472,541 research outputs found

    Technology needs for high-speed rotorcraft

    Get PDF
    A study to determine the technology development required for high-speed rotorcraft development was conducted. The study begins with an initial assessment of six concepts capable of flight at, or greater than 450 knots with helicopter-like hover efficiency (disk loading less than 50 pfs). These concepts were sized and evaluated based on measures of effectiveness and operational considerations. Additionally, an initial assessment of the impact of technology advances on the vehicles attributes was made. From these initial concepts a tilt wing and rotor/wing concepts were selected for further evaluation. A more detailed examination of conversion and technology trade studies were conducted on these two vehicles, each sized for a different mission

    Preliminary assessment of industrial needs for an advanced ocean technology

    Get PDF
    A quick-look review of selected ocean industries is presented for the purpose of providing NASA OSTA with an assessment of technology needs and market potential. The size and growth potential, needs and problem areas, technology presently used and its suppliers, are given for industries involved in deep ocean mining, petrochemicals ocean energy conversion. Supporting services such as ocean bottom surveying; underwater transportation, data collection, and work systems; and inspection and diving services are included. Examples of key problem areas that are amenable to advanced technology solutions are included. Major companies are listed

    Comparison of conceptual designs for 25 kWe advanced Stirling conversion systems for dish electric application

    Get PDF
    The Advanced Stirling Conversion System (ASCS) Project is managed by NASA Lewis Research Center through a cooperative interagency agreement with DOE. Conceptual designs for the ASCS's were completed under parallel contracts in 1987 by Mechanical Technology Inc. (MTI) of Latham, NY, and Stirling Technology Company (STC) of Richland, WA. Each design features a free-piston Stirling engine, a liquid metal heat pipe receiver, and a means to provide about 25 kW of electric power to a utility grid while meeting DOE's long term performance and cost goals. An independent assessment showed that both designs are manufacturable and have the potential to easily meet DOE's long term cost goals

    Preliminary assessment of systems for deriving liquid and gaseous fuels from waste or grown organics

    Get PDF
    The overall feasibility of the chemical conversion of waste or grown organic matter to fuel is examined from the technical, economic, and social viewpoints. The energy contribution from a system that uses waste and grown organic feedstocks is estimated as 4 to 12 percent of our current energy consumption. Estimates of today's market prices for these fuels are included. Economic and social issues are as important as technology in determining the feasibility of such a proposal. An orderly program of development and demonstration is recommended to provide reliable data for an assessment of the viability of the proposal

    Validating year 2000 compliance

    Get PDF
    Validating year 2000 compliance involves the assessment of the correctness and quality of a year 2000 conversion. This entails inspecting both the quality of the conversion emph{process followed, and of the emph{result obtained, i.e., the converted system. This document provides an overview of the techniques that can be used to validate year 2000 compliance. It includes typical code fragments, and a discussion of existing technology, impact analysis, solution strategies, code correction, testing, and tools

    Environmental assessment framework for bio-based methane production via anaerobic digestion, gasification, and gas upgrading

    Get PDF
    In the endeavor of supporting the transition towards a low fossil carbon energy sector, it is necessary to exploit the potentials of waste and bioresources available within a country or region. It is important to combine the best ways of energy conversion based on physico-chemical properties of waste and bioresources, and technology conversion pathways, in vision of the energy supply-demand and environmental targets. While replacement of natural gas with bio-based methane from waste and bioresources is a promising solution, several challenges may exist: i) the local availability of waste and bioresources, ii) their physico-chemical heterogeneity, which may affect the technological performance of bio-based methane production, iii) the consequences of diverting waste and bioresources from their current uses, iv) the fulfillment of regional gas demands, and v) the need for systemic environmental benefits associated with the changes. With this study, we provide an environmental assessment framework supporting decisions at regional and national scales associated with production of methane from waste and bioresources for use in local gas grid infrastructures. While the assessment framework may be applicable for a variety of gas supply-demand situations, we implemented it on a French region, Occitania (72,700 km2, 5.8 M inhabitants), with concrete ambitions of local energy transitions and climate savings. The three selected technology conversion pathways were: i) anaerobic digestion with hydrogen upgrading, ii) anaerobic digestion with water scrubbing upgrading, and iii) gasification with C-to-CH4 upgrading. The environmental performance was evaluated through a process-oriented life cycle assessment (LCA) with results interpretations at two levels: technology level (tier 1), and system level (tier 2). In tier 1 results, the three conversion pathways were evaluated individually relative to the production of 1 Nm3 of bio-based methane with given characteristics of injection and network distribution. Here, we quantified and identified the environmental benefits, the process hotspots, and the technology-by-technology comparison. While, in tier 2 results, we evaluated combinations of waste and bioresources with technology conversion pathways reflecting the supply of methane demand and overall climate change impacts. The results showed that Occitania has the potential for fulfilling and exceeding the annual gas demand of 17.5 TWh, seeing export of bio-based methane as a further possible strategy in vision of promoting local bioeconomy. In addition, for manure, green waste, and sludge, the production of bio-based methane in anaerobic digestion resulted in more climate benefits than their current uses. Gasification was found as a promising technology for bio-based methane production, generating about five times more methane than anaerobic digestion for some bioresourc

