39,876 research outputs found

    Convergence Rates of Subseries

    Full text link
    Let (xn)(x_n) be a positive real sequence decreasing to 00 such that the series nxn\sum_n x_n is divergent and lim infnxn+1/xn>1/2\liminf_{n} x_{n+1}/x_n>1/2. We show that there exists a constant θ(0,1)\theta \in (0,1) such that, for each >0\ell>0, there is a subsequence (xnk)(x_{n_k}) for which kxnk=\sum_k x_{n_k}=\ell and xnk=O(θk)x_{n_k}=O(\theta^k).Comment: 5 pp. To appear in The American Mathematical Monthl

    Convergence and Rates for Fixed-Interval Multiple-Track Smoothing Using kk-Means Type Optimization

    Get PDF
    We address the task of estimating multiple trajectories from unlabeled data. This problem arises in many settings, one could think of the construction of maps of transport networks from passive observation of travellers, or the reconstruction of the behaviour of uncooperative vehicles from external observations, for example. There are two coupled problems. The first is a data association problem: how to map data points onto individual trajectories. The second is, given a solution to the data association problem, to estimate those trajectories. We construct estimators as a solution to a regularized variational problem (to which approximate solutions can be obtained via the simple, efficient and widespread kk-means method) and show that, as the number of data points, nn, increases, these estimators exhibit stable behaviour. More precisely, we show that they converge in an appropriate Sobolev space in probability and with rate n1/2n^{-1/2}

    Convergence Rates of Gaussian ODE Filters

    Get PDF
    A recently-introduced class of probabilistic (uncertainty-aware) solvers for ordinary differential equations (ODEs) applies Gaussian (Kalman) filtering to initial value problems. These methods model the true solution xx and its first qq derivatives \emph{a priori} as a Gauss--Markov process X\boldsymbol{X}, which is then iteratively conditioned on information about x˙\dot{x}. This article establishes worst-case local convergence rates of order q+1q+1 for a wide range of versions of this Gaussian ODE filter, as well as global convergence rates of order qq in the case of q=1q=1 and an integrated Brownian motion prior, and analyses how inaccurate information on x˙\dot{x} coming from approximate evaluations of ff affects these rates. Moreover, we show that, in the globally convergent case, the posterior credible intervals are well calibrated in the sense that they globally contract at the same rate as the truncation error. We illustrate these theoretical results by numerical experiments which might indicate their generalizability to q{2,3,}q \in \{2,3,\dots\}.Comment: 26 pages, 5 figure

    On convergence rates equivalency and sampling strategies in functional deconvolution models

    Get PDF
    Using the asymptotical minimax framework, we examine convergence rates equivalency between a continuous functional deconvolution model and its real-life discrete counterpart over a wide range of Besov balls and for the L2L^2-risk. For this purpose, all possible models are divided into three groups. For the models in the first group, which we call uniform, the convergence rates in the discrete and the continuous models coincide no matter what the sampling scheme is chosen, and hence the replacement of the discrete model by its continuous counterpart is legitimate. For the models in the second group, to which we refer as regular, one can point out the best sampling strategy in the discrete model, but not every sampling scheme leads to the same convergence rates; there are at least two sampling schemes which deliver different convergence rates in the discrete model (i.e., at least one of the discrete models leads to convergence rates that are different from the convergence rates in the continuous model). The third group consists of models for which, in general, it is impossible to devise the best sampling strategy; we call these models irregular. We formulate the conditions when each of these situations takes place. In the regular case, we not only point out the number and the selection of sampling points which deliver the fastest convergence rates in the discrete model but also investigate when, in the case of an arbitrary sampling scheme, the convergence rates in the continuous model coincide or do not coincide with the convergence rates in the discrete model. We also study what happens if one chooses a uniform, or a more general pseudo-uniform, sampling scheme which can be viewed as an intuitive replacement of the continuous model.Comment: Published in at http://dx.doi.org/10.1214/09-AOS767 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore