
Time integration for the

dynamical low-rank approximation
of matrices and tensors

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat)

vorgelegt von

Dipl.-Math. Hanna Maria Walach

aus Rybnik (Polen)

Tübingen
2018

Tag der mündlichen Qualifikation: 24.05.2019

Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Christian Lubich
2. Berichterstatter: Prof. Dr. André Uschmajew

Für meine Familie und für David

Abstract

This thesis is concerned with the low-rank approximation of time-dependent high-dimen-
sional matrices and tensors that can be given explicitly or are the unknown solution to a
matrix or tensor differential equation. Large differential equations typically arise from a
space discretization of a high-dimensional evolutionary partial differential equation and are
not solvable by direct discretization because of their sheer size. The dynamical low-rank
approximation approach counters this computational infeasibility by evolving a differential
equation for an approximation matrix or tensor with underlying low-rank structure. The
Lipschitz constant of the right-hand side of this differential equation grows inversely pro-
portional to the size of the smallest singular value of the approximation matrix or of matri-
cizations of the approximate tensor. Therefore, standard numerical integrators deteriorate
in this situation. In practice, small singular values appear often due to overapproximation.

A constitutive method for time integration of matrices in low-rank format is the ma-
trix projector-splitting integrator. It updates factor matrices of the underlying truncated
singular value decomposition. We present a rigorous error analysis for this integrator that
shows its robustness with respect to small singular values and its first order convergence.
This result is achieved by using the exactness property of the integrator and the preserva-
tion of subspaces during the integration procedure. By means of the same ingredients, we
extend this error analysis to the time integrator of tensor trains.

We further derive an integration method for time-dependent Tucker tensors. Matri-
cizations of Tucker tensors enable us to a nested application of a modified version of the
matrix projector-splitting integrator, where a substep in the integration step is not done
exactly, but by another low-rank approximation. This nested Tucker integrator turns out
to be exact in the explicit case and robust in the presence of small singular values of
matricizations of the Tucker tensor.

We also propose a numerical integrator for the approximation of a matrix that is the
unknown solution to a stiff matrix differential equation. We deal with a class of matrix
differential equations that is characterized by a stiff linear and a non-stiff nonlinear part.
This integrator separates the stiff differential equation into a linear and a nonlinear sub-
problem by the Lie–Trotter splitting method. We show an error bound of order one that
is independent of singular values and of the severe Lipschitz constant.

We contribute to the development and to the analysis of efficient and robust time-
integration methods by following the dynamical low-rank approximation approach using
low-rank structures of matrix and tensor representations.

i

ii

Zusammenfassung

Die Niedrigrangapproximation zeitabhängiger, hochdimensionaler Matrizen und Tensoren,
die explizit oder implizit als unbekannte Lösung einer Matrix- oder Tensordifferential-
gleichung gegeben sein können, ist Gegenstand der Betrachtung. Differentialgleichungen
für sehr große Matrizen und Tensoren treten typischerweise nach der Ortsdiskretisierung
einer hochdimensionalen partiellen Differentialgleichung auf und sind auf Grund der Größe
der Matrix beziehungsweise des Tensors nicht direkt lösbar. Der Ansatz der dynami-
schen Niedrigrangapproximation bringt eine Differentialgleichung für die Approximations-
matrix oder den -tensor mit Niedrigrangstruktur hervor und wirkt den rechentechnischen
Schwierigkeiten auf diese Weise entgegen. Die Lipschitzkonstante der rechten Seite dieser
Differentialgleichung verhält sich jedoch proportional zur Inversen des kleinsten Singulär-
wertes der Approximationsmatrix beziehungsweise der Matrizisierungen des Approxima-
tionstensors. Aus diesem Grund sind klassische numerische Verfahren nicht praktikabel,
da sie eine starke Schrittweitenbeschränkung erfordern, um Lösungen zu liefern. In der
Anwendung der Niedrigrangapproximation ist a priori nicht klar wie groß der effektive
Rang der zu approximierenden Matrix oder des Tensors ist und daher wird dieser oft zu
groß gewählt. Dies führt dazu, dass kleine Singulärwerte auftreten.

Der Matrixintegrator ist ein wesentliches Verfahren für die Zeitintegration von Ma-
trizen im Singulärwert zerlegten Niedrigrangformat und ist grundlegend für diese Arbeit.
Er bestimmt die drei Faktormatrizen zum nächsten Zeitpunkt und liefert so eine Appro-
ximationslösung von niedrigem Rang. Wir führen eine Fehleranalyse dieses Integrators
durch, die eine Konvergenz erster Ordnung zeigt und die eine Fehlerschranke unabhängig
von kleinen Singulärwerten nachweist. Um die Schwierigkeit mit der Lipschitzkonstante
zu umgehen, machen wir Gebrauch von der Exaktheit des Integrators im expliziten Fall
und von der Beobachtung, dass jeweils eine der beiden Basismatrizen der Singulärwertzer-
legung während der Zeitintegration konstant bleibt. Mit den gleichen Ideen lässt sich die
Fehleranalyse für den Integrator für Tensor Trains ausweiten.

