataset (6.6b). This time is constantly decreasing
with an increasing input size for both workloads. The reason is the optimization
strategy to verify DFS codes after counting (Section 6.3.2). Increasing input vol-
ume leads only to more embeddings but not to more frequent patterns. Thus, the
number of isomorphism resolutions is only dependent on the result size which is
�xed in this benchmark. For the same reason, the improvement of our optimized
con�guration is slightly increasing for larger datasets in comparison to the base-
line (last row of the table in Figure 6.6). This outcome con�rms a minor positive
e�ect of minimizing the total number of isomorphism resolutions.

Result Size: Figure 6.7 shows measurement results for decreasing minimum
support, i.e., increasing result size |F |, for both datasets under �xed input size
on a cluster with 16 machines. The charts show the average time to extract a
single frequent pattern for the molecular (6.7a) and the synthetic dataset (6.7b).
Except for small result size on the molecular dataset, this time is constant for the

132

(a) Molecular dataset
|G| = 1M , φrelmin = 5%

(b) Synthetic dataset
|G| = 1M , φrelmin = 70%

dataset molecular synthetic
physical machines 1 2 4 8 16 1 2 4 8 16
worker threads |W | 6 12 24 48 96 6 12 24 48 96
baseline runt. (sec) 14292 7521 4437 2054 1124 35586 14538 7540 4022 2148
optimized runt. (sec) 8588 4394 2354 1293 712 16470 6829 3599 1909 1045
improvement 40% 42% 47% 37% 37% 54% 53% 52% 53% 51%
baseline speedup 1.0 1.9 3.2 7.0 12.7 1.0 1.9 3.6 6.8
optimized speedup 1.0 2.0 3.6 6.6 12.1 1.0 1.9 3.6 6.5

Figure 6.8: Horizontal scalability for varying cluster sizes.

optimized version on both workloads, while the baseline time is decreasing for
increasing input size. This shows, that the total runtime of the optimized version
only depends on the result size, which is a desirable behavior. In contrast to the
molecular dataset, the improvement of the synthetic workload is decreasing for
larger results. The reason is, that due to its label diversity a relatively large part
of the input data can be pruned during preprocessing for the synthetic dataset
while rather rare as well as extremely frequent patterns in the molecular database
contain the same atoms (vertex labels) and bonds (edge labels).

Cluster Size: Figure 6.8 shows measurement results for a variable cluster size,
i.e., increasing number of worker threads |W |, for both datasets with �xed input
size and under �xed minimum support thresholds. The charts show the speedup
gained over one machine for the molecular (6.8a) and over two machines for the
synthetic (6.8b) dataset. The latter was chosen since we achieved a superlinear
speedup from 1 to 2 machines. Similar e�ects occur for 10K and 100K synthetic
graphs as well as for di�erent minimum support thresholds. We cannot explain
these e�ects and thus attribute them to Apache Flink’s program execution. For
larger cluster sizes, we see that DIMSpan scales sligtly sublinear but still achieves
notable speedups on both datasets for an increasing number of machines. The

133

slight decrease compared to an optimal speedup is in�uenced by the fact that the
baseline already contains our e�cient data structure and a combine operation that
minimizes network tra�c for pattern counting. Further on, the number of shu�ed
records in the counting phase is smaller for the baseline since false positives are
veri�ed before sending them over the network.

6.6 Conclusion

Frequent subgraph mining in graph collections is an important primitive to en-
able graph-based business analytics. Existing approaches provided no support for
directed multigraphs and were either not scalable for large data volumes or not
available to the public.

We presented DMGSpan, an approach that extends the popular gSpan algo-
rithm i.a. by support for directed multigraphs, and DIMSpan, the �rst approach to
parallel transactional FSM that combines its e�ective search space pruning with
the technical advantages of state-of-the-art distributed in-memory data�ow sys-
tems. A functional comparison to approaches based on MapReduce has shown that
DIMSpan is superior in terms of network tra�c, disk access and the number of iso-
morphism resolutions. Our experimental evaluation showed the high scalability of
DIMSpan for large datasets, low minimum support thresholds and increasing clus-
ter size. We found that di�erent optimizations depend on each other and should
be chosen with regard to dataset characteristics. The source codes of both imple-
mentations are available to the public: DMGSpan is part of Directed Multigraph
Miner10 and DIMSpan is part of Gradoop (Section 4.3).

10https://github.com/p3et/dmgm

134

Chapter 7

Generalized Multidimensional

Frequent Subgraph Mining

After business transaction graphs have been normalized for graph pattern mining
(Section 3.4) their vertex labels represent dimension values. Often, dimension val-
ues can be attached to taxonomies, for example, a city can be assigned to a region
and a region to a country. In this section we will study how our frequent subgraph
miner DMGSpan (Section 6.2) can be extended to extract patterns at di�erent lev-
els of multiple dimension taxonomies. The respective problem is called generalized
multidimensional frequent subgraph mining (GM-FSM). We will �rst motivate the
topic (Section 7.1) and provide formal introductions to problem, data model and
terminology (Section 7.2). Afterwards, we will propose two methods that can be
applied to solve this problem (Sections 7.3,7.4) and present the results of an exper-
imental comparison (Section 7.5). Finally, we will end with a conclusion (Section
7.6).

7.1 Motivation

Frequent pattern mining (Section 2.8) is an important research problem that has
found much interest since the early nineties. In a general notion a pattern is a
collection of labels that are attached to a data structure such as itemsets, sequences,
trees or graphs. In many applications these labels represent dimension values and
can be assigned to taxonomies. In this case mining patterns at di�erent taxonomy
levels may reveal interesting patterns. For example, the pattern {bread, bu�er}
could be infrequent while the more general one {bakery product,milk product}
is frequent. In some cases, analysts also want to analyze patterns across levels.
For example, the pattern {wholegrain bread, bu�er} can be more interesting than
just {bread, bu�er}. Finally, users also want to analyze patterns in the context of
multiple dimensions, for example, to �nd out that {bread, bu�er} is mostly bought
in the morning in suburban stores.

135

(a) Subgraph of a business transaction graph.

(b) Generalize pattern (trivial).

(c) Generalized pattern (interesting).

Figure 7.1: Example multidimensional subgraph and patterns.

These simple examples show that frequent pattern mining across di�erent lev-
els of multiple dimensional taxonomies provides a high analytical value. However,
a respective approach to generalized multidimensional pattern mining has only
been studied for sequences [149]. With regard to graphs, generalization has al-
ready been investigated [76] but under the assumption that all vertices belong to
the same semantic class (e.g., atoms). To the best of our knowledge, we developed
the �rst approach to generalized multidimensional frequent subgraph mining (GM-
FSM). Further on, our approach supports directed multigraphs instead of simple
undirected graphs and is based on an e�cient pattern growth algorithm instead of
an a priori approach.

Let us start with a look on an example application and the resulting graph
patterns: Figure 7.1a shows an example subgraph of a business transaction graph.
Edges and most vertices show simple labels (e.g., �otation, createdBy). However,
some vertices are labeled by taxonomy paths because they are attached to dimen-

136

Figure 7.2: Path-substitution method: Taxonomy paths are represented by dedicated ver-
tices and edges (blue lines).

sional taxonomies. Taxonomy paths are represented by the format
[top-level].· · · .[bo�om-level] where the bottom-level is the most discriminative di-
mension value. For example, vertex 3 not only represents Alice (bottom-level) but
also more generally a SalesPerson and an Employee (top-level). This information
is taken from a respective taxonomy to which Alice is assigned. Further on, vertex
1 represents Fukuoka, a city on the island Kyushu, and so on. Taxonomy paths
can be generated in a normalization step (Section 3.5). Since the subgraph’s ver-
tices are associated to di�erent taxonomies its contained patterns are considered
multidimensional.

The problem of frequent subgraph mining (De�nition 6.7) is the extraction of
graph patterns that occur in at least a minimum number of graphs in a collection
(minimum support). In scenarios where bottom-level labels (e.g., Alice) may have
low frequencies, mining frequent graph patterns on the bottom-level will barely
lead to results. By contrast, considering only the top-levels (e.g.,Employee.*.*) leads
only to very general patterns such as the one of Figure 7.1b. The pattern expresses
that a quotation was sent by an employee to a customer, where the latter has the
sending employee as its main contact. However, since this pattern might occur in
all business transaction graphs that represent sales process executions it is consid-
ered trivial. To �nd more interesting patterns, respective labels must be considered
at arbitrary level combinations. By doing so, we can extract patterns as the one
in Figure 7.1c. It expresses that the speci�c employee Alice sent a quotation to a
customer from Japan. Here, labels at di�erent levels are combined, in particular,
the top-level label Japan.*.* and the bottom-level label Employee.Sales.Alice.

The naive approach to extract such patterns would be to mine bottom-levels
�rst with a very low minimum support threshold and generalize patterns in a post
processing step. In order to guarantee completeness with this approach the min-
imum support threshold must be zero. However, since frequent subgraph min-

137

Figure 7.3: Example taxonomies of Figures 7.1 and 7.2. Bold fonts highlight dummy roots.

ing (FSM) includes the NP-complete subgraph isomorphism problem, a threshold
close to zero would lead to an exploding result size as well as a dramatic increase
of response time. For this reason, we developed two novel methods to GM-FSM
which take advantage of special characteristics of taxonomy paths. Both methods
are based on DMGSpan (Section 6.2) to extract frequent subgraphs from directed
multigraphs.

In the �rst method (Section 7.3), we use a preprocessing step to integrate tax-
onomy paths into the graph structure as shown in Figure 7.2. Here, taxonomy
paths are represented by actual paths in a graph that consist of only edges that
show a dedicated label isA. The method requires two further modi�cations to �nd
all results and to remove false-positives. In the second method (Section 7.4), we
decompose the problem into FSM and generalized frequent vector mining (GFVM).
Therefore we decompose patterns into a top-level (highest general) graph struc-
ture and a vector of lower-level tails. In particular, top-level labels are attached
to the graph structure, lower level tails of taxonomy paths are stored in a vector
and vertices are mapped to vector �elds. For example, vector 〈 Kyushu.Fukuoka,
ACME, SalesPerson.Alice 〉 can be derived from the subgraph spanned by v1, v2, v3

in Figure 7.1a. The extraction happens in two steps: First, we use DMGSpan to
identify frequent structural patterns only based on top-level labels and attach a set
of lower-level vectors to each pattern. Second, we apply GFVM to re�ne the result.

7.2 Problem, Data Model and Terminology

The di�erence between FSM and GM-FSM is the de�nition of pattern support. In
FSM, a graph will support a pattern, if there is an isomorphic subgraph with equal
labels for all mapped pairs of vertices and edges (De�nition 6.7). In GM-FSM,
we additionally consider patterns which are generalizations of a subgraph to be
supported. In the following, we will introduce a data model to describe multidi-
mensional graphs and important terminology to formally introduce the GM-FSM
problem.

138

De�nition 7.1 (Taxonomy/Taxonomy Path) A taxonomy is de�ned as a quadru-
ple T = 〈L, `root, η, ρ〉 that contains a label set L = {`1, `2, . . . , `n}, a dummy root
label `root /∈ L, a parent-child mapping η : L → (L ∪ {`root}) and a function
ρ : L → P(L) that associates a taxonomy path (an ordered set of labels) to every
label. The level of a label is de�ned as the length of its taxonomy path denoted by
|ρ(`)| and de�nes an order among labels s.t. `1 < `2 ⇔ |ρ(`1)| < |ρ(`2)|. A valid
taxonomy path contains exactly one label from all levels above the lowest one s.t.
∀` ∈ L.∀1 ≤ i ≤ |ρ(`)|.∃!`p ∈ ρ(`).|ρ(`p)| = i and for all labels except the one
with the highest level its parent is contained in the path s.t.
∀` ∈ L.∀`i ∈ ρ(`).(η(`i) ∈ ρ(`) ∨ η(`i) = `root).

To some readers, our formal introduction of taxonomy may seem strange and
overcomplicated to describe a tree. However, we assume the reader to know the
concept of a tree and tailored our de�nition to a most clear usage of taxonomy
path function ρ in the remainder of this chapter.

De�nition 7.2 (Label Generalization) Let T be a taxonomy and `s, `g ∈ LT be
two of its labels then `g will be a generalization of `s, denoted by an operator <T ,
if `g <T `s ⇔ `g 6= `s ∧ `g ∈ ρ(`s). We will further use a generalized or equal
operator ≤T that includes equality, i.e., `g ≤T `s ⇔ `g ∈ ρ(`s).

De�nition 7.3 (Top-level Label) Let T be a taxonomy then `top ∈ L will be a
top-level label, if it has no generalizations. We will use ω : L → {true, false} to
denote a top-level label s.t. ω(`top) = true⇔ @` ∈ L.` <T `top.

De�nition 7.4 (Bottom-level Label) Let T be a taxonomy then `bot ∈ L will be
bottom-level label, if it is no generalization of any other label. We will use
β : L→ {true, false} to denote a bottom-level label s.t.
β(`bot) = true⇔ @` ∈ L.`bot <T `.

Figure 7.3 shows some examples of taxonomies, where customers, locations
and transactions are dummy roots. The practical reason for the use of dummy
roots is the following: We want to allow the user to decide, if a taxonomy contains
either one or multiple top-level labels. However, formally a taxonomy must have a
root. Thus, we decided to distinguish between (dummy) root and top-level. While
the root is only a formal necessity a top-level label is the highest general label that
may appear in patterns. For example, the highest general semantics of vertices
that belong to the taxonomy with root customers of 7.3 is the appearance of a
customer. By contrast, the highest general meaning of vertices that are mapped to
the taxonomy with root locations is the actual country but not the bare appearance
of a country. Thus, our model allows both to represent a logical single root by a
single top-level label but also to avoid meaningless over-generalizations [76] by
the use of multiple top-level labels.

139

In illustrations such as Figure 7.1 we use sequences of ∗ symbols to express
the level di�erence of an actual label and its deepest specialization. For exam-
ple, Japan.∗.∗ indicates the existence of a specialization whose taxonomy path
has length 3. Further on, we express that this path is parent of all paths that
show the same head but values instead of one or more ∗ symbols. For example,
Japan.Kyushu.∗ and Japan.Kyushu.Fukuoka are both specializations of Japan.∗.∗.

