7 research outputs found

    On the stability of robust dynamical low-rank approximations for hyperbolic problems

    Get PDF
    The dynamical low-rank approximation (DLRA) is used to treat high-dimensional problems that arise in such diverse fields as kinetic transport and uncertainty quantification. Even though it is well known that certain spatial and temporal discretizations when combined with the DLRA approach can result in numerical instability, this phenomenon is poorly understood. In this paper we perform a L2 stability analysis for the corresponding nonlinear equations of motion. This reveals the source of the instability for the projector splitting integrator when first discretizing the equations and then applying the DLRA. Based on this we propose a projector splitting integrator, based on applying DLRA to the continuous system before performing the discretization, that recovers the classic CFL condition. We also show that the unconventional integrator has more favorable stability properties and explain why the projector splitting integrator performs better when approximating higher moments, while the unconventional integrator is generally superior for first order moments. Furthermore, an efficient and stable dynamical low-rank update for the scattering term in kinetic transport is proposed. Numerical experiments for kinetic transport and uncertainty quantification, which confirm the results of the stability analysis, are presented

    Existence of dynamical low-rank approximations to parabolic problems

    Full text link
    The existence and uniqueness of weak solutions to dynamical low-rank evolution problems for parabolic partial differential equations in two spatial dimensions is shown, covering also non-diagonal diffusion in the elliptic part. The proof is based on a variational time-stepping scheme on the low-rank manifold. Moreover, this scheme is shown to be closely related to practical methods for computing such low-rank evolutions

    Uncertainty quantification and numerical methods in charged particle radiation therapy

    Get PDF
    Radiation therapy is applied in approximately 50% of all cancer treatments. To eliminate the tumor without damaging organs in the vicinity, optimized treatment plans are determined. This requires the calculation of three-dimensional dose distributions in a heterogeneous volume with a spatial resolution of 2-3mm. Current planning techniques use multiple beams with optimized directions and energies to achieve the best possible dose distribution. Each dose calculation however requires the discretization of the six-dimensional phase space of the linear Boltzmann transport equation describing complex particle dynamics. Despite the complexity of the problem, dose calculation errors of less than 2% are clinically recommended and computation times cannot exceed a few minutes. Additionally, the treatment reality often differs from the computed plan due to various uncertainties, for example in patient positioning, the acquired CT image or the delineation of tumor and organs at risk. Therefore, it is essential to include uncertainties in the planning process to determine a robust treatment plan. This entails a realistic mathematical model of uncertainties, quantification of their effect on the dose distribution using appropriate propagation methods as well as a robust or probabilistic optimization of treatment parameters to account for these effects. Fast and accurate calculations of the dose distribution including predictions of uncertainties in the computed dose are thus crucial for the determination of robust treatment plans in radiation therapy. Monte Carlo methods are often used to solve transport problems, especially for applications that require high accuracy. In these cases, common non-intrusive uncertainty propagation strategies that involve repeated simulations of the problem at different points in the parameter space quickly become infeasible due to their long run-times. Quicker deterministic dose calculation methods allow for better incorporation of uncertainties, but often use strong simplifications or admit non-physical solutions and therefore cannot provide the required accuracy. This work is concerned with finding efficient mathematical solutions for three aspects of (robust) radiation therapy planning: 1. Efficient particle transport and dose calculations, 2. uncertainty modeling and propagation for radiation therapy, and 3. robust optimization of the treatment set-up

    Time integration for the dynamical low-rank approximation of matrices and tensors