    Environmental assessment framework for bio‐based methane production via anaerobic digestion, gasification, and gas upgrading

    Get PDF
    In the endeavor of supporting the transition towards a low fossil carbon energy sector, it is necessary to exploit the potentials of waste and bioresources available within a country or region. It is important to combine the best ways of energy conversion based on physico-chemical properties of waste and bioresources, and technology conversion pathways, in vision of the energy supply-demand and environmental targets. While replacement of natural gas with bio-based methane from waste and bioresources is a promising solution, several challenges may exist: i) the local availability of waste and bioresources, ii) their physico-chemical heterogeneity, which may affect the technological performance of bio-based methane production, iii) the consequences of diverting waste and bioresources from their current uses, iv) the fulfillment of regional gas demands, and v) the need for systemic environmental benefits associated with the changes. With this study, we provide an environmental assessment framework supporting decisions at regional and national scales associated with production of methane from waste and bioresources for use in local gas grid infrastructures. While the assessment framework may be applicable for a variety of gas supply-demand situations, we implemented it on a French region, Occitania (72,700 km2, 5.8 M inhabitants), with concrete ambitions of local energy transitions and climate savings. The three selected technology conversion pathways were: i) anaerobic digestion with hydrogen upgrading, ii) anaerobic digestion with water scrubbing upgrading, and iii) gasification with C-to-CH4 upgrading. The environmental performance was evaluated through a processoriented life cycle assessment (LCA) with results interpretations at two levels: technology level (tier 1), and system level (tier 2). In tier 1 results, the three conversion pathways were evaluated individually relative to the production of 1 Nm3 of bio-based methane with given characteristics of injection and network distribution. Here, we quantified and identified the environmental benefits, the process hotspots, and the technology-by-technology comparison. While, in tier 2 results, we evaluated combinations of waste and bioresources with technology conversion pathways reflecting the supply of methane demand and overall climate change impacts. The results showed that Occitania has the potential for fulfilling and exceeding the annual gas demand of 17.5 TWh, seeing export of bio-based methane as a further possible strategy in vision of promoting local bioeconomy. In addition, for manure, green waste, and sludge, the production of bio-based methane in anaerobic digestion resulted in more climate benefits than their current uses. Gasification was found as a promising technology for bio-based methane production, generating about five times more methane than anaerobic digestion for some bioresources

    Solar Options in Central Europe. A Synthesis of Solar Technology. Assessment and Contemporary Criteria in 1978-1979

    Get PDF
    Evaluation of solar energy as a potential substitute for fossil fuels and identification of the time phase in which solar technology may become a significant part of the energy supply mix are constrained by the characteristic uncertainties of solar energy inputs, the developmental status of solar technology, and the evolution of other energy supply alternatives. The numerous variables within the spectrum of attainable solar energy conversion performance allow a variety of approaches to the assessment of its utility. This interim effort identified the options that are now (1978-1979) most viable for solar energy exploitation in Central Europe, and the economic, as well as technical parameters of these options. In spite of the large number of contemporary concepts for the use of solar energy, a correlation with prototype data was made wherever possible to maximize the usefulness of the results. Nevertheless, the rapidly advancing research and development in solar technology, and the possibilities of significant breakthroughs in energy conversion and storage, necessitate the qualification "interim study" as an overall descriptor for this work

    A Comparison of Energy Conversion Technologies for Space Nuclear Power Systems

    Get PDF
    A key element of space nuclear power systems is the energy conversion subsystem that converts the nuclear heat into electrical power. Nuclear systems provide a favorable option for missions that require long-duration power in hostile space environments where sunlight for solar power is absent or limited. There are two primary nuclear power technology options. Radioisotope Power System (RPS) utilize the natural decay heat from Pu238 to generate electric power levels up to about one kilowatt. Fission Power System (FPS) rely on a sustained fission reaction of U235 and offer the potential to supply electric power from kilowatts to megawatts. Example missions for nuclear power include Mars science rovers (e.g. Curiosity, Mars 2020), lunar and Mars surface landers ? including crewed missions, deep space planetary orbiters, Ocean World science landers, and robotic space probes that utilize nuclear electric propulsion. This paper examines the energy conversion technology options that can be used with RPS and FPS, and provides an assessment of their relative performance and technology readiness

    Economic and Technical Analysis of Ethanol Dry Milling: MOdel User's Manual

    Get PDF
    Using the DM model is not complex: the user changes input values of interest (plant size, conversion rates, etc.) and examines the effect of these changes on output values (annual profits, feed stock requirements, etc.). There are nine worksheets in four modules in the excel workbook- assumptions, process, economics, and technology assessment. All user inputs are entered in the assumptions module of the model, which consists of three worksheets denoted with bright yellow tabs: process assumptions, economic assumptions and physical assumptions. The values that are entered on this page are then used in each of the subsequent modules to calculate hourly flow rates, equipment size and cost, total costs, loan terms, and annual profits. At the top of each page is a title bar which describes the page, the color coding of the cells, and pertinent information from the other pages. Before each of the pages is discussed, an explanation of the different types of cells in the model is in order.model user's manual
    corecore