De�nition 7.5 (Multidimensional Graph) A multidimensional graph is de�ned
as a triple g = 〈g, T , ζ〉 of a labeled directed multigraph g according to De�ni-
tion 2.4, a set of taxonomies (dimensions) T = {T1, T2, . . . , Tn} and a mapping
ζ : Vg → T that associates every vertex to a taxonomy that contains its vertex
label s.t. ∀v ∈ Vg.λ(v) ∈ Lζ(v).

De�nition 7.6 (Graph Generalization) Given two multidimensional graphs g, s
then g will be a generalization of s denoted by an operator<T , if there is a bijective
edge mapping ιe : Eg ↔ Es with matching edge labels, sources and targets s.t.
∀e ∈ Eg.

(
λg(e) = λs(ιe(e)) ∧ ιv(ςg(e)) = ςs(ιe(e)) ∧ ιv(τg(e)) = τs(ιe(e))

)
and

there is a vertex mapping ιv : Vg ↔ Vs where all labels are generalized or equal
s.t. ∀v ∈ Vg.

(
ζg(v) = ζs(ιv(v)) ∧ λg(v) ≤T λs(ιe(v))

)
and there is at least one

generalized label s.t. ∃v ∈ Vg.λg(v) <T λs(ιe(v)) .

De�nition 7.7 (Top-level Graph) A top-level graph is a multidimensional graph
g with only top-level labels s.t. ∀v ∈ V.λ(v) = ω(λ(v)).

De�nition 7.8 (Bottom-level Graph) A bottom-level graph is a multidimensional
graph g with only bottom-level labels s.t. ∀v ∈ V.λ(v) = β(λ(v)).

De�nition 7.9 (Generalized Multidimensional Frequent Subgraph Mininig)

Let G ∈ G be a graph collection of multidimensional graphs then generalized mul-
tidimensional frequent subgraph mining is an operator ΦT (G, φmin) 7→ F that ex-
tracts the complete set of frequent patterns F ⊆ (P ∪ PT) from all contained
patterns according to De�nition 6.3 P ∈ G and all of their generalizations PT ∈ G
whose support is greater or equal than a given minimum support threshold φmin
s.t. ∀G ∈ G, p ∈ (P ∪ PT).(p ∈ F ⇔ φ(G, p) ≥ φmin).

7.3 Path Substitution Method

We propose two methods to solve the problem of De�nition 7.9. The �rst one is
called path substitution method or simply substitution method. In this method we
exploit the fact that (taxonomy) paths can be directly represented as parts of input
graphs and result patterns. We consider this method to be the naive approach. The
basic idea of the substitution method is to replace vertices whose labels are not the
top-level of their associated taxonomy by their taxonomy path. Based thereon,
we apply a modi�ed variant of DMGSpan (Section 6.2) with additional pre- and
postprocessing steps.

140

(a) Taxonomy path represented by a path label.

(b) Taxonomy path represented by annotation.

(c) Taxonomy path represented by path substitution.

Figure 7.4: Comparison of taxonomy path representations in frequent graph patterns.
The gray �lled vertex can be assigned to a taxonomy path. Red color indi-
cates infrequent parts of a pattern.

7.3.1 Taxonomy Path Substitution

Path substitution fundamentally di�ers from semantic annotations. Figure 7.4 il-
lustrates the di�erences. Figure 7.4a shows a subgraph that represents a single
logical relationship between a pair of entities (�otation and Alice). The taxon-
omy path label at the vertex representing Alice indicates that there are two gen-
eralizations of Alice, in particular, SalesPerson and Employee. Red color indicates
infrequent parts of the patterns, i.e., �otation

createdBy−−−−−−→ Employee and �otation
createdBy−−−−−−→ SalesPerson are frequent but �otation

createdBy−−−−−−→ Alice is not.
Figure 7.4b shows the same pattern but the taxonomy path of Alice is repre-

sented by a path attached to the vertex that represents the logical entity (annota-
tion). All e�cient frequent subgraph mining algorithms (Section 6.2.3) extract only
those patterns whose parents were already frequent. This requires extractable pat-
terns to be connected. In the context of embedded taxonomy paths generalizations
must be subgraphs of their specializations. This is not the case for annotations
since infrequent vertices or subpatterns such as the vertex Alice may cut frequent
generalized patterns. For example, there is no connected subpattern in Figure 7.4b
that represents �otation

createdBy−−−−−−→ SalesPerson.
Figure 7.4c represents the taxonomy path by path substitution. Here, the tax-

onomy path is embedded into the graph by the same number of vertices and edges
but the other way around. In particular, vertex Alice was replaced by its highest
generalization Employee. Thus, it will be possible to discover the general pattern
�rst and extend it by specialization-edges as long as they are frequent. This ap-
proach would work with both pattern growth and a priori algorithms.

141

7.3.2 Extensions of FSM Algorithms

Extending a frequent subgraph algorithm, for example, DMGSpan, to support the
path substitution method requires three steps: First, there must be a preprocessing
step that performs the actual substitution. To preserve provenance and to make
the process reversible a reserved edge label must be used for isA relationships.
Second, there must be a postprocessing step that applies the reverse process to the
extracted patterns by collapsing all isA paths to the most special label. Addition-
ally, if vertex-only patterns shall not be extracted it will also be necessary to �lter
false positives, i.e., patterns of only isA labels, in this step. Third, implementations
of FSM algorithms typically include a maximum pattern size (edge count) param-
eter to limit computations. This �lter must be modi�ed to consider only "real"
edges, i.e., those representing actual relationships but not the isA ones. In contrast
to the original algorithm this means that a higher number of iterations is required
since taxonomy paths are processed just like regular edges.

7.4 Pattern Decomposition Method

In contrast to basic frequent subgraph mining GM-FSM is facing an increased num-
ber of label-combinations. For example, the subgraph
Customer.ACME location−−−−→ Japan.Kyushu.Fukuoka

of Figure 7.1 has the following generalizations:
Customer.* location−−−−→ Japan.Kyushu.Fukuoka
Customer.* location−−−−→ Japan.Kyushu.*
Customer.* location−−−−→ Japan.*.*
Customer.ACME location−−−−→ Japan.Kyushu.*
Customer.ACME location−−−−→ Japan.*.*

Applying the path substitution method of Section 7.3 shifts the identi�cation
of frequent combinations to the FSM algorithm since the algorithm makes no dif-
ference between logical and technical edges. This may lead to a dramatically in-
creased number of isomorphism resolutions. For example, extending DMGSpan
means that every additional isA edge leads to a multiple of DFS code veri�cations
(Section 6.2.6). Thus, we consider the naive substitution method ine�cient and in-
vestigated a second pattern decomposition method or simply decomposition method.

In this method we exploit the fact that a specialized graph can only be frequent
if its highest generalization (top level graph, De�nition 7.7) is already frequent. In
particular, all specializations have the same topology as their highest generaliza-
tion and, thus, isomorphism must only be resolved once per distinct top-level gen-
eralization. Thus, we �rst extract frequent top-level patterns by DMGSpan (Section
6.2) and identify frequent specializations by frequent vector mining (Section 7.4.2),
i.e., we decompose the problem into two sub-problems.

142

Figure 7.5: Generalization search lattice for a 2-dimensional example vector set L =
{(111, 2111), (111, 2112), (112, 2112)}. Common pre�xes indicate label gen-
eralizations (e.g., 11 <T 112). Edges represent vector generalization from
bottom to top.

However, to identify a minimum DFS code (Section 6.2.6) a global order of
labels must ensure that the �rst order criterion is the taxonomy itself., i.e., we
require the following constraint:

De�nition 7.10 (Global Order of Labels) LetT = {T1, T2, . . . , Tn} be the global
space of taxonomies with an order s.t. ∀T1, T2 ∈ T.(T1 < T2∨T1 = T2∨T1 > T2),
L = {`1, `2, . . . , `n} be the global alphabet of labels and ξ : L → T be a mapping
that associates every label exclusively to a taxonomy then there is a transitive or-
der among labels s.t. ∀`1, `2 ∈ L.(ξ(`1) < ξ(`2)⇔ `1 < `2).

7.4.1 Extensions of DMGSpan

We extended DMGSpan to support the decomposition method. First of all, to im-
plement the global order of labels according to De�nition 7.10 we added a pre�x
to every vertex label that represents its taxonomy. This step happens before dic-
tionary coding int the preprocessing phase. We order all vertex labels according
to their label to ensure that the natural order of integers corresponds to the one of
the original vertex labels.

Second, we use taxonomy paths as vertex labels. These are represented by
integer arrays with one �eld for each level’s encoded label. At the pattern growth
step (line 9 of Algorithm 6.2), we consider only the top-level label, i.e., the �rst �eld

143

Figure 7.6: Bottom-up search in the example lattice of Figure 7.5. Edge labels correspond
to umin of Algorithm 7.1. Red lines indicate paths that have been traversed
unnecessarily at φmin = 3.

of the array, to form a DFS Code that represents a top-level pattern (De�nition 7.7).
At the same time taxonomy paths of all vertices are added to each embedding. In
this way they can be evaluated in the subsequent vector mining step. Before this,
the support of the top-level pattern will be calculated and it will be veri�ed. This
ensures that vector mining is only applied for frequent and valid top-level patterns.

7.4.2 Generalized Frequent Vector Mining

For each frequent top-level pattern with u vertices and k edges there is a DFS Code
X = 〈x1, x2, . . . , xk〉 to represent a pattern and a set of taxonomy path vectors
with |U | �elds whose indices u ∈ U correspond to vertex discovery times U from
De�nition 6.9, for example, the 1st vector �eld stores ρ(λ(ν(1))). Based on this set
we apply generalized frequent vector mining (GFVM):

De�nition 7.11 (Taxonomy Path Vector) Let g be a multidimensional graph,
X be a DFS code and mX

g = 〈ν, κ〉 be an embedding of X in g then a taxonomy
path vector ~̀ = 〈`1, `2, . . . , `u〉 that is attached to mX

g represents the taxonomy
paths of its vertex labels s.t. `u = ρζ(ν(u))(λ(ν(u))). The vector space of a taxonomy
path vector corresponds to the taxonomies associated to the mapped vertices, i.e.,
ζ(ν(1))× ζ(ν(2))× · · · × ζ(ν(u)).

144

Algorithm 7.1 Bottom-up search GFVM
Input: vectors set (input), minimum support threshold (φmin), vector indices U
Output: set of frequent vectors (output)

1: specs ⊆ L× U
2: φ : L → N
3: for all bottom in input do
4: specs.add(〈bottom, 1〉)
5: φ(bottom)++
6: end for

7: while specs 6= ∅ do
8: gens ⊆ L× U
9: for all 〈spec, umin〉 in specs do

10: for all umin ≤ u ≤ |U | do
11: if spec.isGeneralizableAt(u) then
12: gen = spec.generalize(u)
13: gens.add(〈gen, u〉)
14: φ(gen) += φ(spec)
15: end if

16: end for

17: end for

18: specs = gens
19: end while

20: for all 〈vec, support〉 in φ do

21: if support ≥ φmin then

22: output.add(spec)
23: end if

24: end for

25: return output

De�nition 7.12 (Vector Generalization) Let ~̀s, ~̀g be two taxonomy path vec-
tors of the same DFS Code with vertex discovery times U then ~̀g will be a gener-
alization of ~̀s denoted by an operator ~<T , if all labels are generalized or equal s.t.
∀u ∈ U.(`gu ⊆ `su) and there is at least one generalized label s.t.
∃u ∈ U.(`gu ⊂ `su) .

De�nition 7.13 (Generalized Frequent Vector Mininig) Let L be a graph col-
lection of taxonomy path vectors of the same vector space then generalized fre-
quent vector mining aims to extract all frequent generalizations, i.e., all generaliza-
tions whose occurrence count is greater than or equal to a given minimum support
threshold.

145

Based on De�nition 7.12, the search space of all possible generalizations can be
described by a lattice. Figure 7.5 shows a respective lattice for an example vector
set. Taxonomy paths are represented by a canonical labeling for trees [111], e.g.,
label 111 could represent Employee.SalesPerson.Alice.

7.4.3 Bottom-up search

To e�ciently extract all frequent generalizations it must be avoided to visit lattice
nodes multiple times. We developed two algorithms that satisfy this requirement.
The �rst one is based on level-wise generalization of the input vector list (bottom-
up search). An example search graph is shown in Figure 7.6. To avoid multiple
node visits, we only generalize to the right, i.e., a �eld will only be generalized, if
itself, none or a �eld with smaller index was generalized before. Thus, a minimum
generalization index umin is passed among lattice nodes. In Figure 7.6 this index
is represented by edge labels. For example, starting from (111, 2111) we generalize
at u = 1 to (11, 2111) and at u = 2 to (111, 211). At the generalization of (111, 211)
only �elds right of umin = 2 will be processed to avoid a second visit of (11, 211).

Algorithm 7.1 shows the pseudocode of the bottom up search. Inputs are a
vector set, the minimum support threshold an the vertex discovery times of the
DFS Code, i.e., the �eld numbers of all vectors. There are two main data struc-
tures: First, there is a set of specializations and their umin (line 1) and, second, a
support map (line 2). The data structures are initialized by values of each bottom
level vector (line 3). In particular, we add every distinct vector to the set of spe-
cializations (line 4) and count its support (line 5). Then, we iteratively generalize
specializations until no more generalization can be found (line 7). In the iteration
body, we �rst initialize a set of generalizations (line 8) which will be the next it-
eration’s input (line 18). Then, we process each distinct specialization (line 9) and
create all possible generalizations (lines 11,12) to the right of �eld umin (line 10).
All generalizations will be added to the next iteration’s dataset (line 13) and their
support will be increased by the current specialization’s support (line 14). After
all generalizations were found, the frequent ones will be added to the output (lines
20-24).

We assume that in the standard use case all taxonomies are balanced rooted
trees and all vector �elds represent bottom-level labels. In this case, every lattice
node will only be visited once (line 9) because our main data structure is a set
and generalizations are only made to the right. Otherwise multiple visits of the
same node are possible. However, we determine frequent vectors at the end of the
algorithm. Thus, even unbalanced inputs will lead to the correct result because the
frequency of the same node can be incremented in di�erent iterations. Further on,
the algorithm sums up frequencies (line 14) and, thus, is more e�cient than just
generating and counting all generalizations for each input vector. However, since

146

Figure 7.7: Top-down search in the example lattice of Figure 7.5. Edge labels correspond
to umin of Algorithm 7.2. Gray lines indicate pruned paths at φmin = 3.

frequent generalizations are determined at the end of the algorithm and there is no
pruning during the search every possible node of the lattice has to be visited. The
red lines in Figure 7.6 illustrate example search paths that lead only to infrequent
generalizations. To overcome both limitations, i.e., to visit only as many nodes as
possible and visit every node only once even for unbalanced inputs, we developed
a second algorithm based on a top-down search.