Ferner entwickeln wir eine Integrationsmethode für die Zeitentwicklung von Tucker-
Tensoren. Die Matrizisierung von Tucker Tensoren erlaubt es uns eine leicht abgeänderte
Version des Matrixintegrators anzuwenden, indem wir die ersten beiden Teilschritte direkt
lösen, beim dritten Schritt hingegen eine Niedrigrangapproximation durchführen. Dieser
Tucker Integrator ist exakt wenn der zu approximierende Tensor explizit gegeben ist. Dieses
Verfahren liefert auch bei auftretenden kleinen Singulärwerten gute Ergebnisse, was aus
der Fehleranalyse hervorgeht, die Fehlerschranken angibt, welche unabhängig von Singulär-
werten sind.

iii

Überdies beschäftigen wir uns mit der Niedrigrangapproximation von Lösungsmatrizen
steifer Differentialgleichungen. Hierbei betrachten wir jene Differentialgleichungen, die aus
einem linearen und steifen sowie einem nichtlinearen und nicht steifen Anteil bestehen.
Die Hauptidee dieses Integrationsverfahrens besteht darin, den steifen vom nicht steifen
Anteil mit Hilfe der Lie–Trotter Splittingmethode zu trennen und die beiden resultierenden
Differentialgleichungen für sich zu lösen. Auf Grund dieser Aufteilung ist es möglich eine
Fehleranalyse zu führen, die aufzeigt, dass das Verfahren von der Lipschitzkonstanten nicht
beeinflusst wird und dass dessen Fehlerschranke unabhängig von Singulärwerten ist.

Die vorliegende Arbeit ist ein Beitrag zur Entwicklung sowie zur numerischen Analyse
effizienter und bezüglich kleiner Singulärwerte robuster numerischer Integrationsverfahren.
Grundlegend hierfür ist das Verfahren der dynamischen Niedrigrangapproximation unter
Verwendung einer Niedrigrangfaktorisierung der Matrix oder des Tensors.

iv

Contributions and sources

We give an overview over the new results and their origins on which this thesis is mainly
based.

Chapter 2 is concerned with the error analysis of the matrix projector-splitting inte-
grator. Its error analysis given in Section 2.3, the error bounds for specific situations given
in Section 2.4 and the error estimate of the time-integration method for tensor trains in
Section 5.1 originate from a collaboration of the author with E. Kieri and Ch. Lubich
and are published in [KLW16]. The contributions on the theoretical results in this work
are equally distributed amongst the authors. The numerical examples in Section 2.5, also
taken from [KLW16], are due to E. Kieri and the author, where both contributed equally:
the examples about the discrete nonlinear, and about the stiff Schrödinger equation, see
Sections 2.5.3 and 2.5.4, are implemented by E. Kieri and the experiments about the ma-
trix addition in Section 2.5.2, the tensor addition mentioned in Section 5.1 as well as the
example in Section 2.5.1 are coded by the author. The proof given in Section 2.2.1 about
the exactness of the projector-splitting integrator is solely due to the author and has not
been published or submitted elsewhere.

The low-rank splitting integrator and its analysis presented in Chapter 3 are entirely
drawn from [OPW18], a collaborative work of the author with A. Ostermann and C. Pi-
azzola. This manuscript is unpublished, yet submitted. The scientific ideas in Sections
3.1-3.5 are portioned out equally among the three authors, except of the algorithmic de-
scription of the integrator in Section 3.1.3, which is due to the author. The numerical
examples in Section 3.6 are implemented by C. Piazzola.

The new results presented in Chapter 4 have its source in [LVW18], which originates
from a cooperation of the author with Ch. Lubich and B. Vandereycken. The three
authors contributed equally to the theoretical results in Sections 4.2-4.5 and in Section
4.6.5, whereas the numerical experiments presented in Section 4.7 are implemented by the
author. The direct exactness proof of the projector-splitting Tucker integrator given in
Section 4.6.3 is a result due to the author and is neither published, nor submitted.

In all chapters, where we have presented results from the above sources, we have rather
freely adapted them: we have provided more details in the theoretical results and we have
standardized the notation.

v

vi

Danke

Ich möchte diese Gelegenheit nutzen und mich bei allen, die fachlich sowie außerfachlich
zum Entstehen dieser Arbeit beigetragen haben, bedanken.

Mein ganz besonderer Dank gilt Prof. Dr. Christian Lubich. Danke für die Möglichkeit
zur Forschung, für die exzellente Betreuung und sein außerordentliches Engagement, für
die vielen Antworten auf meine Fragen, für die ständige Bereitschaft zur Diskussion und
das Teilen von Ideen sowie für das Ermöglichen der vielen Reisen, die ich unternehmen
durfte. Christian, ich habe viel von dir gelernt.

Während meines Forschungsaufenthaltes in Genf habe ich viele Menschen getroffen, bei
denen ich mich bedanken möchte.
Vielen Dank an Prof. Dr. Bart Vandereycken, der mich in seiner Arbeitsgruppe aufgenom-
men hat. Bart, danke für die produktive Zusammenarbeit und auch für unseren außer-
fachlichen Austausch.
Danke an die gesamte Arbeitsgruppe der Numeriker in Genf. Ihr habt es mir sehr leicht
gemacht mich bei euch wohl zu fühlen.
Mein großer Dank gilt Gerhard und Myriam Wanner, bei denen ich zu Hause sein und mit
denen ich unzählige Ausflüge unternehmen sowie einige Rommé-Abende erleben durfte. Ich
hatte eine prima Zeit mit euch und danke euch außerdem für die gemütliche Hängematte
im Wohnzimmer.
Die Zeit in Genf hat meinen fachlichen wie auch persönlichen Horizont erweitert und wird
mir in guter Erinnerung bleiben.

Mein Dank gilt Prof. Dr. Alexander Ostermann und Chiara Piazzola für die gute Zusam-
menarbeit, wir haben uns thematisch sehr gut ergänzt. Außerdem danke ich Chiara für
die angenehmen persönlichen Gespräche über das Doktorandendasein.

Diese Arbeit sowie meine Konferenzteilnahmen wurden aus finanziellen Mitteln der DFG
im Projekt GRK1838 gefördert, wofür ich zu Dank verpflichtet bin.

