85 research outputs found

    The hp-BEM with quasi-uniform meshes for the electric field integral equation on polyhedral surfaces: a priori error analysis

    Full text link
    This paper presents an a priori error analysis of the hp-version of the boundary element method for the electric field integral equation on a piecewise plane (open or closed) Lipschitz surface. We use H(div)-conforming discretisations with Raviart-Thomas elements on a sequence of quasi-uniform meshes of triangles and/or parallelograms. Assuming the regularity of the solution to the electric field integral equation in terms of Sobolev spaces of tangential vector fields, we prove an a priori error estimate of the method in the energy norm. This estimate proves the expected rate of convergence with respect to the mesh parameter h and the polynomial degree p

    Natural hp-BEM for the electric field integral equation with singular solutions

    Full text link
    We apply the hp-version of the boundary element method (BEM) for the numerical solution of the electric field integral equation (EFIE) on a Lipschitz polyhedral surface G. The underlying meshes are supposed to be quasi-uniform triangulations of G, and the approximations are based on either Raviart-Thomas or Brezzi-Douglas-Marini families of surface elements. Non-smoothness of G leads to singularities in the solution of the EFIE, severely affecting convergence rates of the BEM. However, the singular behaviour of the solution can be explicitly specified using a finite set of power functions (vertex-, edge-, and vertex-edge singularities). In this paper we use this fact to perform an a priori error analysis of the hp-BEM on quasi-uniform meshes. We prove precise error estimates in terms of the polynomial degree p, the mesh size h, and the singularity exponents.Comment: 17 page

    On the convergence of the hp-BEM with quasi-uniform meshes for the electric field integral equation on polyhedral surfaces

    Get PDF
    In this paper the hp-version of the boundary element method is applied to the electric field integral equation on a piecewise plane (open or closed) Lipschitz surface. The underlying meshes are supposed to be quasi-uniform. We use \bH(\div)-conforming discretisations with quadrilateral elements of Raviart-Thomas type and establish quasi-optimal convergence of hp-approximations. Main ingredient of our analysis is a new \tilde\bH^{-1/2}(\div)-conforming p-interpolation operator that assumes only \bH^r\cap\tilde\bH^{-1/2}(\div)-regularity (r>0r>0) and for which we show quasi-stability with respect to polynomial degrees

    The BEM with graded meshes for the electric field integral equation on polyhedral surfaces

    Get PDF
    We consider the variational formulation of the electric field integral equation on a Lipschitz polyhedral surface Γ\Gamma. We study the Galerkin boundary element discretisations based on the lowest-order Raviart-Thomas surface elements on a sequence of anisotropic meshes algebraically graded towards the edges of Γ\Gamma. We establish quasi-optimal convergence of Galerkin solutions under a mild restriction on the strength of grading. The key ingredient of our convergence analysis are new componentwise stability properties of the Raviart-Thomas interpolant on anisotropic elements

    Isogeometric Boundary Elements in Electromagnetism: Rigorous Analysis, Fast Methods, and Examples

    Full text link
    We present a new approach to three-dimensional electromagnetic scattering problems via fast isogeometric boundary element methods. Starting with an investigation of the theoretical setting around the electric field integral equation within the isogeometric framework, we show existence, uniqueness, and quasi-optimality of the isogeometric approach. For a fast and efficient computation, we then introduce and analyze an interpolation-based fast multipole method tailored to the isogeometric setting, which admits competitive algorithmic and complexity properties. This is followed by a series of numerical examples of industrial scope, together with a detailed presentation and interpretation of the results

    Fast numerical methods for non-local operators

    Full text link
    corecore