7.4.4 Top-down search

The second approach is based on level-wise specialization of the input vector list
(top-down search). An example search graph is shown in Figure 7.7. To avoid mul-
tiple node visits, we only specialize to the right, i.e., a �eld will only be specialized,
if itself, none or a �eld with smaller index was specialized before. Thus, just like
in the bottom-up search, a minimum generalization index umin is passed among
lattice nodes. In Figure 7.7 this index is represented by edge labels. For example,
starting from (1, 2) we specialize at u = 1 to (11, 2) and at u = 2 to (1, 21). At the
specialization of (1, 21) only �elds right of umin = 2 will be processed to avoid a
second visit of, for example, (11, 21).

Algorithm 7.2 shows the pseudocode of the top-down search. Inputs are equiv-
alent to the bottom-up search but one of the two main data structures di�ers: First,
there is a set of, this time, generalizations and their umin (line 1). Second, we do

147

Algorithm 7.2 Top-down search GFVM
Input: vectors set (input), minimum support threshold (φmin), vector indices U
Output: set of frequent vectors (output)

1: gens ⊆ L× U
2: bottomMap : L → P(L)
3: for all bottom in input do
4: top = maxGeneralization(bottom)
5: gens.add(〈top, 1〉)
6: bottomMap[top].add(bottom)
7: end for

8: while gens 6= ∅ do
9: specs ⊆ L× U

10: for 〈gen, umin〉 in gens do
11: bottoms = bottomMap[gen]
12: if bottoms.size() ≥ φmin then

13: output.add(gen)
14: for bottom in bottoms do
15: for all umin ≤ u ≤ |U | do
16: if bottom.isSpecializableAt(gen, u) then
17: spec = specialize(gen, bottom, u)
18: specs.add(〈spec, u〉)
19: bottomMap[spec].add(bottom)
20: end if

21: end for

22: end for

23: end if

24: end for

25: gens = specs
26: end while

27: return output

not only store the support of generalizations but all bottom-level vectors which
are their specializations (line 2) as well. The data structures are again initialized
by values of each bottom level vector (line 3). However, in the top-down search
we create the highest generalization (line 4), add it to the working set (line 5) and
link it to the bottom level vector (line 6). Then, we specialize in a loop until no
more specializations can be found (line 8). Similar to the bottom-up search, in each
iteration we �rst initialize a set of specializations (line 9) which will be the next
iteration’s input (line 25). Then, we process all current generalizations (line 10).
In contrast to the bottom-up search, we evaluate the support of a generalization
directly in the search (line 11) and will only start specializing, if the generalization
is still frequent (line 12) and add it directly to the output (line 13). Now, we must

148

process every assigned bottom-level vector (line 14) and check, if it can be special-
ized to the right (line 15) in the context of its current generalization (line 16). If so,
we specialize (line 17), send the specialization to the next iteration (line 18) and
map it to the current bottom-level (line 19).

The major advantage of this approach in comparison to bottom-up search is
that support-based pruning is applied during the search (line 12) and, thus, only
the �rst infrequent specialization of every search path must be visited. The red
crossings in Figure 7.7 mark these nodes and gray lines indicate the pruned search
paths. Since we transitively also traverse taxonomies top-down we need to visit
every node only once even for unbalanced inputs. However, in comparison to the
bottom-up search there is the additional cost of the bottom-level mapping (line
2) and respective access times (lines 6, 19). The map could be replaced by an on
demand pattern matching in the input vector list where the current generalization
is the pattern. However, this would make lines 6 and 19 even more expensive,
i.e., the map acts as an index. In an experimental evaluation, we will show that
this method outperforms the others, taxonomy path substitution method and the
bottom-up search.

7.5 Experimental Evaluation

We implemented a prototype with Java 1.8 and compared the path substitution
method (PS) to both decomposition methods, i.e., bottom-up (BU) and top-down
(TD) search. The core of all methods was an early sequential implementation of
DMGSpan. All experiments were run on a machine equipped with an Intel i7-4770
CPU, 16GB RAM, SSD and running Ubuntu 14.04.

7.5.1 Dataset

The used dataset was generated by the Gradoop implementation of FoodBroker
[92] which also contains master data properties that represent taxonomies. For
example, products belong to di�erent groups. Data was exported to �les in TLF
format1. To measure the particular impact of the applied generalization strategy
we required a dataset for which frequent specializations impact the result size more
than topological varieties, i.e., with an increasing minimum support threshold the
number of frequent specialization should grow faster than the number of frequent
top-level patterns. The creation of a respective dataset was very challenging since
FoodBroker was originally not designed for this scenario and there are no other
datasets available that satisfy this property. By a custom con�guration and a spe-
ci�c graph selection we could create a respective dataset of 1333 graphs with 19

1package org.gradoop.flink.io.impl.tlf

149

(a) Result size.

(b) Runtime.

(c) Generalization factor.

Figure 7.8: GM-FSM evaluation results for variable minimum support threshold φmin and
a �xed maximum edge count kmax = 6.

150

vertices and 22 edges each. However, all graphs were more or less completely iso-
morphic on the top-level which is the worst case for any frequent subgraph mining
algorithm. Thus, we had to use a maximum edge count kmax parameter to limit
the result size.

7.5.2 Results

We performed two experiments to measure the scalability of the di�erent algo-
rithms. In the �rst one we used a �xed maximum edge count kmax and a vari-
able minimum support threshold φmin to increase the result size. We measured
data for kmax = 3 to kmax = 8 and will discuss the results of a medium value
of kmax = 6. Figure 7.8a shows the result growth for a changing φmin. Due to
our dataset characteristics GM-FSM results |F |Gen grow exponentially while the
number of top-level patterns |F |Top remains nealy constant. For an e�cient al-
gorithm we expect a runtime to increase slower than the result size. Figure 7.8b
shows the runtime development for mining only top-levels tTop and for our three
proposed algorithms tPS/BU/TD. As expected, tTop is nearly constant since the
number of frequent top-level patterns is bounded by kmax. Both decomposition
methods show better runtimes and a less steep slope than the PS. At the compari-
son of both decomposition methods BU has a longer runtime but a less steep slope
than TD.

To compare slopes of results growth and runtimes we used a measure called
generalization factor that is de�ned as the ratio of GM-FSM results and top-level
FSM results |F |Gen/|F |Top for the result size and as the ratio of GM-FSM time
and top-level FSM time tPS/BU/TD/tTop for runtimes. Figure 7.8c shows general-
ization factors for the result size and runtimes in a common chart. If a curve is
below |F |Gen/|F |Top it will be considered e�cient. Except for φmin = 0.4 this is
always the case for TD. We assume that the reason therefore lies in the overhead
of the vector mining in the case of only few frequent specializations. However,
the naive PS method is behaving constantly worse and even becomes ine�cient
for φmin = 0.1. In this �gure, the BU approach seems to be increasingly e�cient
with increasing result size. Unfortunately, with the used dataset it was not possi-
ble to increase the result size further by lowering the minimum support threshold.
However, the results of our second experiment will show that this is only the case
for small vectors bounded by kmax.

151

(a) Result size.

(b) Runtime.

(c) Generalization factor.

Figure 7.9: GM-FSM evaluation results for �xed minimum support threshold φmin = 0.2
and a variable maximum edge count kmax.

152

In the second experiment, we used a �xed intermediate φmin = 0.2 and varied
kmax to increase the result size. Figure 7.9a shows the development of result size
over kmax. This time, the increase of |F |Gen is not only caused by the number of
frequent specializations but also by an increasing number of frequent top-level pat-
terns |F |Top. Both show an exponential growth. Analog to our �rst experiment,
we show runtimes (Figure 7.9b) and generalization factors (Figure 7.9c) for top-
level FSM and our three GM-FSM algorithms. In this experiment, the BU method
clearly shows the worst curves. Although it is the fastest approach for small kmax
it becomes very ine�cient for larger values. In particular, it is the only method
whose slope is steeper than the one of the result size. The PS method is also ine�-
cient but shows an improving behaviour for larger kmax. For values kmax ≥ 5 the
TD search shows lowest runtimes and best e�ciency. For example, in comparison
to top-level FSM it requires only about 5 times longer to extract 10 times more
results for kmax = 8 while this ratio is about 1:1 for the PS method.

7.6 Conclusion

We presented the �rst study about multidimensional generalized frequent sub-
graph mining. To represent di�erent dimensions, vertex labels are assigned to
multiple taxonomies. Besides our conceptual contribution, we proposed three al-
gorithms that solve this problem based on our data model. In an experimental
evaluation the decomposition into frequent subgraph mining and frequent vector
mining with top-down search has shown the best scalability. This con�rms our
expectation that decomposition is more e�cient than embedding taxonomy paths
into the graph structure and mining specializations by a standard frequent sub-
graph mining algorithm. In real-world evaluations (Sections 8.1 and 8.2) we found
further indications that con�rm this observation.

153

Chapter 8

Real-World Applications,

Conclusion and Outlook

In the last chapter of this dissertation, we will report our practical experience from
two real-world applications (Sections 8.1 and 8.2), provide a �nal summary (Section
8.3) and state some future research directions (Section 8.4).

8.1 BIIIG for Real Estate Fraud Detection

In the context of his bachelor’s thesis [162] Saalmann performed the �rst real world
evaluation of BIIIG in cooperation with Immowelt AG1, a German company that
runs multiple real estate platforms. The evaluation served as use case of the com-
pany’s fraud detection team. Following, we will describe the analytical scenario,
his technical solution and the evaluation results in more detail.

8.1.1 Analytical Scenario

The purpose of real estate platforms is to connect real estate providers with people
who want to rent or buy properties. In the following, we will use the terms agents
and customers to denote both groups. Other important domain entities of these
platforms are properties and their o�ers. Further on, a platform has visitors that
perform actions such as creating or viewing o�ers. There are di�erent kinds of
fraud by agents to cheat customers. Immowelt is already using di�erent techniques
to extract patterns that are typical to fraud by mining data that is known to be
related to fraud. These patterns are then applied to monitor new o�ers and to
automatically detect suspicious ones. The latter will then be veri�ed by humans.

The primary goal of the evaluation was the identi�cation of previously un-
known fraud patterns by the use of BIIIG. As a second goal, all implementations
should be done with Gradoop (Section 4.3) to evaluate its usability and to gain
practical experience that can be used to improve the system.

1https://www.immowelt-group.com/

154

8.1.2 Application and implementation of BIIIG

Saalmann used Gradoop to implement a BIIIG work�ow that includes character-
istic subgraph mining (Section 3.5). At the time of the evaluation Gradoop was
not able to import data directly from relational databases. Thus, he used a detour
via CSV �les that were exported from the relational source database and imported
them into Gradoop by a custom logic to directly generate a single large graph.
This graph contained master data (e.g., properties and locations) as well as trans-
actional data (actions). Then, he applied the business transaction graph algorithm
(Section 5.5) to extract graphs that represent single o�ers and all data related to
their creation. As already discussed in Section 5.5.2 he added domain-speci�c ex-
tensions to the algorithm. O�ers contained a property that marked them to be
fraud. This property could be used to categorize (Section 3.5.1) graphs accordingly.

By contrast, the normalization process (Section 3.5.2) included multiple steps.
First, vertex properties that represented relevant dimension values were replaced
by dedicated vertices and edges, for example, Property

type−−→House. Second, to also
evaluate action sequences the temporal order of transactional data was represented
by dedicated edges in the format ActionType1 then−−→ ActionType2. Third, he applied
taxonomy path substitution (Section 7.3) for dimensions that could be associated to
taxonomies (e.g., locations). This solution was chosen because GM-FSM was not
ported to Gradoop. Further on, there was no e�cient version of characteristic
subgraph mining. Thus, he chose the naive approach and used DIMSpan (Section
6.3) to mine frequent patterns with low minimum support thresholds separately
for both categories (fraud and no fraud) and evaluated interestingness of patterns
in a subsequent step.

8.1.3 Evaluation results

Saalmann stated that the functional evaluation of the characteristic subgraph min-
ing work�ow lead to meaningful results. Most but not all of the extracted patterns
were already known by the domain experts. This shows that the method works.
However, he noted that all interesting patterns had only the nature of sequences or
itemsets and he called into question, if graph pattern mining is required to answer
the analytical question of this scenario. However, he also stated that characteristic
subgraph mining is very suitable for initial mining tasks whose results can be the
base of data models for simpler frequent pattern mining techniques.

He also executed a performance evaluation on an in house cluster with 4 com-
puting nodes. He acknowledged a good horizontal scalability but a bad overall
performance. He identi�ed two bottlenecks. The �rst one is the technical con-
version of a single large graph into a collection of small graphs after the business
transaction graph extraction. In particular, all vertices and edges of the initial sin-
gle large graph have to be grouped by their graph id to create technical transactions
that assure that all vertices and edges of the same graph are held on the same par-

155

tition. Logically, the problem cannot be avoided. However, the actual bottleneck is
originated in the implementation of the distributed group by operation of Apache
Flink. In particular, grouping is solely based on key hashing. Thus, in the worst
case, even if all vertices and edges of the one graph are located on the same par-
tition, the group by operation will send them to another one. In consequence, the
complete graph collection will be shu�ed among all workers.

The second bottleneck was the subgraph mining that only allowed to mine
samples of the actual dataset. We see three reasons: The �rst reason, also stated
by Saalmann himself, was an insu�cient normalization process due to a lack of
development time. Performance could have been improved dramatically by the
elimination of frequent trivial subgraphs that lead to a potentiation of intermedi-
ate results without providing additional information. Second, he applied the path
substitution method (Section 7.3) to extract generalized patterns, too. In Section
7.5 we reported that this approach is ine�cient. Third, he used the naive approach
to extract characteristic patterns. In Section 3.5.3 we stated that this is ine�cient,
too. However, the blame is not with Saalmann since one of the evaluation’s re-
strictions was the use of Gradoop and at the time of his evaluation more e�cient
implementations were not available.

8.2 BIIIG for Security Threat Analysis

We performed a functional evaluation in cooperation with Siemens2, a German
company that is active in di�erent areas of business. The evaluation served as
use case of the company’s security department. In the following, we will describe
the analytical scenario, our technical solution and the evaluation results in more
detail.