Die gute (Arbeits)-atmosphäre, die vielen lebhaften Kaffeerunden und die abwechslungs-
reichen außeruniversitären Unternehmungen mit den Tübinger Numerikern waren mir eine
sehr willkommene Ablenkung von meiner Forschung. Dafür danke ich Bernd Brumm,
meinem room mate Gianluca Ceruti - es war mir eine Freude mit dir über dynamical
low-rank approximation und „let Y be a tensor“ zu diskutieren, Sarah Eberle, Dominik
Edelmann, Dhia Mansour, Jörg Nick, Christian Power und nicht zuletzt Jonathan Seyrich.

vii

Ausdrücklich bedanken möchte ich mich bei Balázs Kovács. Unsere tagtäglichen „morning
chats“ waren einfach legendär, sie haben uns einen guten Start in den Arbeitstag beschert.
Balázs, danke, dass deine Türe mir für fachliche und insbesondere außerfachliche Themen
immer offen stand. Und danke auch für das sorgfältige Durchlesen dieser Arbeit.
Unsere Gruppendynamik wurde zeitweise durch Lukas Einkemmer, Emil Kieri, dem ich
insbesondere für unsere gelungene Zusammenarbeit danke, Buyang Li sowie Bin Wang
bereichert.

Mein tiefer und herzlicher Dank gilt meiner Familie und insbesondere meinen Eltern. Danke
für eure vielfältige und immerwährende Unterstützung und für euren guten Rat.
Meinem Freund David danke ich für seinen Rückhalt. David, danke, dass du mich immer
wieder in meinem Vorhaben bestärkt, mich motiviert sowie meine Höhen mit Freude und
meine Tiefen mit Gelassenheit während dieser ganzen Zeit begleitet hast.
Obwohl wir uns thematisch nicht austauschen konnten, habt ihr zweifelsfrei zum Gelingen
dieser Dissertation beigetragen. Danke!

viii

Contents

Introduction 1

1 The dynamical low-rank approximation 11
1.1 The singular value decomposition . 12

1.1.1 The SVD as a best approximation 12
1.1.2 Reduction of computational cost . 15

1.2 Ansatz of the dynamical low-rank approximation 15
1.3 An integration method . 18

1.3.1 Unique representation of the tangent factor matrices 18
1.3.2 Differential equations for the factor matrices 20
1.3.3 Schematic illustration of the integrator 23

1.4 Discussion about the discretized dynamical low-rank approximation in the
presence of small singular values . 24
1.4.1 Computational aspect . 25
1.4.2 Curvature of the low-rank manifold 25
1.4.3 Error bound . 26

2 Error analysis of the matrix projector-splitting integrator 29
2.1 The matrix projector-splitting integrator . 30

2.1.1 Deriving the integrator . 30
2.1.2 Practical integration scheme . 35

2.2 Two substantial properties of the integrator 36
2.2.1 Exactness . 37
2.2.2 Constant projections . 39

2.3 Robustness of the projector-splitting integrator with respect to small singu-
lar values . 41

2.4 Error bounds for specific situations . 56
2.4.1 The explicit case . 56
2.4.2 Inexact solution within the integration steps 57
2.4.3 A one-sided Lipschitz condition . 59

2.5 Numerical experiments . 60
2.5.1 The effect of small singular values 60
2.5.2 Matrix addition . 61

ix

CONTENTS

2.5.3 A discrete nonlinear Schrödinger equation for matrices 62
2.5.4 A stiff differential equation . 64

3 A low-rank splitting integrator for stiff matrix differential equations 67
3.1 The low-rank Lie–Trotter splitting integrator 68

3.1.1 Splitting into two subproblems . 68
3.1.2 The low-rank integrator . 69
3.1.3 Algorithmic description of the integrator 71

3.2 Error analysis of the low-rank Lie–Trotter splitting integrator 72
3.3 Discussion about the low-rank Strang splitting 88
3.4 Differential Lyapunov equation . 89
3.5 Differential Riccati equation . 92
3.6 Numerical examples . 94

3.6.1 A reaction-diffusion equation . 94
3.6.2 A differential Riccati equation . 96

4 Time integration of rank-constrained Tucker tensors 99
4.1 Tucker tensor format . 100

4.1.1 Modal multiplication of a tensor by a matrix 100
4.1.2 Transforming a tensor into a matrix 101
4.1.3 Tucker decomposition and its computation 104

4.2 The nested Tucker integrator . 110
4.3 Algorithmic description of the nested Tucker integrator 116
4.4 An exactness property of the nested Tucker integrator 118
4.5 Error bounds for the nested Tucker integrator 122
4.6 A projector-splitting integrator for Tucker tensors 127

4.6.1 Deriving the integration method . 127
4.6.2 Interpretation as a projector-splitting integrator 130
4.6.3 A direct exactness proof of the projector-splitting Tucker integrator . 133
4.6.4 Discussion and comparison . 137
4.6.5 Mathematical equivalence . 140

4.7 Numerical experiments . 142
4.7.1 Approximate addition of tensors . 142
4.7.2 A discrete nonlinear Schrödinger equation for tensors 143

5 Further result and future research 147
5.1 Time integration of rank-constrained tensor trains 147
5.2 Outlook: Time integration of tensor tree networks 151

x

Introduction

Brain waves move a wheelchair in real time. This surreal sounding statement is fortunately
a matter of fact. In the fields of biomedicine, bioengineering and neuroscience, the area of
brain machine interface has gained great success in this development in the past ten years.
Such systems help elderly and handicapped people to live autonomously through signals
from their minds. The computer installed in the wheelchair scans brain waves through
electroencephalography (EEG). In 125 milliseconds, the computer turns a thought into
a command to move the wheelchair forward or turn it left or right, such that it moves
smoothly due to real time control. EEG signals are widely used to measure brain waves
in neuroscience, such as also for an early diagnosis of Alzheimer’s disease, and they are
usually stored in a multidimensional array, say A(t) ∈ Rn1×···×nd at each time t. In such
complex applications, the amount of data is very large, here we would have to store about
Nd entries, where N = max{n1, . . . , nd}, which means an exponential growth in dimension
d with regard to memory requirements. For processing the data set in order to move the
wheelchair, the computer has to work on each data point to gain information about passing
the way the person intends to move. In case of a large data set A(t) the data processing
takes a prohibitively long time, such that the person does not move from one place to
another in real time, but for instance after several hours, when the computations would be
finished.