    Get PDF
    This thesis is concerned with the low-rank approximation of time-dependent high-dimensional matrices and tensors that can be given explicitly or are the unknown solution to a matrix or tensor differential equation. Large differential equations typically arise from a space discretization of a high-dimensional evolutionary partial differential equation and are not solvable by direct discretization because of their sheer size. The dynamical low-rank approximation approach counters this computational infeasibility by evolving a differential equation for an approximation matrix or tensor with underlying low-rank structure. The Lipschitz constant of the right-hand side of this differential equation grows inversely proportional to the size of the smallest singular value of the approximation matrix or of matricizations of the approximate tensor. Therefore, standard numerical integrators deteriorate in this situation. In practice, small singular values appear often due to overapproximation. A constitutive method for time integration of matrices in low-rank format is the matrix projector-splitting integrator. It updates factor matrices of the underlying truncated singular value decomposition. We present a rigorous error analysis for this integrator that shows its robustness with respect to small singular values and its first order convergence. This result is achieved by using the exactness property of the integrator and the preservation of subspaces during the integration procedure. By means of the same ingredients, we extend this error analysis to the time integrator of tensor trains. We further derive an integration method for time-dependent Tucker tensors. Matricizations of Tucker tensors enable us to a nested application of a modified version of the matrix projector-splitting integrator, where a substep in the integration step is not done exactly, but by another low-rank approximation. This nested Tucker integrator turns out to be exact in the explicit case and robust in the presence of small singular values of matricizations of the Tucker tensor. We also propose a numerical integrator for the approximation of a matrix that is the unknown solution to a stiff matrix differential equation. We deal with a class of matrix differential equations that is characterized by a stiff linear and a non-stiff nonlinear part. This integrator separates the stiff differential equation into a linear and a nonlinear subproblem by the Lie-Trotter splitting method. We show an error bound of order one that is independent of singular values and of the severe Lipschitz constant. We contribute to the development and to the analysis of efficient and robust time integration methods by following the dynamical low-rank approximation approach using low-rank structures of matrix and tensor representations.Die Niedrigrangapproximation zeitabhĂ€ngiger, hochdimensionaler Matrizen und Tensoren, die explizit oder implizit als unbekannte Lösung einer Matrix- oder Tensordifferentialgleichung gegeben sein können, ist Gegenstand der Betrachtung. Differentialgleichungen fĂŒr sehr große Matrizen und Tensoren treten typischerweise nach der Ortsdiskretisierung einer hochdimensionalen partiellen Differentialgleichung auf und sind auf Grund der GrĂ¶ĂŸe der Matrix beziehungsweise des Tensors nicht direkt lösbar. Der Ansatz der dynamischen Niedrigrangapproximation bringt eine Differentialgleichung fĂŒr die Approximationsmatrix oder den -tensor mit Niedrigrangstruktur hervor und wirkt den rechentechnischen Schwierigkeiten auf diese Weise entgegen. Die Lipschitzkonstante der rechten Seite dieser Differentialgleichung verhĂ€lt sich jedoch proportional zur Inversen des kleinsten SingulĂ€rwertes der Approximationsmatrix beziehungsweise der Matrizisierungen des Approximationstensors. Aus diesem Grund sind klassische numerische Verfahren nicht praktikabel, da sie eine starke SchrittweitenbeschrĂ€nkung erfordern, um Lösungen zu liefern. In der Anwendung der Niedrigrangapproximation ist a priori nicht klar wie groß der effektive Rang der zu approximierenden Matrix oder des Tensors ist und daher wird dieser oft zu groß gewĂ€hlt. Dies fĂŒhrt dazu, dass kleine SingulĂ€rwerte auftreten. Der Matrixintegrator ist ein wesentliches Verfahren fĂŒr die Zeitintegration von Matrizen im SingulĂ€rwert zerlegten Niedrigrangformat und ist grundlegend fĂŒr diese Arbeit. Er bestimmt die drei Faktormatrizen zum nĂ€chsten Zeitpunkt und liefert so eine Approximationslösung von niedrigem Rang. Wir fĂŒhren eine Fehleranalyse dieses Integrators durch, die eine Konvergenz erster Ordnung zeigt und die eine Fehlerschranke unabhĂ€ngig von kleinen SingulĂ€rwerten nachweist. Um die Schwierigkeit mit der Lipschitzkonstante zu umgehen, machen wir Gebrauch von der Exaktheit des Integrators im expliziten Fall und von der Beobachtung, dass jeweils eine der beiden Basismatrizen der SingulĂ€rwertzerlegung wĂ€hrend der Zeitintegration konstant bleibt. Mit den gleichen Ideen lĂ€sst sich die Fehleranalyse fĂŒr den Integrator fĂŒr Tensor Trains ausweiten. Ferner entwickeln wir eine Integrationsmethode fĂŒr die Zeitentwicklung von Tucker-Tensoren. Die Matrizisierung von Tucker Tensoren erlaubt es uns eine leicht abgeĂ€nderte Version des Matrixintegrators anzuwenden, indem wir die ersten beiden Teilschritte direkt lösen, beim dritten Schritt hingegen eine Niedrigrangapproximation durchfĂŒhren. Dieser Tucker Integrator ist exakt wenn der zu approximierende Tensor explizit gegeben ist. Dieses Verfahren liefert auch bei auftretenden kleinen SingulĂ€rwerten gute Ergebnisse, was aus der Fehleranalyse hervorgeht, die Fehlerschranken angibt, welche unabhĂ€ngig von SingulĂ€rwerten sind. Überdies beschĂ€ftigen wir uns mit der Niedrigrangapproximation von Lösungsmatrizen steifer Differentialgleichungen. Hierbei betrachten wir jene Differentialgleichungen, die aus einem linearen und steifen sowie einem nichtlinearen und nicht steifen Anteil bestehen. Die Hauptidee dieses Integrationsverfahrens besteht darin, den steifen vom nicht steifen Anteil mit Hilfe der Lie-Trotter Splittingmethode zu trennen und die beiden resultierenden Differentialgleichungen fĂŒr sich zu lösen. Auf Grund dieser Aufteilung ist es möglich eine Fehleranalyse zu fĂŒhren, die aufzeigt, dass das Verfahren von der Lipschitzkonstanten nicht beeinflusst wird und dass dessen Fehlerschranke unabhĂ€ngig von SingulĂ€rwerten ist. Die vorliegende Arbeit ist ein Beitrag zur Entwicklung sowie zur numerischen Analyse effizienter und bezĂŒglich kleiner SingulĂ€rwerte robuster numerischer Integrationsverfahren. Grundlegend hierfĂŒr ist das Verfahren der dynamischen Niedrigrangapproximation unter Verwendung einer Niedrigrangfaktorisierung der Matrix oder des Tensors
    corecore