8.2.1 Analytical Scenario

"The mission of the Siemens Security Department is to ensure the long-term protection
of Siemens’ employees and assets against threats having the potential to impact the
former."3 Since the company has branches and customer projects in many parts of
the world respective threats must be identi�ed worldwide. One strategy for threat
identi�cation is analyzing and mining incident data. Here, the term incident refers
to a mostly localized event that has an actual or potential impact on security such
as bomb attacks, protests or other speci�c threats. Our goal was the application of
BIIIG to extract knowledge that could not be extracted by other techniques that are
already applied by the company. There are di�erent companies that sell incident
data. Due to nondisclosure we must neither name incident data providers nor
established analytical techniques.

2www.siemens.com
3the department’s o�cial description, text quote from an internal document

156

Every incident can be assigned to di�erent dimensions such as location, time or
involved actors. Most of the dimensions are m:n relationships and some can be as-
signed to taxonomies. The �rst analytical question was the extraction of patterns
that characterize a �xed dimension. For example, which pattern are characteristic
for particular actors. The second question was the development of patterns for a
�xed dimension over time. For example, how does the behaviour of a particular ac-
tor change over time. Finally, results should be ranked according to their statistical
signi�cance.

8.2.2 Application and implementation of BIIIG

We spent 12 person weeks (PW) for an in-house evaluation in the company’s head-
quarters in Munich. About 1PW was required for organizational purposes and
9PW were spent for transformation and integration of source data. The remaining
2PW were used to implement analytical work�ows that apply characteristic sub-
graph mining (CSM, Section 3.5) to the two analytical questions. The result was a
prototype with two respective components. The prototype was written in Java 8
and its source code is closed. However, for all actual graph mining tasks we used
Directed Multigraph Miner (DMGM), an Open Source4 Java library that includes an
in-memory implementation of EPGM’s property graph collections (De�nition 4.1)
as well as thread-parallel implementations of DMGSpan (Section 6.2) and GM-FSM
in pattern decomposition variant with top-down search (Section 7.4.4). Further on,
for both mining algorithms DMGM supports speci�c frequency determination and
pruning techniques (Section 3.5.3) as they are required to implement CSM.

As already stated, most of the time was spent for turning data source into ana-
lyzable graphs. This included entity extraction from texts, data cleaning and data
integration. There were three data sources in the formats CSV, XML and JSON.
The data sources were directly transformed into an integrated graph collection.
Since our focus lay on the evaluation of our data mining techniques and due to
the lack of a relational data source the transformation and integration process of
Chapter 5 was not applied. All data processing steps that were performed to create
the graph collection were pragmatic data engineering without the application of
any scienti�c approaches. Thus, we omit further details about them.

The starting point of the actual evaluation was a collection of about 188K
acyclic graphs. Each of the graphs contained 1 + d vertices that represent an in-
cident and all d available dimensions. Dimension types were represented by edge
labels and taxonomy paths were integrated into vertex labels, for example,
Incident location−−−−→ Iraq.Saladin.Tikrit. Sizes varied from about d = 5..20 vertices and
d + 1 edges. Some dimensions were present for every incident (e.g., date) while
other dimensions occurred in variable quantities from 0..d (e.g., actors).

4https://github.com/p3et/dmgm

157

We implemented two con�gurable command line applications to answer our
two analytical questions. Both programs included the DMGM implementation of
generalized multidimensional CSM. The di�erence of both programs was the pre-
processing of the graph collection, in particular, categorization and removal of
vertices and edges that corresponded to a category. The latter was applied to sup-
press trivial patterns. For example, if a graph is categorized by terrorism, it will
contains an edge Incident

type−−→ Terrorism. In this case all contained patterns of
this graph could be extended by this edge since all dimensions are connected to
the incident vertex. The resulting patterns like 2017 date←−− Incident

type−−→ Terrorism
will only increase result size but will not provide additional semantic value. Thus,
we removed them to decrease runtime and to avoid meaningless results.

To answer the �rst question (dimension characteristics) we added the dimen-
sion value as a graph property and removed vertex and edge that represented this
value before. In the case of more than one value for the selected dimension, we
duplicated the graphs. This leads to correct results for the characteristic mining
process. However, in the subsequent pattern selection (Section 3.5.4) we used the
original collection size before duplication to calculate correct relative values.

To answer the second analytical questions (dimension development) we �l-
tered graphs according to the containment of a particular dimension (e.g., terror-
ism), added a taxonomy path of the time dimension in desired granularity (e.g.,
YYYY.MM) and removed the vertex and edge that represent the date. The results
could then be represented by a support-matrix of dimension values (time) and pat-
terns to re�ect their development.

To rank result patterns we reimplemented GraphRank [71] by He and Singh.
In this approach every pattern is transformed into a feature vector and a p-value
is calculated based on the features’ probabilities to represent a patterns signi�-
cance. In particular, we implemented the simpli�ed model (Section 4 of [71]) and
used an implementation of the regularized beta function provided by Apache Com-
mons Math5. To make features con�gurable, we designed a generic approach that
allows the user to de�ne arbitrary features (Section 2 of [71]). Actual implementa-
tions that we have used in the evaluation were edge labels, i.e., which dimensions
appeared, vertex labels, i.e., which dimension values/entities appeared and the ver-
tex label co-occurrences, i.e., the common appearance of dimension values. The
probabilities were calculated based on the input collection, for example, the vertex
label co-occurrence feature Islamic State⇔ Terrorism had a high probability.

The output format were CSV �les whose columns represented patterns as well
as their support and signi�cance measures. Patterns were represented by ASCII
characters similar to Neo4j Cypher.

5http://commons.apache.org/proper/commons-math/javadocs/api-3.3/org/apache/

commons/math3/special/Beta.html

158

8.2.3 Evaluation results

Our major goal was a functional evaluation of generalized multidimensional char-
acteristic subgraph mining. The mining results were presented to an experienced
analyst of the security domain. He stated that the extracted knowledge corre-
sponds to the professional knowledge of security experts. On the one hand, this
means that we failed our goal to extract new knowledge. On the other hand, it
shows that our method is correct since CSM requires no domain knowledge as
input but extracts domain knowledge by a general algorithm. He further stated
that the result could be useful for someone who is new to the domain and for
monitoring. For example, if CSM is applied on a daily basis to observe particular
dimensions (e.g., countries) new patterns will be detected automatically.

As a minor goal, we aimed to evaluate result ranking of graph patterns. Unfor-
tunately, the p-value calculation of GraphRank failed for patterns with very low
probabilities. In particular, very frequent and trivial patterns had p-values close
to 1 and some less likely patterns had low p-values as expected. However, un-
likely but characteristic patterns lead to p-values with value NaN as the result of
a �oating point calculation [227]. We were able to trace the problem back to the
Apache Commons implementation of the regularized beta function. In previous
internal evaluations we observed the same e�ect with the p-value calculation of
[123, 145] by Micale et al. for large patterns with very rare labels. Since we are
neither experts in statistics nor in the implementation of statistical measures we
cannot just report our experience but have no explaination. As a work around we
just passed probabilities of all features to the user who could then apply a custom
result ranking using Microsoft Excel.

Due to a lack of time we could not carry out a systematic performance evalu-
ation. However, we can report an overall positive impression of DMGM’s perfor-
mance. All evaluations were made on a Intel i5 dual core laptop with 16GB RAM.
Response times of our analytical programs ranged from tens of seconds to a few
minutes even for very low minimum support thresholds such as 0.1%.

8.3 Conclusion

This dissertation investigated the usage of graph data models and graph data min-
ing for the analysis of business data to support decision-making. Therefore, we
developed a conceptional framework called BIIIG (Business Intelligence with Inte-
grated Instance Graphs). To provide a powerful example application we proposed
a novel method called Characteristic Subgraph Mining (CSM). Here, interrelated
domain data is represented by a collection of small graphs to extract patterns that
are correlated with business indicators (e.g., �nancial result). To enable CSM mul-
tiple subproblems of diverse nature were solved:

159

First of all, our approach requires to represent collections of attributed graphs
which may have attributes themselves to hold aggregated measure values and
graph dimensions. By an overview of recent database systems we showed that
there is neither a system nor a graph data model available that meets this re-
quirement. Thus, we proposed to extend the property graph model by the support
for graph properties and overlapping elements. Based on this data structure, we
further proposed the operations aggregation, selection and property transforma-
tion that are essential to implement CSM. The resulting Extended Property Graph
Model was the base of Gradoop, a distributed system from declarative graph an-
alytics. Gradoop has been under ongoing development since 2014. In June 2018
the project had 18 contributors and 115 stars on GitHub6 which are remarkable
numbers for an academic prototype without full time professional developers.

BIIIG’s prime motivation is the analysis of business data. In particular data of
business information systems is most interesting for the evaluation of BIIIG but,
unfortunately, most guarded by companies. Even in established cooperations we
were never able to access this type of data and we found only a single vendor of an
ERP system that gave us at least a test dataset. Thus, we developed FoodBroker, a
data generator based on business process simulation whose datasets imitate those
of business information systems.

Another crucial problem to which BIIIG provides an elaborate solution is the
transformation of relational data into property graphs. Neither previous approaches
nor the solutions provided by database vendors reach the functionality of BIIIG’s
metadata-driven graph transformation. In particular, our approach supports edge
properties, the transformation of multiple databases into a single graph and a �ex-
ible management of schema mappings. Although an all-encompassing solution
was never implemented single prototypes from academic and real-world evalua-
tions have shown that the concept can not only be applied to relational databases
but also to other structured data such as XML or JSON. BIIIG also includes a data
integration strategy that allows to link data from multiple sources and to repre-
sent entities that correspond to each other by a single vertex. With our algorithm
to extract business transaction graphs, we also presented a good starting point to
turn a graph of domain objects into a meaningful collection of graph transactions.

To the best of our knowledge, before BIIIG frequent subgraph mining in the
graph transaction setting was only applied to molecular datasets which are col-
lections of simple undirected graphs. Since this is not the case for business data
such as business transaction graphs, we extended the popular gSpan algorithm
to support directed multigraphs and to hold embeddings in main memory to im-
prove runtime. To make the algorithm applicable to scenarios where millions of
graphs have to be evaluated we even studied a horizontally scalable variant. With

6https://github.com/dbs-leipzig/gradoop

160

DIMSpan we presented a solution based on state-of-the-art Big Data technology
and with multiple optimizations. In experimental evaluations we were able to
show that DIMSpan is not only suitable for business intelligence but also performs
well in the classic scenario of molecular data.

Basic frequent subgraph mining is only of limited values since many inter-
esting patterns appear only at generalization. Thus, we presented the �rst study
about multidimensional generalized frequent subgraph mining. We proposed mul-
tiple algorithms to solve this problem. The most elaborate solution is exploiting
the fact that large parts of the combinatorial problem can be solved in the absence
of isomorphism resolution by decomposing it into frequent subgraph mining of
highly generalized patterns and an e�cient determination of all frequent special-
izations by frequent vector mining. In an experimental evaluation and by practical
experience we showed that this approach performs much better than a naive so-
lution that integrates generalizations into the graph structure.

We reported two real-word applications of characteristic subgraph mining. The
diversity of applications shows that BIIIG is not only useful for business intelli-
gence but can also help to detect patterns of fraud and security threats. As a major
result we state that the approach leads to correct, meaningful and interesting re-
sults. We see the most valuable application in the initial extraction of knowledge
from unknown data without a domain-speci�c hypothesis, i.e., it can discover un-
expected correlations in complex data. Thus, BIIIG’s �ndings can be the basis of
"hard-wired" business intelligence solutions such as tailored data warehouse mod-
els and productive data mining tools. However, we have also seen that usability
as well as the performance of distributed work�ows should be improved and that
result ranking still requires manual input.

We made the implementations of most of our prototypes available to the public.
In particular, there is Directed Multigraph Miner7 which provides parallel single
machine implementations for frequent subgraph mining in standard and general-
ized variant as well as characteristic subgraph mining based on both variants. In
June 2018 the library contained no further functionality than a database API and
the mining algorithms. For now, complex graph work�ows must be expressed in
plain Java. However, there are programming interfaces that make the contribu-
tion of operators straight forward. By contrast, there is Gradoop which supports
diverse data formats and includes business transaction graph extraction, FoodBro-
ker, DIMSpan and all EPGM operators that have been proposed in this dissertation.
However, due to the notable implementation e�ort in distributed systems we never
found the time to port the generalized and characteristic variants.

7https://github.com/p3et/dmgm

161

8.4 Future Research Directions

As already mentioned earlier in this dissertation there are still open problems
around graph-based data integration. First, there is the edge deduplication prob-
lem of Section 5.4.3. Further on, our current approach to vertex fusion (Section
5.4.2) includes a loss of information about inner cluster relationships and original
property values. To improve provenance, the application of a nested graph model
such as a recent approach [17] proposed by Bergami et al. could be investigated.
With a respective approach, correspondence clusters would be preserved as they
would just be nested into their representative and could be accessed or ignored
according to the current application’s demand.

Frequent subgraph mining is a very powerful technique but it is still the great-
est bottleneck of our analytical approach. Thus, in particular the horizontal scala-
bility should be improved further. Currently, all existing solutions follow synchro-
nized approaches, i.e., all workers perform a certain task concurrently and syn-
chronize after execution. This is the case for iterative solutions (e.g., DIMSpan)
as well as for the �lter and re�nement approach. Negative side-e�ects are an
increased memory usage of the level-wise search as all embeddings of one level
are kept in main memory at the same time (iterative approaches) or a potentially
huge number of subgraph-isomorphism testings (�lter and re�nement). The rea-
son for both issues are originated in constraints of the distributed data�ow pro-
gramming model. Thus, it should be investigated if, just like in graph processing,
asynchronous iterative approaches can be used to improve distributed FSM by re-
ducing waiting times and memory consumption.

Characteristic subgraph mining is a novel approach to analyze data of di�er-
ent source data models by the usage of graphs. Our functional evaluations in real-
world applications have shown that the approach leads to meaningful and inter-
esting results. However, our current implementation takes only few advantages of
category speci�c supports. In particular, we still use the anti-monotonic property
of frequent subgraph mining as our major pruning approach, i.e., follow a top-
down approach. Thus, we must potentially mine many trivial parent patterns �rst
before characteristic children can be found. Thus, future work should investigate,
if bottom-up or hybrid approaches that directly apply a user-de�ned interesting-
ness measure as pruning criterion could improve performance.