To put such a helpful device into practice, the challenge is to drastically reduce the
measured data up to the most necessary, without losing too much information, since oth-
erwise the computer would run out of time and memory, and a real time control over the
wheelchair would therefore not be possible. There is rich literature about these develop-
ments, and here we only list a selection [CC08, CWR+08, CZPA09, Cic13] and the review
article [CLK+15].

From a mathematical point of view, our aim is to approximate the time-dependent
array A(t) by another array Y (t) ∈ Rn1×···×nd , i.e.,

A(t) ≈ Y (t),

where the storage of the approximation array as well as its processing is computationally
less expensive than working with A(t).

Let us now turn from brain waves to quantum state waves. In natural sciences and in
engineering most of the phenomena are not described explicitly by data stored in an array,
but are rather given implicitly as the unknown solution to a high-dimensional ordinary or
partial differential equation. In the field of quantum mechanics, for instance, the state of

1

Introduction

a molecular system at time t is described by the wave function ψ, which is given as the
solution to the linear time-dependent Schrödinger equation

i
∂ψ

∂t
(x, t) = H(x, t)ψ(x, t), x ∈ Rd, t ≥ 0,

with a Hamiltonian operator H for a multi-particle wave function ψ(x, t) = ψ(x1 . . . , xd, t),
which is a partial differential equation, see [Sch26, Lub08] and references therein. Many
interesting models in quantum mechanics involve several, say d, particles, such that the
dimension d might become large. The computational challenges with regard to time and
memory when solving such high-dimensional partial differential equations are very de-
manding. In fact, they evoke from the high dimension of the considered problem and
this computational intractability is termed by the catchphrase “curse of dimensionality”,
see [Bel61]. Already back in 1930, P.A.M. Dirac realized by studying the Thomas atom
in [Dir30a] that “for dealing with atoms involving many electrons the accurate quantum
theory, involving a solution of the wave equation in many-dimensional space, is far too
complicated to be practicable. One must therefore resort to approximate methods.”

Following his suggestion, from the numerical analysis point of view, we discretize a
partial differential equation in space and obtain a system of ordinary differential equations
of the form

.
A(t) = F (t, A(t)), A(t0) = A0,

where A(t) ∈ Rn1×···×nd for all times t0 ≤ t ≤ T . This type of differential equation, which
is characterized by a high dimension of the solution A(t), marks the starting point of this
thesis. Such a differential equation is not directly tractable because of its sheer size, except
for very small dimensions d.

In the same work, Dirac also proposed an ansatz to find approximate solutions to
high-dimensional problems, such as the Schrödinger equation, which nowadays is known
as the Dirac–Frenkel variational principle in quantum mechanics literature, see [Dir30a,
Dir30b, Fre34], and which will play a fundamental role in this thesis. The main idea is to
evolve a differential equation for the approximation array Y (t) ∈ Rn1×···×nd . Looking at
the dimension of the approximation array, it is reasonable to ask about the computational
benefit when solving a differential equation for Y (t) instead of solving a differential equation
for A(t). The solution of the differential equation for the approximation Y (t) becomes
computationally accessible if it admits a low-rank structure, which will be described in a
later paragraph.

Throughout this thesis, we aim to find an approximation Y (t) for all t0 ≤ t ≤ T ,
characterized by arrays of the same size as A(t) that admit a (low) rank r structure, where
we will specify r later, and we identify this search space as a low-rank manifold M. In
the numerical analysis literature, the problem of finding a low-rank approximation of an
explicitly or implicitly given time-dependent array and its numerical treatment were first
studied by O. Koch and Ch. Lubich in [KL07] for the two-dimensional matrix case. There,
the ansatz of the dynamical low-rank approximation is introduced, which mainly follows

2

Introduction

the ideas of the Dirac–Frenkel variational principle: the right-hand side of the differential
equation for A(t) is projected orthogonally onto the tangent space of the low-rank manifold
at an approximation Y (t), for all t0 ≤ t ≤ T . Denoting the orthogonal projection at Y (t)

by P(Y (t)), this results in a differential equation
.
Y (t) = P(Y (t))F (t, Y (t)), Y (t0) = Y 0

for the approximation array, which due to the underlying low-rank structure of Y (t) leads to
a reduced model compared to the differential equation for A(t). Employing and exploiting
the low-rank representation of the approximation array while integrating its differential
equation is the key to computational efficiency of the dynamical low-rank approximation
approach. A first numerical implementation and some applications are reported in [NL08].
We also refer to the review article [Lub14] about low-rank dynamics.

We shall now introduce the low-rank formats that are central for this thesis to overcome
the curse of dimensionality to some extent.

