2,883 research outputs found

    On Weak Topology for Optimal Control of Switched Nonlinear Systems

    Full text link
    Optimal control of switched systems is challenging due to the discrete nature of the switching control input. The embedding-based approach addresses this challenge by solving a corresponding relaxed optimal control problem with only continuous inputs, and then projecting the relaxed solution back to obtain the optimal switching solution of the original problem. This paper presents a novel idea that views the embedding-based approach as a change of topology over the optimization space, resulting in a general procedure to construct a switched optimal control algorithm with guaranteed convergence to a local optimizer. Our result provides a unified topology based framework for the analysis and design of various embedding-based algorithms in solving the switched optimal control problem and includes many existing methods as special cases

    Consistent Approximations for the Optimal Control of Constrained Switched Systems

    Full text link
    Though switched dynamical systems have shown great utility in modeling a variety of physical phenomena, the construction of an optimal control of such systems has proven difficult since it demands some type of optimal mode scheduling. In this paper, we devise an algorithm for the computation of an optimal control of constrained nonlinear switched dynamical systems. The control parameter for such systems include a continuous-valued input and discrete-valued input, where the latter corresponds to the mode of the switched system that is active at a particular instance in time. Our approach, which we prove converges to local minimizers of the constrained optimal control problem, first relaxes the discrete-valued input, then performs traditional optimal control, and then projects the constructed relaxed discrete-valued input back to a pure discrete-valued input by employing an extension to the classical Chattering Lemma that we prove. We extend this algorithm by formulating a computationally implementable algorithm which works by discretizing the time interval over which the switched dynamical system is defined. Importantly, we prove that this implementable algorithm constructs a sequence of points by recursive application that converge to the local minimizers of the original constrained optimal control problem. Four simulation experiments are included to validate the theoretical developments

    Variational approximation of functionals defined on 1-dimensional connected sets: the planar case

    Get PDF
    In this paper we consider variational problems involving 1-dimensional connected sets in the Euclidean plane, such as the classical Steiner tree problem and the irrigation (Gilbert-Steiner) problem. We relate them to optimal partition problems and provide a variational approximation through Modica-Mortola type energies proving a Γ\Gamma-convergence result. We also introduce a suitable convex relaxation and develop the corresponding numerical implementations. The proposed methods are quite general and the results we obtain can be extended to nn-dimensional Euclidean space or to more general manifold ambients, as shown in the companion paper [11].Comment: 30 pages, 5 figure

    Partitions of Minimal Length on Manifolds

    Full text link
    We study partitions on three dimensional manifolds which minimize the total geodesic perimeter. We propose a relaxed framework based on a Γ\Gamma-convergence result and we show some numerical results. We compare our results to those already present in the literature in the case of the sphere. For general surfaces we provide an optimization algorithm on meshes which can give a good approximation of the optimal cost, starting from the results obtained using the relaxed formulation
    • …
    corecore