In the context of multidimensional generalized frequent subgraph mining we
have shown that a decomposition that minimizes isomorphism resolutions can in-
crease e�ciency, i.e., graphs are powerful and have a unique expressiveness but
when it comes to data mining their usage should be reduced to a minimum. Thus,
an approach similar to our decomposition method could be applied to FSM in gen-
eral. Since FSM algorithms evaluate only a single label per vertex every dimension
value must be presented by a single vertex, too. However, in many scenarios a

162

single logical entity can be assigned to multiple dimensions. For example, in the
evaluation with Immowelt Saalmann has expanded such multidimensional ver-
tices to star-shaped subgraphs. Thus, a frequent subgraph mining algorithm with
support for multiple labels per vertex should be developed. By doing so, a decom-
position strategy similar to GM-FSM could be applied. Finally, both approaches
could even be combined.

163

Bibliography

[1] Aggarwal, C. C., and Han, J., Eds. Frequent Pattern Mining. Springer, 2014.

[2] Agrawal, R., Imielinski, T., and Swami, A. N. Mining association rules
between sets of items in large databases. In Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data, Washington, D.C.,
May 26-28, 1993. (1993), pp. 207–216.

[3] Agrawal, R., and Srikant, R. Fast algorithms for mining association rules
in large databases. In VLDB’94, Proceedings of 20th International Conference
on Very Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile
(1994), pp. 487–499.

[4] Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J., Hueske, F., Heise,
A., Kao, O., Leich, M., Leser, U., Markl, V., Naumann, F., Peters, M.,
Rheinländer, A., Sax, M. J., Schelter, S., Höger, M., Tzoumas, K., and
Warneke, D. The stratosphere platform for big data analytics. VLDB J. 23,
6 (2014), 939–964.

[5] Ambler, S. W. Mapping objects to relational databases: What you need to
know and why. Ronin International (2000).

[6] Angles, R. A comparison of current graph database models. In Workshops
Proceedings of the IEEE 28th International Conference on Data Engineering,
ICDE 2012, Arlington, VA, USA, April 1-5, 2012 (2012), pp. 171–177.

[7] Angles, R., Arenas, M., Barceló, P., Boncz, P. A., Fletcher, G. H. L.,
Gutierrez, C., Lindaaker, T., Paradies, M., Plantikow, S., Seqeda, J. F.,
van Rest, O., and Voigt, H. G-CORE: A core for future graph query lan-
guages. In Proceedings of the 2018 International Conference on Management
of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018 (2018),
pp. 1421–1432.

[8] Angles, R., Boncz, P. A., Larriba-Pey, J., Fundulaki, I., Neumann, T., Er-
ling, O., Neubauer, P., Martínez-Bazan, N., Kotsev, V., and Toma, I. The
linked data benchmark council: a graph and RDF industry benchmarking ef-
fort. SIGMOD Record 43, 1 (2014), 27–31.

164

[9] Angles, R., and Gutiérrez, C. Survey of graph database models. ACM
Comput. Surv. 40, 1 (2008), 1:1–1:39.

[10] Aridhi, S., D’Orazio, L., Maddouri, M., and Mephu, E. A novel
MapReduce-based approach for distributed frequent subgraph mining. In
Reconnaissance de Formes et Intelligence Arti�cielle (RFIA) 2014 (France, June
2014).

[11] Arora, R., Goel, S., and Mittal, R. K. Using dependency graphs to support
collaboration over github: The neo4j graph database approach. In Ninth
International Conference on Contemporary Computing, IC3 2016, Noida, India,
August 11-13, 2016 (2016), pp. 1–7.

[12] Bader, D. A., and Madduri, K. Gtgraph: A synthetic graph generator suite.
Technical report, 2006.

[13] Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G. H. L., Lemay, A., and
Advokaat, N. gmark: Schema-driven generation of graphs and queries.
IEEE Trans. Knowl. Data Eng. 29, 4 (2017), 856–869.

[14] Bedi, P., and Sharma, C. Community detection in social networks. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 6, 3 (2016),
115–135.

[15] Beheshti, S., Benatallah, B., and Motahari-Nezhad, H. R. Scalable
graph-based OLAP analytics over process execution data. Distributed and
Parallel Databases 34, 3 (2016), 379–423.

[16] Beheshti, S., Benatallah, B., Nezhad, H. R. M., and Sakr, S. A query lan-
guage for analyzing business processes execution. In Business Process Man-
agement - 9th International Conference, BPM 2011, Clermont-Ferrand, France,
August 30 - September 2, 2011. Proceedings (2011), pp. 281–297.

[17] Bergami, G., Petermann, A., and Montesi, D. Thosp: an algorithm for
nesting property graphs. In Proceedings of the 1st ACM SIGMOD Joint In-
ternational Workshop on Graph Data Management Experiences & Systems
(GRADES) and Network Data Analytics (NDA), Houston, TX, USA, June 10,
2018 (2018), pp. 8:1–8:10.

[18] Bhuiyan, M., and Hasan, M. A. An iterative mapreduce based frequent
subgraph mining algorithm. IEEE Trans. Knowl. Data Eng. 27, 3 (2015), 608–
620.

[19] Bizer, C. D2R MAP - A database to RDF mapping language. In Proceedings of
the Twelfth International World Wide Web Conference - Posters, WWW 2003,
Budapest, Hungary, May 20-24, 2003 (2003).

165

[20] Bizer, C., and Schultz, A. The berlin SPARQL benchmark. Int. J. Semantic
Web Inf. Syst. 5, 2 (2009), 1–24.

[21] Bleco, D., and Kotidis, Y. Business intelligence on complex graph data. In
Proceedings of the 2012 Joint EDBT/ICDT Workshops, Berlin, Germany, March
30, 2012 (2012), pp. 13–20.

[22] Bleco, D., and Kotidis, Y. Graph analytics on massive collections of small
graphs. In Proceedings of the 17th International Conference on Extending
Database Technology, EDBT 2014, Athens, Greece, March 24-28, 2014. (2014),
pp. 523–534.

[23] Boncz, P. A. LDBC: benchmarks for graph and RDF data management. In
17th International Database Engineering & Applications Symposium, IDEAS
’13, Barcelona, Spain - October 09 - 11, 2013 (2013), pp. 1–2.

[24] Borgelt, C., and Berthold, M. R. Mining molecular fragments: Finding
relevant substructures of molecules. In Proceedings of the 2002 IEEE Interna-
tional Conference on DataMining (ICDM 2002), 9-12 December 2002, Maebashi
City, Japan (2002), pp. 51–58.

[25] Brin, S., Motwani, R., Ullman, J. D., and Tsur, S. Dynamic itemset count-
ing and implication rules for market basket data. In SIGMOD 1997, Proceed-
ings ACM SIGMOD International Conference on Management of Data, May
13-15, 1997, Tucson, Arizona, USA. (1997), pp. 255–264.

[26] Bringmann, B., and Nijssen, S. What is frequent in a single graph? In Ad-
vances in Knowledge Discovery andDataMining, 12th Paci�c-Asia Conference,
PAKDD 2008, Osaka, Japan, May 20-23, 2008 Proceedings (2008), pp. 858–863.

[27] Burdick, D., Calimlim, M., and Gehrke, J. MAFIA: A maximal frequent
itemset algorithm for transactional databases. In Proceedings of the 17th In-
ternational Conference on Data Engineering, April 2-6, 2001, Heidelberg, Ger-
many (2001), pp. 443–452.

[28] Calders, T., Ramon, J., and Dyck, D. V. Anti-monotonic overlap-graph
support measures. In Proceedings of the 8th IEEE International Conference on
Data Mining (ICDM 2008), December 15-19, 2008, Pisa, Italy (2008), pp. 73–82.

[29] Canim, M., and Chang, Y. System G data store: Big, rich graph data analyt-
ics in the cloud. In 2013 IEEE International Conference on Cloud Engineering,
IC2E 2013, San Francisco, CA, USA, March 25-27, 2013 (2013), pp. 328–337.

[30] Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., and
Tzoumas, K. Apache �ink™: Stream and batch processing in a single en-
gine. IEEE Data Eng. Bull. 38, 4 (2015), 28–38.

166

[31] Cattell, R. Scalable sql and nosql data stores. SIGMOD Rec. 39, 4 (May
2011), 12–27.

[32] Chakrabarti, D., Zhan, Y., and Faloutsos, C. R-MAT: A recursive model
for graph mining. In Proceedings of the Fourth SIAM International Conference
on Data Mining, Lake Buena Vista, Florida, USA, April 22-24, 2004 (2004),
pp. 442–446.

[33] Chaudhuri, S., Dayal, U., and Narasayya, V. R. An overview of business
intelligence technology. Commun. ACM 54, 8 (2011), 88–98.

[34] Chen, C., Yan, X., Zhu, F., Han, J., and Yu, P. S. Graph OLAP: towards
online analytical processing on graphs. In Proceedings of the 8th IEEE Inter-
national Conference on Data Mining (ICDM 2008), December 15-19, 2008, Pisa,
Italy (2008), pp. 103–112.

[35] Cheng, H., Yan, X., and Han, J. Mining graph patterns. In Aggarwal and
Han [1], pp. 307–338.

[36] Cheng, J., Ke, Y., and Ng, W. Graphgen — a synthetic graph data generator.
http://www.cse.ust.hk/graphgen/. Accessed: 2018-06-10.

[37] Codd, E. F. A relational model of data for large shared data banks. Commun.
ACM 13, 6 (June 1970), 377–387.

[38] Cook, D. J., and Holder, L. B. Substructure discovery using minimum
description length and background knowledge. J. Artif. Intell. Res. 1 (1994),
231–255.

[39] Damme, P., Habich, D., Hildebrandt, J., and Lehner, W. Lightweight
data compression algorithms: An experimental survey (experiments and
analyses). In Proceedings of the 20th International Conference on Extend-
ing Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017. (2017),
pp. 72–83.

[40] Das, S., Srinivasan, J., Perry, M., Chong, E. I., and Banerjee, J. A tale of
two graphs: Property graphs as RDF in oracle. In Proceedings of the 17th In-
ternational Conference on ExtendingDatabase Technology, EDBT 2014, Athens,
Greece, March 24-28, 2014. (2014), pp. 762–773.

[41] De Virgilio, R., Maccioni, A., and Torlone, R. Converting relational to
graph databases. In First InternationalWorkshop on Graph Data Management
Experiences and Systems (New York, NY, USA, 2013), GRADES ’13, ACM,
pp. 1:1–1:6.

167

[42] Dean, J., and Ghemawat, S. Mapreduce: simpli�ed data processing on large
clusters. Commun. ACM 51, 1 (2008), 107–113.

[43] Denis, B., Ghrab, A., and Skhiri, S. A distributed approach for graph-
oriented multidimensional analysis. In Proceedings of the 2013 IEEE Interna-
tional Conference on Big Data, 6-9 October 2013, Santa Clara, CA, USA (2013),
pp. 9–16.

[44] Diestel, R. Graph Theory, 4th Edition, vol. 173 of Graduate texts in mathe-
matics. Springer, 2012.

[45] Dominguez-Sal, D., Urbón-Bayes, P., Giménez-Vañó, A., Gómez-
Villamor, S., Martínez-Bazan, N., and Larriba-Pey, J. Survey of graph
database performance on the HPC scalable graph analysis benchmark. In
Web-Age Information Management - WAIM 2010 International Workshops:
IWGD 2010, XMLDM 2010, WCMT 2010, Jiuzhaigou Valley, China, July 15-
17, 2010, Revised Selected Papers (2010), pp. 37–48.

[46] Džeroski, S. Multi-relational data mining: An introduction. SIGKDD Explor.
Newsl. 5, 1 (July 2003), 1–16.

[47] Eavis, T., and Zheng, X. Multi-level frequent pattern mining. In Database
Systems for Advanced Applications, 14th International Conference, DASFAA
2009, Brisbane, Australia, April 21-23, 2009. Proceedings (2009), pp. 369–383.

[48] Elseidy, M., Abdelhamid, E., Skiadopoulos, S., and Kalnis, P. GRAMI:
frequent subgraph and pattern mining in a single large graph. PVLDB 7, 7
(2014), 517–528.

[49] Erling, O., Averbuch, A., Larriba-Pey, J., Chafi, H., Gubichev, A., Prat-
Pérez, A., Pham, M., and Boncz, P. A. The LDBC social network bench-
mark: Interactive workload. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015 (2015), pp. 619–630.

[50] Erling, O., and Mikhailov, I. RDF support in the virtuoso DBMS. In Net-
worked Knowledge - Networked Media - Integrating Knowledge Management,
New Media Technologies and Semantic Systems. 2009, pp. 7–24.

[51] Fahland, D., de Leoni, M., van Dongen, B. F., and van der Aalst, W.
M. P. Many-to-many: Some observations on interactions in artifact chore-
ographies. In 3rd Central-European Workshop on Services and their Composi-
tion, Services und ihre Komposition, ZEUS 2011, Karlsruhe, Germany, February
21-22, 2011. Proceedings (2011), pp. 9–15.

168

[52] Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., and Wu, Y. Graph pattern matching:
From intractable to polynomial time. Proc. VLDB Endow. 3, 1-2 (Sept. 2010),
264–275.

[53] Fazzinga, B., Flesca, S., Furfaro, F., Masciari, E., Pontieri, L., and
Pulice, C. How, who and when: Enhancing business process warehouses
by graph based queries. In Proceedings of the 20th International Database
Engineering & Applications Symposium, IDEAS 2016, Montreal, QC, Canada,
July 11-13, 2016 (2016), pp. 242–247.

[54] Fong, J. Converting relational to object-oriented databases. SIGMOD Record
26, 1 (1997), 53–58.

[55] Fong, J., Wong, H. K., and Cheng, Z. Converting relational database into
XML documents with DOM. Information & Software Technology 45, 6 (2003),
335–355.

[56] Fowler, M. Patterns of Enterprise Application Architecture. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[57] Freeman, L. C. Centrality in social networks conceptual clari�cation. Social
Networks 1, 3 (1978), 215 – 239.

[58] Gallagher, B. Matching structure and semantics: A survey on graph-based
pattern matching. AAAI FS 6 (2006), 45–53.

[59] Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., and Ja-
cobsen, H. Bigbench: towards an industry standard benchmark for big data
analytics. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013
(2013), pp. 1197–1208.

[60] Ghrab, A., Romero, O., Skhiri, S., Vaisman, A. A., and Zimányi, E. A
framework for building OLAP cubes on graphs. In Advances in Databases
and Information Systems - 19th East European Conference, ADBIS 2015,
Poitiers, France, September 8-11, 2015, Proceedings (2015), pp. 92–105.

[61] Golfarelli, M., Dario, M., and Rizzi, S. The dimensional fact model: A
conceptual model for data warehouses. International Journal of Cooperative
Information Systems 07, 02n03 (1998), 215–247.

[62] Golfarelli, M., Rizzi, S., and Cella, I. Beyond data warehousing: what’s
next in business intelligence? In DOLAP 2004, ACM Seventh International
Workshop on Data Warehousing and OLAP, Washington, DC, USA, November
12-13, 2004, Proceedings (2004), pp. 1–6.

169

[63] Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., and Guestrin, C. Power-
graph: Distributed graph-parallel computation on natural graphs. In 10th
USENIX Symposium on Operating Systems Design and Implementation, OSDI
2012, Hollywood, CA, USA, October 8-10, 2012 (2012), pp. 17–30.

[64] Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J., and
Stoica, I. Graphx: Graph processing in a distributed data�ow framework. In
11th USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’14, Broom�eld, CO, USA, October 6-8, 2014. (2014), pp. 599–613.

[65] Gouda, K., and Zaki, M. J. E�ciently mining maximal frequent itemsets.
In Proceedings of the 2001 IEEE International Conference on Data Mining, 29
November - 2 December 2001, San Jose, California, USA (2001), pp. 163–170.

[66] Gupta, A. Generating large-scale heterogeneous graphs for benchmarking.
In Specifying Big Data Benchmarks - First Workshop, WBDB 2012, San Jose,
CA, USA, May 8-9, 2012, and Second Workshop, WBDB 2012, Pune, India, De-
cember 17-18, 2012, Revised Selected Papers (2012), pp. 113–128.

[67] Han, J., and Fu, Y. Mining multiple-level association rules in large
databases. IEEE Trans. Knowl. Data Eng. 11, 5 (1999), 798–804.

[68] Han, J., Kamber, M., and Pei, J. Data Mining: Concepts and Techniques, 3rd
edition. Morgan Kaufmann, 2011.

[69] Han, J., Pei, J., and Yin, Y. Mining frequent patterns without candidate
generation. In Proceedings of the 2000 ACM SIGMOD International Conference
onManagement of Data, May 16-18, 2000, Dallas, Texas, USA. (2000), pp. 1–12.

[70] Hartig, O., and Thompson, B. Foundations of an alternative approach to
rei�cation in RDF. CoRR abs/1406.3399 (2014).

[71] He, H., and Singh, A. K. Graphrank: Statistical modeling and mining of
signi�cant subgraphs in the feature space. In Proceedings of the 6th IEEE
International Conference on Data Mining (ICDM 2006), 18-22 December 2006,
Hong Kong, China (2006), pp. 885–890.

[72] Hill, S., Srichandan, B., and Sunderraman, R. An iterative mapre-
duce approach to frequent subgraph mining in biological datasets. In
ACM International Conference on Bioinformatics, Computational Biology and
Biomedicine, BCB’ 12, Orlando, FL, USA - October 08 - 10, 2012 (2012), pp. 661–
666.

[73] Holzschuher, F., and Peinl, R. Performance of graph query languages:
comparison of cypher, gremlin and native access in neo4j. In Joint 2013

170

EDBT/ICDT Conferences, EDBT/ICDT ’13, Genoa, Italy, March 22, 2013, Work-
shop Proceedings (2013), ACM, pp. 195–204.

[74] Huan, J., Wang, W., and Prins, J. E�cient mining of frequent subgraphs
in the presence of isomorphism. In Proceedings of the 3rd IEEE International
Conference on Data Mining (ICDM 2003), 19-22 December 2003, Melbourne,
Florida, USA (2003), pp. 549–552.

[75] Huan, J., Wang, W., Prins, J., and Yang, J. SPIN: mining maximal frequent
subgraphs from graph databases. In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Seattle,
Washington, USA, August 22-25, 2004 (2004), pp. 581–586.

[76] Inokuchi, A. Mining generalized substructures from a set of labeled graphs.
In Proceedings of the 4th IEEE International Conference on DataMining (ICDM
2004), 1-4 November 2004, Brighton, UK (2004), pp. 415–418.

[77] Inokuchi, A., Washio, T., and Motoda, H. An apriori-based algorithm for
mining frequent substructures from graph data. In Principles of Data Mining
and Knowledge Discovery, 4th European Conference, PKDD 2000, Lyon, France,
September 13-16, 2000, Proceedings (2000), pp. 13–23.

[78] Iordanov, B. Hypergraphdb: A generalized graph database. In Web-Age
Information Management - WAIM 2010 International Workshops: IWGD 2010,
XMLDM 2010, WCMT 2010, Jiuzhaigou Valley, China, July 15-17, 2010, Re-
vised Selected Papers (2010), Springer, pp. 25–36.

[79] Iosup, A., Hegeman, T., Ngai, W. L., Heldens, S., Prat-Pérez, A., Man-
hardt, T., Chafi, H., Capota, M., Sundaram, N., Anderson, M. J., Tanase,
I. G., Xia, Y., Nai, L., and Boncz, P. A. LDBC graphalytics: A benchmark
for large-scale graph analysis on parallel and distributed platforms. PVLDB
9, 13 (2016), 1317–1328.

[80] Jain, N., Liao, G., and Willke, T. L. Graphbuilder: scalable graph ETL
framework. In First International Workshop on Graph Data Management
Experiences and Systems, GRADES 2013, co-loated with SIGMOD/PODS 2013,
New York, NY, USA, June 24, 2013 (2013), p. 4.

[81] Jayanthi, B., Duraiswamy, K., et al. A novel algorithm for cross level
frequent pattern mining in multidatasets. International Journal of Computer
Applications (0975–8887) Vol 37 (2012).

[82] Jiang, C., Coenen, F., and Zito, M. A survey of frequent subgraph mining
algorithms. Knowledge Eng. Review 28, 1 (2013), 75–105.

171

[83] Jindal, A., and Madden, S. Graphiql: A graph intuitive query language for
relational databases. In 2014 IEEE International Conference on Big Data, Big
Data 2014, Washington, DC, USA, October 27-30, 2014 (2014), pp. 441–450.

[84] Junghanns, M., Kiessling, M., Averbuch, A., Petermann, A., and Rahm,
E. Cypher-based graph pattern matching in GRADOOP. In Proceedings of
the Fifth International Workshop on Graph Data-management Experiences &
Systems, GRADES@SIGMOD/PODS 2017, Chicago, IL, USA, May 14 - 19, 2017
(2017), pp. 3:1–3:8.

[85] Junghanns, M., Kiessling, M., Teichmann, N., Gómez, K., Petermann, A.,
and Rahm, E. Declarative and distributed graph analytics with GRADOOP.
PVLDB to appear (2018).

[86] Junghanns, M., Petermann, A., Gómez, K., and Rahm, E. GRADOOP:
scalable graph data management and analytics with hadoop. CoRR
abs/1506.00548 (2015).

[87] Junghanns, M., Petermann, A., Neumann, M., and Rahm, E. Management
and analysis of big graph data: Current systems and open challenges. In
Handbook of Big Data Technologies. 2017, pp. 457–505.

[88] Junghanns, M., Petermann, A., and Rahm, E. Distributed grouping of
property graphs with GRADOOP. In Datenbanksysteme für Business, Tech-
nologie und Web (BTW 2017), 17. Fachtagung des GI-Fachbereichs „Daten-
banken und Informationssysteme" (DBIS), 6.-10. März 2017, Stuttgart, Ger-
many, Proceedings (2017), pp. 103–122.

[89] Junghanns, M., Petermann, A., Teichmann, N., Gómez, K., and Rahm, E.
Analyzing extended property graphs with apache �ink. In Proceedings of
the 1st ACM SIGMOD Workshop on Network Data Analytics, NDA@SIGMOD
2016, San Francisco, California, USA, July 1, 2016 (2016), pp. 3:1–3:8.

[90] Junghanns, M., Petermann, A., Teichmann, N., and Rahm, E. The
big picture: Understanding large-scale graphs using graph grouping with
GRADOOP. In Datenbanksysteme für Business, Technologie und Web (BTW
2017), 17. Fachtagung des GI-Fachbereichs „Datenbanken und Information-
ssysteme" (DBIS), 6.-10. März 2017, Stuttgart, Germany, Proceedings (2017),
pp. 629–632.

[91] Ke, Y., Cheng, J., and Yu, J. X. E�cient discovery of frequent correlated
subgraph pairs. In ICDM 2009, The Ninth IEEE International Conference on
Data Mining, Miami, Florida, USA, 6-9 December 2009 (2009), pp. 239–248.

172

[92] Kemper, S., Petermann, A., and Junghanns, M. Distributed foodbroker:
Skalierbare generierung graphbasierter geschäftsprozessdaten. In Daten-
banksysteme für Business, Technologie und Web (BTW 2017), 17. Fachtagung
des GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 6.-10.
März 2017, Stuttgart, Germany, Workshopband (2017), pp. 105–110.

[93] Kessl, R., Talukder, N., Anchuri, P., and Zaki, M. J. Parallel graph min-
ing with gpus. In Proceedings of the 3rd International Workshop on Big Data,
Streams and Heterogeneous Source Mining: Algorithms, Systems, Program-
ming Models and Applications, BigMine 2014, New York City, USA, August 24,
2014 (2014), pp. 1–16.

[94] Khayyat, Z., Awara, K., Alonazi, A., Jamjoom, H., Williams, D., and Kal-
nis, P. Mizan: a system for dynamic load balancing in large-scale graph
processing. In Eighth Eurosys Conference 2013, EuroSys ’13, Prague, Czech
Republic, April 14-17, 2013 (2013), pp. 169–182.

[95] Khetrapal, A., and Ganesh, V. Hbase and hypertable for large scale
distributed storage systems. Dept. of Computer Science, Purdue University
(2006), 22–28.

[96] Kimball, R., and Ross, M. The data warehouse toolkit: the complete guide to
dimensional modeling. John Wiley & Sons, 2011.

[97] Koller, D., and Friedman, N. Probabilistic Graphical Models - Principles and
Techniques. MIT Press, 2009.

[98] Koop, D., Freire, J., and Silva, C. T. Visual summaries for graph collections.
In IEEE Paci�c Visualization Symposium, Paci�cVis 2013, February 27 2013-
March 1, 2013, Sydney, NSW, Australia (2013), pp. 57–64.

[99] Köpcke, H., and Rahm, E. Frameworks for entity matching: A comparison.
Data Knowl. Eng. 69, 2 (Feb. 2010), 197–210.

[100] Kotidis, Y. Extending the data warehouse for service provisioning data.
Data Knowl. Eng. 59, 3 (2006), 700–724.

[101] Kuramochi, M., and Karypis, G. Frequent subgraph discovery. In Proceed-
ings of the 2001 IEEE International Conference on Data Mining, 29 November
- 2 December 2001, San Jose, California, USA (2001), pp. 313–320.

[102] Kuramochi, M., and Karypis, G. Finding frequent patterns in a large sparse
graph*. Data Min. Knowl. Discov. 11, 3 (2005), 243–271.

[103] Kyrola, A., Blelloch, G. E., and Guestrin, C. Graphchi: Large-scale graph
computation on just a PC. In 10th USENIX Symposium on Operating Systems

173

Design and Implementation, OSDI 2012, Hollywood, CA, USA, October 8-10,
2012 (2012), pp. 31–46.

[104] Lam, D. N., Liu, A. Y., and Martin, C. E. Graph-Based Data Warehousing
Using the Core-Facets Model. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011, pp. 240–254.

[105] Lee, S., Park, B. H., Lim, S., and Shankar, M. Table2graph: A scalable
graph construction from relational tables using map-reduce. In First IEEE
International Conference on Big Data Computing Service and Applications,
BigDataService 2015, Redwood City, CA, USA, March 30 - April 2, 2015 (2015),
pp. 294–301.

[106] Lemire, D., and Boytsov, L. Decoding billions of integers per second
through vectorization. Softw., Pract. Exper. 45, 1 (2015), 1–29.

[107] Lenzerini, M. Data integration: A theoretical perspective. In Proceedings of
the Twenty-�rst ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (New York, NY, USA, 2002), PODS ’02, ACM, pp. 233–246.

[108] Lijffijt, J., Papapetrou, P., and Puolamäki, K. A statistical signi�cance
testing approach to mining the most informative set of patterns. Data Min.
Knowl. Discov. 28, 1 (2014), 238–263.

[109] Lin, W., Xiao, X., and Ghinita, G. Large-scale frequent subgraph mining
in mapreduce. In IEEE 30th International Conference on Data Engineering,
Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014 (2014), pp. 844–855.

[110] Ling, Z. J., Tran, Q. T., Fan, J., Koh, G. C. H., Nguyen, T., Tan, C. S., Yip, J.
W. L., and Zhang, M. GEMINI: an integrative healthcare analytics system.
PVLDB 7, 13 (2014), 1766–1771.

[111] Liu, J., and Zhang, X. X. Dynamic labeling scheme for XML updates.
Knowl.-Based Syst. 106 (2016), 135–149.

[112] Liu, Y., Dighe, A., Safavi, T., and Koutra, D. Graph summarization meth-
ods and applications: A survey. CoRR abs/1612.04883 (2018).

[113] Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and Heller-
stein, J. M. Distributed graphlab: A framework for machine learning in the
cloud. PVLDB 5, 8 (2012), 716–727.

[114] Lu, W., Chen, G., Tung, A. K. H., and Zhao, F. E�ciently extracting fre-
quent subgraphs using mapreduce. In Proceedings of the 2013 IEEE Interna-
tional Conference on Big Data, 6-9 October 2013, Santa Clara, CA, USA (2013),
pp. 639–647.

174

[115] Lysenko, A., Roznovat, I. A., Saqi, M., Mazein, A., Rawlings, C. J., and
Auffray, C. Representing and querying disease networks using graph
databases. BioData Mining 9 (2016), 23.

[116] Maatuk, A. M., Ali, M. A., and Rossiter, B. N. Converting relational
databases into object-relational databases. Journal of Object Technology 9,
2 (2010), 145–161.