For matrices, the question about finding an approximation matrix to an explicitly given
matrix can be traced back to C.F. Gauss in 1809, though having a different motivation
to this problem, see [Gau09, Gau23]. About one hundred years later, a group of math-
ematicians contributed to finding an approximation matrix Y(t) ∈ Rn1×n2 to the given
matrix A(t) ∈ Rn1×n2 as best as possible, which nowadays is known as the singular value
decomposition. There are several proofs showing that every matrix admits a singular value
decomposition, where the most prominent proof is by construction, see, for instance, in
the monograph [GVL96]. This non-unique factorization decomposes the matrix A(t) into
three matrices.

In order to determine an approximation matrix of (low) rank r, we zero out the last
(N−r) singular values of A(t), which results in the truncated singular value decomposition

Y(t) = U(t)S(t) V(t)>,

where U(t) ∈ Rn1×r, V(t) ∈ Rn2×r have orthonormal columns, S(t) ∈ Rr×r and r <

min{n1, n2}. Of course, in general, the matrix A(t) will have a singular value decomposi-
tion at each time t ∈ [t0, T], but we think of those factor matrices to be smooth, since this
is desired in the later applied time integration methods. As for smooth decompositions of
matrices, see [DE99].

Now, imposing the rank r of the approximation matrix Y(t) to be much smaller than
the rank of A(t), the singular value factorization can be stored and manipulated more eco-
nomically than the matrix A(t) itself. Supposing that N = max{n1, n2}, storing the full
matrix Y(t) requires saving about N2 entries. In contrast, employing the low-rank decom-
position, we simply store the factor matrices, which accounts for a memory requirement
of 2Nr+ r2 entries. In case when r � min{n1, n2}, this leads to a significant reduction of
computational cost.

There is a rich literature about the genesis and early developments of the singular value
decomposition, such as [Bel73, Jor74, Sch07, EY36, Mir60, GVL96], while see [Ste93] for
an overview on the early history of the singular value decomposition.

3

Introduction

Computing a singular value decomposition of a matrix is a task for its own. There are
several different approaches of how to determine this factorization from the computational
viewpoint. The most prominent algorithm proposed in [GK65] consists of two phases
based on QR decompositions: first, the given matrix is transformed in a bidiagonal form
and second, the bidiagonal form is diagonalized and its singular values are computed.
There are many other methods, which follow the first step of this algorithm, but modify
the second part, such as the one- or two sided Jacobi algorithm [GVL96], the modified QR
iteration [DK90] for computing singular values with high relative accuracy or the method
proposed in [TB97] that is based on divide-and-conquer eigenvalue algorithms. In this
thesis, we use the truncated singular value decomposition as a mathematical tool and
identify it as a low-rank representation of two-dimensional arrays.

Increasing the dimension of the array from two to d ≥ 3, we speak about tensors.
The first and most basic idea to decompose a tensor to a low-rank representation is about
reducing it to a sum of r tensor products of vectors in d dimensions. This tensor format is
known as canonical polyadic decomposition and is introduced in [Hit27], but did not find
attention in the mathematical community. It is redeveloped in [Har70] and in [CC70] and
renamed as PARAFAC/CANDECOMP in the psychometrics and chemometrics literature,
where it gained recognition. In case when N = max{n1, . . . , nd}, it requires only dNr

entries to be stored and so the dependence on the dimension d of the tensor is only linear.
Computing the canonical format out of a given tensor is a drawback of this representation,
since the existing methods are unstable, and so this tensor representation did not find
broad attention in the mathematical community.

In the mid 20th century, tensor decompositions were taken up by the development of the
fundamental Tucker tensor format. It was introduced by L.R. Tucker for three dimensional
tensors in the psychometrics literature in [Tuc66] for the principal component analysis.
Since then, it has seen various applications and its usage spread out to the numerical
linear algebra and to the numerical analysis community. The authors in [DLDMV00a]
have shown that every high-dimensional tensor admits an exact Tucker representation.
The Tucker decomposition is a natural generalization of the singular value factorization
from the matrix to the tensor case. It decomposes a tensor exactly into a core tensor, which
is of the same size as the tensor itself, multiplied by matrices along each mode i = 1, . . . , d.
With regard to computational effort, this decomposition is inadequate in this form and
requires a modification of the factors. Similarly to the matrix case, the last (ni − ri)

entries of the core tensor and of the matrices are truncated in each mode i = 1, . . . , d,
which results in the truncated Tucker decomposition

Y (k1, . . . , kd)(t) =

r1∑

j1=1

· · ·
rd∑

jd=1

C(j1, . . . , jd)(t) ·U1(k1, j1)(t) · · ·Ud(kd, jd)(t),

where C(j1, . . . , jd)(t) are the entries of the core tensor C(t) ∈ Rr1×···×rd and Ui(ki, ji)(t)

are the elements of the factor matrices Ui(t) ∈ Rni×ri , for all i = 1, . . . , d and for all
t ∈ [t0, T].

Tucker also presented a method of how to compute this tensor decomposition in [Tuc66,
Method 1]. This fragmented algorithm is replaced by the truncated higher-order singular

4

Introduction

value decomposition (where the notion order is used in place of the term dimension and has
the same meaning), a stable method based on truncating singular values of matricizations
of the given tensor in each mode, introduced in [DLDMV00a], and enhanced as the higher
order orthogonal iteration method in [DLDMV00b]. In contrast to the matrix case, the
truncated higher-order singular value decomposition does not yield a best-approximation,
but it results in a quasi-optimal approximation tensor of multilinear rank [Hit28]. From
the computational perspective, the Tucker format requires the storage of about Rd + dNR

entries, where R = max{r1, . . . , rd}. Supposing R � N , this is a great reduction of
computational memory compared to storing the full tensor with its Nd entries. However,
its storage scales exponentially with the rank, which makes the Tucker format suitable for
the three- or four-dimensional case.

