Optimal control of switched systems is challenging due to the discrete nature
of the switching control input. The embedding-based approach addresses this
challenge by solving a corresponding relaxed optimal control problem with only
continuous inputs, and then projecting the relaxed solution back to obtain the
optimal switching solution of the original problem. This paper presents a novel
idea that views the embedding-based approach as a change of topology over the
optimization space, resulting in a general procedure to construct a switched
optimal control algorithm with guaranteed convergence to a local optimizer. Our
result provides a unified topology based framework for the analysis and design
of various embedding-based algorithms in solving the switched optimal control
problem and includes many existing methods as special cases