[117] Malewicz, G., Austern, M. H., Bik, A. J. C., Dehnert, J. C., Horn, I.,
Leiser, N., and Czajkowski, G. Pregel: a system for large-scale graph
processing. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10,
2010 (2010), pp. 135–146.

[118] Martínez-Bazan, N., Gómez-Villamor, S., and Escale-Claveras, F. DEX:
A high-performance graph database management system. InWorkshops Pro-
ceedings of the 27th International Conference on Data Engineering, ICDE 2011,
April 11-16, 2011, Hannover, Germany (2011), pp. 124–127.

[119] Marton, J., Szárnyas, G., and Varró, D. Formalising opencypher graph
queries in relational algebra. In Advances in Databases and Information Sys-
tems - 21st European Conference, ADBIS 2017, Nicosia, Cyprus, September 24-
27, 2017, Proceedings (2017), pp. 182–196.

[120] Meinl, T., Wörlein, M., Fischer, I., and Philippsen, M. Mining molecular
datasets on symmetric multiprocessor systems. In Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, Taipei, Taiwan,
October 8-11, 2006 (2006), pp. 1269–1274.

[121] Meng, X., Bradley, J. K., Yavuz, B., Sparks, E. R., Venkataraman, S., Liu,
D., Freeman, J., Tsai, D. B., Amde, M., Owen, S., Xin, D., Xin, R., Franklin,
M. J., Zadeh, R., Zaharia, M., and Talwalkar, A. Mllib: Machine learning
in apache spark. Journal of Machine Learning Research 17 (2016), 34:1–34:7.

[122] Menge, F. Enterprise service bus. In Free and open source software conference
(2007), vol. 2, pp. 1–6.

[123] Micale, G., Giugno, R., Ferro, A., Mongiovì, M., Shasha, D. E., and Pul-
virenti, A. Fast analytical methods for �nding signi�cant labeled graph
motifs. Data Min. Knowl. Discov. 32, 2 (2018), 504–531.

[124] Miliaraki, I., Berberich, K., Gemulla, R., and Zoupanos, S. Mind the gap:
large-scale frequent sequence mining. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2013, New York,
NY, USA, June 22-27, 2013 (2013), pp. 797–808.

175

[125] Miller, J. J. Graph database applications and concepts with neo4j. In Pro-
ceedings of the Southern Association for Information Systems Conference, At-
lanta, GA, USA (2013), vol. 2324, p. 36.

[126] Murphy, R. C., Wheeler, K. B., Barrett, B. W., and Ang, J. A. Introducing
the graph 500. Cray Users Group (CUG) 19 (2010), 45–74.

[127] Nagumey, A. Book review : Parallel and distributed computation: Numer-
ical methods: Dimitri p. bertsekas and john n. tsitsiklis. 1989. englewood
cli�s, new jersey: Prentice-hall. 715 pp. $40. IJHPCA 3, 4 (1989), 73–74.

[128] Nentwig, M., Hartung, M., Ngomo, A. N., and Rahm, E. A survey of
current link discovery frameworks. Semantic Web 8, 3 (2017), 419–436.

[129] Nijssen, S., and Kok, J. N. The gaston tool for frequent subgraph mining.
Electr. Notes Theor. Comput. Sci. 127, 1 (2005), 77–87.

[130] Nijssen, S., and Kok, J. N. Frequent subgraph miners: Runtime don’t say ev-
erything. In Proceedings of the International Workshop on Mining and Learn-
ing with Graphs (MLG 2006 (2006), pp. 173–180.

[131] Nooijen, E. H. J., van Dongen, B. F., and Fahland, D. Automatic dis-
covery of data-centric and artifact-centric processes. In Business Process
Management Workshops - BPM 2012 International Workshops, Tallinn, Esto-
nia, September 3, 2012. Revised Papers (2012), pp. 316–327.

[132] O’Neil, E. J. Object/relational mapping 2008: Hibernate and the entity data
model (edm). In Proceedings of the 2008 ACM SIGMOD International Confer-
ence onManagement of Data (New York, NY, USA, 2008), SIGMOD ’08, ACM,
pp. 1351–1356.

[133] Page, L., Brin, S., Motwani, R., and Winograd, T. The pagerank citation
ranking: Bringing order to the web. Technical Report 1999-66, Stanford
InfoLab, November 1999. Previous number = SIDL-WP-1999-0120.

[134] Park, Y., Shankar, M., Park, B., and Ghosh, J. Graph databases for large-
scale healthcare systems: A framework for e�cient data management and
data services. In Workshops Proceedings of the 30th International Conference
on Data EngineeringWorkshops, ICDE 2014, Chicago, IL, USA,March 31 - April
4, 2014 (2014), pp. 12–19.

[135] Pasqier, N., Bastide, Y., Taouil, R., and Lakhal, L. Discovering frequent
closed itemsets for association rules. In Database Theory - ICDT ’99, 7th
International Conference, Jerusalem, Israel, January 10-12, 1999, Proceedings.
(1999), pp. 398–416.

176

[136] Pei, J., and Han, J. Constrained frequent pattern mining: a pattern-growth
view. SIGKDD Explorations 4, 1 (2002), 31–39.

[137] Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U.,
and Hsu, M. Mining sequential patterns by pattern-growth: The pre�xspan
approach. IEEE Trans. Knowl. Data Eng. 16, 11 (2004), 1424–1440.

[138] Petermann, A. Graph pattern mining for business decision support. In
Proceedings of the VLDB 2017 PhDWorkshop co-located with the 43rd Interna-
tional Conference on Very Large Databases (VLDB 2017), Munich, Germany,
August 28, 2017. (2017).

[139] Petermann, A., and Junghanns, M. Scalable business intelligence with
graph collections. it - Information Technology 58, 4 (2016), 166–175.

[140] Petermann, A., Junghanns, M., Kemper, S., Gómez, K., Teichmann, N.,
and Rahm, E. Graph mining for complex data analytics. In IEEE Interna-
tional Conference on Data Mining Workshops, ICDMWorkshops 2016, Decem-
ber 12-15, 2016, Barcelona, Spain. (2016), pp. 1316–1319.

[141] Petermann, A., Junghanns, M., Müller, R., and Rahm, E. BIIIG: enabling
business intelligence with integrated instance graphs. In Workshops Pro-
ceedings of the 30th International Conference on Data Engineering Workshops,
ICDE 2014, Chicago, IL, USA, March 31 - April 4, 2014 (2014), pp. 4–11.

[142] Petermann, A., Junghanns, M., Müller, R., and Rahm, E. Foodbroker -
generating synthetic datasets for graph-based business analytics. In BigData
Benchmarking - 5th International Workshop, WBDB 2014, Potsdam, Germany,
August 5-6, 2014, Revised Selected Papers (2014), pp. 145–155.

[143] Petermann, A., Junghanns, M., Müller, R., and Rahm, E. Graph-based
data integration and business intelligence with BIIIG. PVLDB 7, 13 (2014),
1577–1580.

[144] Petermann, A., Junghanns, M., and Rahm, E. Dimspan: Transactional
frequent subgraph mining with distributed in-memory data�ow systems.
In Proceedings of the Fourth IEEE/ACM International Conference on Big Data
Computing, Applications and Technologies (New York, NY, USA, 2017), BD-
CAT ’17, ACM, pp. 237–246.

[145] Petermann, A., Micale, G., Bergami, G., Pulvirenti, A., and Rahm, E.
Mining and ranking of generalized multi-dimensional frequent subgraphs.
In 2017 Twelfth International Conference on Digital Information Management
(ICDIM) (Sept 2017), pp. 236–245.

177

[146] Pham, M., Boncz, P. A., and Erling, O. S3G2: A scalable structure-
correlated social graph generator. In Selected Topics in Performance Eval-
uation and Benchmarking - 4th TPC Technology Conference, TPCTC 2012, Is-
tanbul, Turkey, August 27, 2012, Revised Selected Papers (2012), pp. 156–172.

[147] Pham, M., Passing, L., Erling, O., and Boncz, P. A. Deriving an emergent
relational schema from RDF data. In Proceedings of the 24th International
Conference on World Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015
(2015), pp. 864–874.

[148] Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., and Dayal, U. Multi-
dimensional sequential pattern mining. In Proceedings of the 2001 ACM
CIKM International Conference on Information and Knowledge Management,
Atlanta, Georgia, USA, November 5-10, 2001 (2001), pp. 81–88.

[149] Plantevit, M., Laurent, A., Laurent, D., Teisseire, M., and Choong,
Y. W. Mining multidimensional and multilevel sequential patterns. TKDD
4, 1 (2010), 4:1–4:37.

[150] Poulovassilis, A., and Levene, M. A nested-graph model for the repre-
sentation and manipulation of complex objects. ACM Trans. Inf. Syst. 12, 1
(1994), 35–68.

[151] Power, D. J., Sharda, R., and Burstein, F. Decision support systems. Wiley
Encyclopedia of Management 7 (2015), 1–4.

[152] Qiao, F., Zhang, X., Li, P., Ding, Z., Jia, S., and Wang, H. A parallel ap-
proach for frequent subgraph mining in a single large graph using spark.
Applied Sciences 8, 2 (2018), 230.

[153] �, Q., Zhu, F., Yan, X., Han, J., Yu, P. S., and Li, H. E�cient topological
OLAP on information networks. In Database Systems for Advanced Applica-
tions - 16th International Conference, DASFAA 2011, Hong Kong, China, April
22-25, 2011, Proceedings, Part I (2011), pp. 389–403.

[154] Rahimian, F., Payberah, A. H., Girdzijauskas, S., and Haridi, S. Dis-
tributed vertex-cut partitioning. In Distributed Applications and Interoper-
able Systems - 14th IFIP WG 6.1 International Conference, DAIS 2014, Held
as Part of the 9th International Federated Conference on Distributed Comput-
ing Techniques, DisCoTec 2014, Berlin, Germany, June 3-5, 2014, Proceedings
(2014), pp. 186–200.

[155] Rahm, E., and Bernstein, P. A. A survey of approaches to automatic
schema matching. The VLDB Journal 10, 4 (Dec. 2001), 334–350.

178

[156] Ranu, S., and Singh, A. K. Graphsig: A scalable approach to mining sig-
ni�cant subgraphs in large graph databases. In Proceedings of the 25th Inter-
national Conference on Data Engineering, ICDE 2009, March 29 2009 - April 2
2009, Shanghai, China (2009), pp. 844–855.

[157] Rodriguez, M. A., and Neubauer, P. Constructions from dots and lines.
Bulletin of the Association for Information Science and Technology 36, 6 (2010),
35–41.

[158] Roy, A., Bindschaedler, L., Malicevic, J., and Zwaenepoel, W. Chaos:
scale-out graph processing from secondary storage. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP 2015, Monterey, CA,
USA, October 4-7, 2015 (2015), pp. 410–424.

[159] Rudolf, M., Paradies, M., Bornhövd, C., and Lehner, W. The graph story
of the SAP HANA database. In Datenbanksysteme für Business, Technologie
und Web (BTW), 15. Fachtagung des GI-Fachbereichs "Datenbanken und In-
formationssysteme" (DBIS), 11.-15.3.2013 inMagdeburg, Germany. Proceedings
(2013), pp. 403–420.

[160] Rudolf, M., Paradies, M., Bornhövd, C., and Lehner, W. Synopsys: Large
graph analytics in the sap hana database through summarization. In First
International Workshop on Graph Data Management Experiences and Systems
(New York, NY, USA, 2013), GRADES ’13, ACM, pp. 16:1–16:6.

[161] Rudolf, M., Voigt, H., Bornhövd, C., and Lehner, W. Synopsys: Founda-
tions for multidimensional graph analytics. In Enabling Real-Time Business
Intelligence - International Workshops, BIRTE 2013, Riva del Garda, Italy, Au-
gust 26, 2013, and BIRTE 2014, Hangzhou, China, September 1, 2014, Revised
Selected Papers (2014), pp. 159–166.

[162] Saalmann, E. Fallstudie zu graphbasierter Business Intelligence mit
Gradoop am Beispiel der Immobilienwirtschaft. In Bachelor’s Thesis (2017),
University of Leipzig.

[163] Saeedi, A., Peukert, E., and Rahm, E. Comparative evaluation of dis-
tributed clustering schemes for multi-source entity resolution. In Advances
in Databases and Information Systems (Cham, 2017), M. Kirikova, K. Nørvåg,
and G. A. Papadopoulos, Eds., Springer International Publishing, pp. 278–
293.

[164] Saigo, H., Krämer, N., and Tsuda, K. Partial least squares regression for
graph mining. In Proceedings of the 14th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA,
August 24-27, 2008 (2008), pp. 578–586.

179

[165] Salihoglu, S., and Widom, J. GPS: a graph processing system. In Con-
ference on Scienti�c and Statistical Database Management, SSDBM ’13, Balti-
more, MD, USA, July 29 - 31, 2013 (2013), pp. 22:1–22:12.

[166] Seqeda, J. F., Arenas, M., and Miranker, D. P. On directly mapping rela-
tional databases to RDF and OWL. In Proceedings of the 21st WorldWideWeb
Conference 2012, WWW 2012, Lyon, France, April 16-20, 2012 (2012), pp. 649–
658.

[167] Shahrivari, S., and Jalili, S. Distributed discovery of frequent subgraphs
of a network using mapreduce. Computing 97, 11 (2015), 1101–1120.

[168] Soussi, R., Cuvelier, E., Aufaure, M., Louati, A., and Lechevallier, Y.
DB2SNA: an all-in-one tool for extraction and aggregation of underlying
social networks from relational databases. In The In�uence of Technology on
Social Network Analysis and Mining. Springer, 2013, pp. 521–545.

[169] Srikant, R., and Agrawal, R. Mining generalized association rules. In
VLDB’95, Proceedings of 21th International Conference on Very Large Data
Bases, September 11-15, 1995, Zurich, Switzerland. (1995), pp. 407–419.

[170] Srikant, R., and Agrawal, R. Mining sequential patterns: Generaliza-
tions and performance improvements. In Advances in Database Technology
- EDBT’96, 5th International Conference on Extending Database Technology,
Avignon, France, March 25-29, 1996, Proceedings (1996), pp. 3–17.

[171] Stratikopoulos, A., Chrysos, G., Papaefstathiou, I., and Dollas, A.
Hpc-gspan: An fpga-based parallel system for frequent subgraph mining.
In 24th International Conference on Field Programmable Logic and Applica-
tions, FPL 2014, Munich, Germany, 2-4 September, 2014 (2014), pp. 1–4.