A remedy for this exponential scaling is the development of the tensor train decompo-
sition [OT09, Ose11]. In the theoretical physics literature, this format was already known
as matrix product states, see, e.g., [PGVWC06, VMC08, Sch11, HOV13, HLO+16]. The
main idea of the tensor train representation is to approximate a tensor of high order d with
a collection of tensors of order three. Each entry of a tensor in the tensor train format
admits the form

Y (k1, . . . , kd)(t) =

r1∑

j1=1

· · ·
rd−1∑

jd−1=1

C1(1, k1, j1)(t) · C2(j1, k2, j2)(t) · · ·Cd(jd−1, kd, 1)(t),

where the three-dimensional core tensors are of size Ci(t) ∈ Rri−1×ni×ri for each mode
i = 1, . . . , d, with r0 = rd = 1 and for all t ∈ [t0, T]. This decomposition can be obtained
by the TT-SVD algorithm proposed in [Ose11], which is based on truncated singular value
decompositions of matricizations of the core tensors. It yields a quasi best approximation
to a full higher-order tensor and is the state-of-the-art method to compute the tensor train
factorization. In contrast to the Tucker tensor format, it scales only quadratic with the
rank, since the computational memory amounts for storing about (d− 1)NR2 entries.

For an introduction to further tensor formats and tensor calculus, we refer to [Hac12].

This thesis contributes to the dynamical low-rank approximation of matrices, Tucker
tensors and tensor trains, where all are of fixed rank, but change in time. As mentioned
earlier, when following the dynamical low-rank approximation, we are interested in solving
the reduced differential equation for the approximation array Y (t) ∈ Rn1×···×nd in an
efficient way by benefiting from an underlying low-rank representation format.

For two-dimensional arrays Y(t), the first integration method was proposed in [KL07],
where a system of differential equations for the factors U(t), S(t) and V(t) of the singu-
lar value decomposed format were determined from the above specified differential equa-
tion. Solving those differential equations by a standard numerical integration method, like
Runge–Kutta as suggested in [KL07], leads to an update of the factor matrices and by
building their product to the desired update of the approximation matrix Y(t) from one
time step to the next.

This numerical integration method yields locally quasi-optimal approximation results
and the local error bound depends on the inverse of the smallest singular value of the

5

Introduction

approximation matrix Y(t). So in case when the smallest singular value of Y(t) is small,
this error bound is unfeasible. The proof of this integration method uses a severe property
of the orthogonal projection: the local Lipschitz constant of the orthogonal projection at
Y(t) is inversely proportional to the smallest non-zero singular value of the approximation
matrix and can thus become arbitrarily large, see [KL07, Lemma 4.2].

From a geometric viewpoint regarding the low-rank manifold this means that the cur-
vature of the manifold is high for matrices with singular values that are close to zero. From
the numerical analysis point of view, standard error estimates break down in the presence
of small singular value, since they use the local Lipschitz constant of the tangent space
projection.

Another difficulty this property brings about affects the numerical integration of the
system of differential equations. Due to the usage of the singular value factorization as
the low-rank representing matrix format, the singular values of Y(t) are contained in the
matrix S(t), whose inverse appears on the right-hand side of the differental equations for
U(t) and V(t), respectively. If the singular values of the approximation matrix are small,
this leads to a severe step size restriction when applying standard numerical integrators,
such as Runge–Kutta methods.

The difficulties with small singular values are a restrictive observation and therefore it
is reasonable to ask whether one has to expect occuring small singular values in practice, or
whether this is a problem of rather theoretical nature. In fact, this question is linked to the
problem of how to choose the approximation rank. A rough choice for the approximation
rank suggests to choose r ≈ log(N), where N = max{n1, . . . , nd}, see [KK18], but this
hypothesis is only approved by numerical experiments, yet not proven rigorously. Even if
there is a distinct gap in the singular value distribution such that two groups of large and
negligibly small singular values, respectively, are formed, it is typically not known a priori
at which rank the group of effective singular values ends. Choosing the approximation
rank too small, we run the risk of neglecting singular values that are large and account
for the effective rank, such that underestimating the rank saves computational effort, but
leads to loss of information. On the other hand, picking r too large means taking small
singular values under consideration, which implicates problems with large Lipschitz con-
stants. Without having any knowledge of the effective rank of the approximation matrix,
the choice of the approximation rank is accidental. Typically one chooses the rank rather
large in order to avoid losing information, and so, being faced with appearing small singular
values in Y(t) is very common.

Recently, very efficient integrators based on splitting the projection onto the tangent
space of the low-rank manifold have been proposed and studied for matrices [LO14] and
for Tucker tensors [Lub15] as well as for tensor trains [LOV15].

Let us give a more detailed introduction into those three integration schemes, since
they build the starting point for the developments of this dissertation. We begin with
the two-dimensional matrix integrator. As mentioned earlier, the first integration scheme
for matrices proposed in [KL07] deteriorates in the presence of small singular values. In
contrast, the matrix projector-splitting integrator of [LO14] performs well in the case of
an ill-conditioned S(t), because it computes updates of the factors U(t), S(t) and V(t),

6

Introduction

respectively, in a different way. This favorable behavior was observed in numerical examples
and shown analytically in the special case of a distinct gap in the distribution of the singular
values of given time-dependent matrices A(t) in [LO14]. Another remarkable characteristic
is the exactness property of the integrator: it reproduces the explicitly given matrix A(t)

in case when latter is of rank at most r for all times t ∈ [t0, T] and the initial value A(t0) as
well as the starting value Y(t0) of the integrator coincide. This matrix projector-splitting
integrator is an essential fundament for the development of time integration methods for
tensors in low-rank formats.

