1,139 research outputs found

    Second-Order Karush-Kuhn-Tucker Optimality Conditions for Vector Problems with Continuously Differentiable Data and Second-Order Constraint Qualifications

    Full text link
    Some necessary and sufficient optimality conditions for inequality constrained problems with continuously differentiable data were obtained in the papers [I. Ginchev and V.I. Ivanov, Second-order optimality conditions for problems with C\sp{1} data, J. Math. Anal. Appl., v. 340, 2008, pp. 646--657], [V.I. Ivanov, Optimality conditions for an isolated minimum of order two in C\sp{1} constrained optimization, J. Math. Anal. Appl., v. 356, 2009, pp. 30--41] and [V. I. Ivanov, Second- and first-order optimality conditions in vector optimization, Internat. J. Inform. Technol. Decis. Making, 2014, DOI: 10.1142/S0219622014500540]. In the present paper, we continue these investigations. We obtain some necessary optimality conditions of Karush--Kuhn--Tucker type for scalar and vector problems. A new second-order constraint qualification of Zangwill type is introduced. It is applied in the optimality conditions.Comment: 1

    Second-order symmetric duality with cone constraints

    Get PDF
    AbstractWolfe and Mond–Weir type second-order symmetric duals are formulated and appropriate duality theorems are established under η-bonvexity/η-pseudobonvexity assumptions. This formulation removes several omissions in an earlier second-order primal dual pair introduced by Devi [Symmetric duality for nonlinear programming problems involving η-bonvex functions, European J. Oper. Res. 104 (1998) 615–621]

    Constraint Qualifications and Optimality Conditions for Nonconvex Semi-Infinite and Infinite Programs

    Get PDF
    The paper concerns the study of new classes of nonlinear and nonconvex optimization problems of the so-called infinite programming that are generally defined on infinite-dimensional spaces of decision variables and contain infinitely many of equality and inequality constraints with arbitrary (may not be compact) index sets. These problems reduce to semi-infinite programs in the case of finite-dimensional spaces of decision variables. We extend the classical Mangasarian-Fromovitz and Farkas-Minkowski constraint qualifications to such infinite and semi-infinite programs. The new qualification conditions are used for efficient computing the appropriate normal cones to sets of feasible solutions for these programs by employing advanced tools of variational analysis and generalized differentiation. In the further development we derive first-order necessary optimality conditions for infinite and semi-infinite programs, which are new in both finite-dimensional and infinite-dimensional settings.Comment: 28 page

    On the Necessity of the Sufficient Conditions in Cone-Constrained Vector Optimization

    Full text link
    The object of investigation in this paper are vector nonlinear programming problems with cone constraints. We introduce the notion of a Fritz John pseudoinvex cone-constrained vector problem. We prove that a problem with cone constraints is Fritz John pseudoinvex if and only if every vector critical point of Fritz John type is a weak global minimizer. Thus, we generalize several results, where the Paretian case have been studied. We also introduce a new Frechet differentiable pseudoconvex problem. We derive that a problem with quasiconvex vector-valued data is pseudoconvex if and only if every Fritz John vector critical point is a weakly efficient global solution. Thus, we generalize a lot of previous optimality conditions, concerning the scalar case and the multiobjective Paretian one. Additionally, we prove that a quasiconvex vector-valued function is pseudoconvex with respect to the same cone if and only if every vector critical point of the function is a weak global minimizer, a result, which is a natural extension of a known characterization of pseudoconvex scalar functions.Comment: 12 page
    • …
    corecore