[172] Stutz, P., Bernstein, A., and Cohen, W. W. Signal/collect: Graph algo-
rithms for the (semantic) web. In The Semantic Web - ISWC 2010 - 9th Inter-
national Semantic Web Conference, ISWC 2010, Shanghai, China, November
7-11, 2010, Revised Selected Papers, Part I (2010), pp. 764–780.

[173] Sun, W., Fokoue, A., Srinivas, K., Kementsietsidis, A., Hu, G., and Xie,
G. T. Sqlgraph: An e�cient relational-based property graph store. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015 (2015), pp. 1887–
1901.

[174] Teixeira, C. H. C., Fonseca, A. J., Serafini, M., Siganos, G., Zaki, M. J.,
and Aboulnaga, A. Arabesque: a system for distributed graph mining.

180

In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP
2015, Monterey, CA, USA, October 4-7, 2015 (2015), ACM, pp. 425–440.

[175] Thomas, L. T., Valluri, S. R., and Karlapalem, K. MARGIN: maximal
frequent subgraph mining. In Proceedings of the 6th IEEE International Con-
ference on Data Mining (ICDM 2006), 18-22 December 2006, Hong Kong, China
(2006), pp. 1097–1101.

[176] Tian, Y., Balmin, A., Corsten, S. A., Tatikonda, S., and McPherson, J.
From "think like a vertex" to "think like a graph". PVLDB 7, 3 (2013), 193–
204.

[177] Tian, Y., Hankins, R. A., and Patel, J. M. E�cient aggregation for graph
summarization. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12,
2008 (2008), pp. 567–580.

[178] van der Aalst, W. M. P. Process mining: Overview and opportunities. ACM
Trans. Management Inf. Syst. 3, 2 (2012), 7:1–7:17.

[179] Vanetik, N., Gudes, E., and Shimony, S. E. Computing frequent graph pat-
terns from semistructured data. In Proceedings of the 2002 IEEE International
Conference on Data Mining (ICDM 2002), 9-12 December 2002, Maebashi City,
Japan (2002), pp. 458–465.

[180] Vasilyeva, E., Thiele, M., Bornhövd, C., and Lehner, W. Leveraging �ex-
ible data management with graph databases. In First International Work-
shop on Graph Data Management Experiences and Systems, GRADES 2013,
co-loated with SIGMOD/PODS 2013, New York, NY, USA, June 24, 2013 (2013),
p. 12.

[181] Verma, S., Leslie, L. M., Shin, Y., and Gupta, I. An experimental compar-
ison of partitioning strategies in distributed graph processing. PVLDB 10, 5
(2017), 493–504.

[182] Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., and Wilkins, D. A
comparison of a graph database and a relational database: a data provenance
perspective. In Proceedings of the 48th Annual Southeast Regional Conference,
2010, Oxford, MS, USA, April 15-17, 2010 (2010), p. 42.

[183] Vo, B., Nguyen, D., and Nguyen, T. A parallel algorithm for frequent sub-
graph mining. In Advanced Computational Methods for Knowledge Engineer-
ing - Proceedings of 3rd International Conference on Computer Science, Applied
Mathematics and Applications - ICCSAMA 2015, Metz, France, 11-13May, 2015
(2015), pp. 163–173.

181

[184] Wang, C., Wang, W., Pei, J., Zhu, Y., and Shi, B. Scalable mining of large
disk-based graph databases. In Proceedings of the Tenth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, Seattle, Wash-
ington, USA, August 22-25, 2004 (2004), pp. 316–325.

[185] Wang, T., Huang, H., Lu, W., Peng, Z., and Du, X. E�cient and scalable
mining of frequent subgraphs using distributed graph processing systems.
In Database Systems for Advanced Applications - 23rd International Confer-
ence, DASFAA 2018, Gold Coast, QLD, Australia, May 21-24, 2018, Proceedings,
Part I (2018), pp. 891–907.

[186] Wang, X., Zhang, D., Gu, T., and Pung, H. K. Ontology based context
modeling and reasoning using OWL. In 2nd IEEE Conference on Pervasive
Computing and Communications Workshops (PerCom 2004 Workshops), 14-17
March 2004, Orlando, FL, USA (2004), pp. 18–22.

[187] Wang, Z., Fan, Q., Wang, H., Tan, K., Agrawal, D., and El Abbadi, A.
Pagrol: Parallel graph olap over large-scale attributed graphs. In IEEE 30th
International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA,
March 31 - April 4, 2014 (2014), pp. 496–507.

[188] Webb, G. I. Discovering signi�cant patterns. Machine Learning 68, 1 (2007),
1–33.

[189] Weske, M. Business Process Management - Concepts, Languages, Architec-
tures, 2nd Edition. Springer, 2012.

[190] Wörlein, M., Meinl, T., Fischer, I., and Philippsen, M. A quantitative
comparison of the subgraph miners mofa, gspan, �sm, and gaston. InKnowl-
edge Discovery in Databases: PKDD 2005, 9th European Conference on Princi-
ples and Practice of Knowledge Discovery in Databases, Porto, Portugal, Octo-
ber 3-7, 2005, Proceedings (2005), pp. 392–403.

[191] Xia, Y., Tanase, I. G., Nai, L., Tan, W., Liu, Y., Crawford, J., and Lin,
C. Graph analytics and storage. In 2014 IEEE International Conference on
Big Data, Big Data 2014, Washington, DC, USA, October 27-30, 2014 (2014),
pp. 942–951.

[192] Xin, R. S., Gonzalez, J. E., Franklin, M. J., and Stoica, I. Graphx: a re-
silient distributed graph system on spark. In First International Workshop on
Graph Data Management Experiences and Systems, GRADES 2013, co-loated
with SIGMOD/PODS 2013, New York, NY, USA, June 24, 2013 (2013), p. 2.

182

[193] Xirogiannopoulos, K., and Deshpande, A. Extracting and analyzing hid-
den graphs from relational databases. In Proceedings of the 2017 ACM In-
ternational Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017 (2017), pp. 897–912.

[194] Yan, X., Cheng, H., Han, J., and Yu, P. S. Mining signi�cant graph patterns
by leap search. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12,
2008 (2008), pp. 433–444.

[195] Yan, X., and Han, J. gspan: Graph-based substructure pattern mining.
http://cs.ucsb.edu/~xyan/papers/gSpan.pdf. Technical Report 2002-
10-08.

[196] Yan, X., and Han, J. gspan: Graph-based substructure pattern mining. In
Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM
2002), 9-12 December 2002, Maebashi City, Japan (2002), pp. 721–724.

[197] Yan, X., and Han, J. Closegraph: mining closed frequent graph patterns.
In Proceedings of the Ninth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, Washington, DC, USA, August 24 - 27, 2003
(2003), pp. 286–295.

[198] Yen, S., and Chen, A. L. P. A graph-based approach for discovering various
types of association rules. IEEE Trans. Knowl. Data Eng. 13, 5 (2001), 839–845.

[199] Yin, M., Wu, B., and Zeng, Z. Hmgraph OLAP: a novel framework for
multi-dimensional heterogeneous network analysis. In DOLAP 2012, ACM
15th International Workshop on Data Warehousing and OLAP, Maui, HI, USA,
November 2, 2012, Proceedings (2012), pp. 137–144.

[200] Yu, C., and Chen, Y. Mining sequential patterns from multidimensional
sequence data. IEEE Trans. Knowl. Data Eng. 17, 1 (2005), 136–140.

[201] Yuan, P., Liu, P., Wu, B., Jin, H., Zhang, W., and Liu, L. Triplebit: a fast
and compact system for large scale RDF data. PVLDB 6, 7 (2013), 517–528.

[202] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M.,
Franklin, M. J., Shenker, S., and Stoica, I. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In Proceed-
ings of the 9th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI 2012, San Jose, CA, USA, April 25-27, 2012 (2012), pp. 15–28.

[203] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica,
I. Spark: Cluster computing with working sets. In 2nd USENIX Workshop on

183

Hot Topics in Cloud Computing, HotCloud’10, Boston, MA, USA, June 22, 2010
(2010).

[204] Zaki, M. J. E�ciently mining frequent trees in a forest. In Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, July 23-26, 2002, Edmonton, Alberta, Canada (2002), pp. 71–80.

[205] Zaki, M. J., and Hsiao, C. CHARM: an e�cient algorithm for closed itemset
mining. In Proceedings of the Second SIAM International Conference on Data
Mining, Arlington, VA, USA, April 11-13, 2002 (2002), pp. 457–473.

[206] Zhang, J., Long, X., and Suel, T. Performance of compressed inverted list
caching in search engines. In Proceedings of the 17th International Conference
on World Wide Web, WWW 2008, Beijing, China, April 21-25, 2008 (2008),
pp. 387–396.

[207] Zhang, N., Tian, Y., and Patel, J. M. Discovery-driven graph summariza-
tion. In Proceedings of the 26th International Conference on Data Engineering,
ICDE 2010, March 1-6, 2010, Long Beach, California, USA (2010), pp. 880–891.

[208] Zhang, Z. J. Graph databases for knowledge management. IT Professional
19, 6 (2017), 26–32.

[209] Zhao, P., Li, X., Xin, D., and Han, J. Graph cube: on warehousing and
OLAP multidimensional networks. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD 2011, Athens, Greece,
June 12-16, 2011 (2011), pp. 853–864.

[210] Zhao, X., Chen, Y., Xiao, C., Ishikawa, Y., and Tang, J. Frequent subgraph
mining based on pregel. Comput. J. 59, 8 (2016), 1113–1128.

[211] Zhu, F., Yan, X., Han, J., and Yu, P. S. gprune: A constraint pushing frame-
work for graph pattern mining. In Advances in Knowledge Discovery and
DataMining, 11th Paci�c-Asia Conference, PAKDD 2007, Nanjing, China, May
22-25, 2007, Proceedings (2007), pp. 388–400.

[212] Zou, R., and Holder, L. B. Frequent subgraph mining on a single large
graph using sampling techniques. In Proceedings of the Eighth Workshop
on Mining and Learning with Graphs, MLG ’10, Washington, D.C., USA, July
24-25, 2010 (2010), pp. 171–178.

[213] AllegroGraph. http://franz.com/agraph/allegrograph/. Accessed:
2016-03-10.

[214] APB-1 OLAP Benchmark. http://www.olapcouncil.org/research/

bmarkly.htm. Accessed: 2018-05-23.

184

[215] Key Features - ArangoDB. https://www.arangodb.com/key-features/.
Accessed: 2016-03-10.

[216] The bigdata RDF Database. https://www.blazegraph.com/whitepapers/
bigdata_architecture_whitepaper.pdf. Whitepaper May 2013.

[217] Cypher Query Language. http://neo4j.com/docs/stable/

cypher-query-lang.html. Accessed: 2016-03-16.

[218] DB-Engines Ranking of Graph DBMS. http://db-engines.com/en/

ranking/graph+dbms. Accessed: 2018-05-28.

[219] DB-Engines Ranking of RDF Stores. https://db-engines.com/en/

ranking/rdf+store. Accessed: 2018-05-28.

[220] Method of calculating the scores of the DB-Engines Ranking. https://

db-engines.com/en/ranking_definition. Accessed: 2018-05-28.

[221] ERPNext, ERP system. www.erpnext.com. Accessed: 2014-01-13.

[222] FOAF Vocabulary Speci�cation 0.99. http://xmlns.com/foaf/spec/.
Namespace Document 2014-01-14.

[223] Gelly: Flink Graph API. https://ci.apache.org/projects/flink/

flink-docs-master/apis/batch/libs/gelly.html. Accessed: 2016-03-
15.

[224] Gephi - The Open Graph Viz Platform. https://gephi.org/. Accessed:
2018-04-19.

[225] Apache Giraph. http://www.giraph.apache.org. Accessed: 2016-03-10.

[226] GraphDB: At Last, the Meaningful Database. http://ontotext.com/

documents/reports/PW_Ontotext.pdf. Whitepaper July 2014.

[227] Ieee standard for �oating-point arithmetic. IEEE Std 754-2008 (Aug 2008),
1–70.

[228] In�niteGraph: The Distributed Graph Database. http://www.

objectivity.com/wp-content/uploads/Objectivity_WP_IG_Distr_

Benchmark.pdf. Whitepaper 2012.

[229] ISO 8000-2:2017; Data quality – Part 2: Vocabulary. Standard, International
Organization for Standardization, 2017.

[230] Apache Jena - TBD. https://jena.apache.org/documentation/tdb/.
Accessed: 2016-03-09.

185

[231] MarkLogic Semantics. http://www.marklogic.com/resources/

marklogic-semantics-datasheet/. Datasheet March 2016.

[232] The Neo4j Developer Manual. https://neo4j.com/docs/

developer-manual/3.2/. Version 3.3.

[233] Tutorial: Import Data Into Neo4j . https://neo4j.com/developer/

guide-importing-data-and-etl/. Accessed: 2018-04-19.

[234] Oracle Spatial and Graph: Advanced Data Management. http://www.

oracle.com/technetwork/database/options/spatialandgraph/

spatial-and-graph-wp-12c-1896143.pdf. Whitepaper September 2014.

[235] Big Data Spatial and Graph User’s Guide and Reference. http://docs.

oracle.com/cd/E69290_01/doc.44/e67958/toc.htm. Accessed: 2016-
03-16.

[236] Why OrientDB? http://orientdb.com/why-orientdb/. Accessed: 2016-
03-10.

[237] Relational to Graph Database in Ten Minutes Flat .

[238] Resource Description Framework (RDF): Concepts and Abstract Syntax.
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/. W3C Rec-
ommendation 2004-02-10.

[239] RDF 1.1 N-Quads. http://www.w3.org/TR/2014/

REC-n-quads-20140225/. W3C Recommendation 2014-02-25.

[240] RDF Schema 1.1. http://www.w3.org/TR/2014/

REC-rdf-schema-20140225/. W3C Recommendation 2014-02-25.

[241] Stardog 4 - The Manual. http://docs.stardog.com/. Accessed: 2016-03-
10.

[242] TinkerPop Compendium. http://tinkerpop.apache.org/docs/3.3.0/.
Version: 3.3.0.

[243] TITAN: Distributed Graph Database. http://thinkaurelius.github.io/
titan/. Accessed: 2016-03-10.

[244] TPC-H Decision Support Benchmark. http://www.tpc.org/tpch/. Ac-
cessed: 2014-03-21.

186