Turning to Tucker tensors, a first time integrator proposed in [Lub15] was launched in
the multiconfiguration time-dependent Hartree method [BJWM00] in quantum dynamics
and successfully implemented and applied in the field of quantum chemistry [KBL17]. In
the quantum physics literature, integration methods have been developed to solve the
corresponding equations of motion, see, e.g., [BM97, Lub04], but the appearing inverses of
the typically ill-conditioned density matrices lead to severe stepsize restrictions for these
numerical integrators. Translating this into the numerical analysis language, the density
matrices conform to the matrix S(t), and we are back in the first proposed matrix integrator
[KL07] that suffers from small singular values. In [Lub15], a numerical integrator was
presented, which does not deteriorate when small singular values of matricizations of the
core tensor C(t) are present. There, first the factor matrices Ui(t) are propagated in
time, for all i = 1, . . . , d, by a repeated application of the first two integration steps of the
matrix projector-splitting integrator of [LO14]. The fact that the matrix projector-splitting
integrator can be applied to the Tucker tensor case is due to the possibility of matricizing a
tensor. At the end of the integration scheme the core tensor C(t) is updated. Though this
method propagates each factor of the Tucker decomposition, it does not suffer from small
singular values, since it relates back to the favorable matrix projector-splitting integrator
that performs well in this situation. Therefore, applying this Tucker integrator to the
two-dimensional case yields the same results as the matrix projector-splitting integrator in
[LO14]. This integrator is derived in an algorithmic way, but it is also shown in [Lub15]
that it can be interpreted as a projector-splitting integrator, decomposing the orthogonal
projection P(Y (t)) into a sum of subprojections.

For tensor trains, a time integrator for dynamical tensor approximation in this format
was presented in [LOV15]. This method uses a Lie–Trotter splitting of the vector field
P(Y (t))F (t, Y (t)), and generates subproblems that are solved sequentially by taking the
solution of one substep as the initial value for the next. It turns out that solving the aris-
ing subproblems means updating the core tensors Ci(t) of the tensor train representation
sequentially. A closer look on the differential equations that need to be solved reveals
that this integration method in fact is an extension of the matrix integrator, since matrix
differential equations of the same form as in the two-dimensional case are solved here.
Again, applying the integration scheme for matrices to the tensor train format is rendered
possible due unfolding a tensor into a matrix. Another analogy to the matrix case is the
exactness property. Numerical experiments illustrate that this integration scheme has no
computational restrictions in the presence of small singular values.

We refer to the survey article [GKT13], which assembles further low-rank formats for

7

Introduction

tensors and techniques to approximate them.
This thesis focuses on the above mentioned low-rank formats and follows the ansatz of

the dynamical low-rank approximation in order to determine low-rank approximations to
explicitly or implicitly given matrices and tensors.

How does this dissertation embed into the landscape of dynamical low-rank approxi-
mation of matrices and tensors, which is shaped by the above methods? This thesis
contributes to the development of new algorithms, their numerical analysis and the analysis
of the already existing numerical integrators. It is build up on the joint work [KLW16] of
the author with E. Kieri and Ch. Lubich, on the joint work [OPW18] of the author with
A. Ostermann and C. Piazzola as well as on the joint work [LVW18] of the author with
Ch. Lubich and B. Vandereycken. Let us explicate the results separately:

Indeed, the exactness property of the matrix integrator was shown in [LO14], though
due to the simple but technical nature of the proof, it barely reveals an explanation about
this behavior. In this thesis, we give a new proof of the exactness of the matrix projector-
splitting integrator that argues with the appearing subprojections and therefore aims to
give a deeper insight about this seldom property of a numerical integrator.

The main contribution within the two-dimensional case is the error analysis of the ma-
trix projector-splitting integrator of [LO14], which shows that this integrator is insensitive
to the presence of small singular values in the approximation matrix Y(t). This property
is not shared by any standard integrator, such as Runge–Kutta methods, whose behavior
deteriorates when singular values become small. We show that if the function F maps onto
the tangent bundle of the manifold M up to an ε-perturbation, the error of the matrix
projector-splitting integrator will be bounded in terms of ε and the time step size of the
integration procedure. Hence, the closer F (t, ·) is to the prescribed rank, i.e., the closer
it is to the low-rank manifold, the better approximation results are obtained. The main
challenge is to avoid using the Lipschitz constant of the orthogonal projection P(Y (t)),
since it behaves proportional to the inverse of the smallest singular value of Y(t). What
comes to our help is the exactness property of the matrix integrator and the preservation
of the spaces spanned by the columns of one of the orthonormal matrices U(t), V(t), or
those of both, respectively, within the integration steps. Combining those two essential
properties, the error estimate is obtained with a completely new technique of proof.

The robustness proof of the matrix projector-splitting integrator does not use the local
Lipschitz constant of the orthogonal projection, but it requires Lipschitz continuity of the
function F (t, ·). This gives rise to the application of the result to stiff differential equa-
tions, such as discretized partial differential equations, only under a severe CFL condition.
However, such a restriction is not observed to be necessary in numerical experiments. We
introduce the low-rank Lie–Trotter splitting integrator, a numerical method for the low-rank
approximation of stiff matrix differential equations, where the right-hand side consists of a
stiff, linear and a non-stiff, nonlinear part. Although the right-hand side of the differential
equation is stiff, the new integration method has no restrictive choice of the time step size.
We also present an error bound, that proves the method to be robust with respect to small
singular values and which is independent of the possibly large Lipschitz constant of the

8

Introduction

full stiff right-hand side of the differential equation. The main idea is to split away the
stiff from the non-stiff part and integrate each of the arising subproblems separately. We
observe that the stiff part can be solved exactly using semigroup theory [Paz83, EN99] and
this avoids using its Lipschitz constant in the error analysis of the proposed method. We
also show how the low-rank Lie–Trotter splitting integrator can be applied to the differen-
tial Lyapunov and to the differential Riccati equation, two essential representatives of this
class of stiff matrix differential equations.

Moreover, we derive a new numerical integrator for the dynamical low-rank approx-
imation of tensors in Tucker format. It differs from the method proposed in [Lub15] in
that it follows a conceptually different derivation. The main idea is to apply the matrix
projector-splitting integrator to matricizations of the Tucker approximation tensor, where
the first two steps are solved exactly and the third step is solved inexactly by a low-rank
approximation of the matricized approximation tensor in the subsequent mode. There, we
again apply the matrix integrator with inexact solution in the last substep, and so forth.
The nested structure of the scheme is eponymous for the nested Tucker integrator. The
integrator updates the factor matrices Ui(t) subsequently for each mode i = 1, . . . , d and
after each such update, it simply does not take this already updated matrices into account
for the next step, i.e., it gets rid of this computational ballast when solving the initial value
problem for the intermediate approximation tensor, which is then reduced in dimension.
The advantage over the method proposed in [Lub15] is the reduction of the computational
complexity in each substep, since the integrator therein solves differential equations for the
full (intermediate) approximation tensor in each substep.

As the nested Tucker integrator is mainly based on the matrix projector-splitting inte-
grator, it allows us to transfer the known favorable properties of the matrix integrator to the
tensor case. We give a rigorous error analysis of the nested Tucker integrator and prove its
robustness in the presence of small singular values of matricizations of the approximation
tensor.

Also, we show that in case when the explicitly given tensor A(t) is already of prescribed
low rank, the nested Tucker integrator yields the exact solution in the time grid points.

We further show that the newly derived integrator is mathematically equivalent to the
Tucker tensor projector-splitting integrator of [Lub15]. Therefore, we show implicitly that
this integrator is also exact and its error bound is independent of singular values.

We also present a way to prove the exactness property of the integrator of [Lub15]
directly.

Our contribution to the dynamical low-rank approximation of tensor trains is an error
analysis of the time integrator introduced in [LOV15]. The error bound given in [KLW16,
Theorem 3.1] is robust with respect to small singular values, where an inductive argument
that takes the first two steps from the matrix projector-splitting integrator into account
is used. Since the integration method for tensor trains is an extension of the matrix
integrator, it is comprehensible that an analogous first order error bound can be shown. In
this thesis, we will concisely address this result and refer to the full content to the original
work [KLW16].

9

Introduction

Let us conclude the introduction by giving an outline of this thesis.
The first chapter serves as a basis for the thesis. We recap the (truncated) singular value

decomposition, which is the fundamental low-rank representation for matrices throughout
this thesis. We also present the idea of the dynamical low-rank approximation, which we
study for the two-dimensional case, though it also serves as the central model reduction
technique for higher-dimensional tensors. Further, we recall a first integration method for
the differential equation for the rank-reduced approximation matrix. This part and the
ansatz of the dynamical low-rank approximation are mainly taken from the constitutive
paper [KL07]. We discuss difficulties of the discretized dynamical low-rank approximation
in the presence of small singular values.

In Chapter 2, we present the projector-splitting integration method proposed in [LO14],
which does not suffer from small singular values. We give a new proof for the exactness
property of the integrator, which has never been published or submitted before. The main
part of this chapter is the proof of robustness of the projector-splitting integrator with
respect to small singular values. We also give error bounds for specific situations and
exemplify its favorable behavior in this situation within numerical examples. We illustrate
that the integrator is applicable to stiff differential equations. The numerical analysis of
the projector-splitting integrator is build on [KLW16].

Chapter 3 deals with the question how to compute low-rank approximations to stiff
matrix differential equations. We present a numerical integrator based on a Lie–Trotter
splitting and perform an error analysis that gives error bounds, which are independent of
the Lipschitz constant of the full stiff right-hand side as well as independent of singular
values. We apply this method onto two important representatives of the considered class
of stiff matrix differential equations: the differential Lyapunov and the differential Riccati
equation. All of this chapter is drawn from [OPW18], except the discussion about the low-
rank Strang splitting as well as the algorithmic description of the integration procedure.

Chapter 4 is concerned with the time integration of Tucker tensors. First, we amplify
the Tucker tensor format as a low-rank representation of tensors. Afterwards, we propose
the nested Tucker integrator, a numerical integration method that determines low-rank ap-
proximations in Tucker tensor form. We also prove the exactness property of this integrator
and perform an error analysis, which shows its robustness regarding small singular values.
We further compare the nested Tucker integrator with the Tucker projector-splitting in-
tegrator of [Lub15] and prove that they are mathematically equivalent. All this is taken
from [LVW18]. We give a direct proof about exactness of the method in [Lub15], which
has not been submitted or published elsewhere.

Finally, Chapter 5 consists of two parts. First, we discuss the tensor train format
and review the error analysis proposed in [KLW16] of the time integrator of tensor trains
presented in [LOV15]. The tensor train decomposition is a special case of the hierarchical
Tucker tensor format that has a binary structure and was independently introduced in
[HK09] and in [Gra10]. In the second part, we give future prospects about tensor tree
networks, a format that is even more general than the hierarchical Tucker tensors. We
give a concise introduction into this general tensor format and present an idea of how to
integrate tensor tree networks in time.

10

1 The dynamical low-rank
approximation

This introductory chapter is dedicated to set up the environment, which is the base of
our considerations for the following chapters. Our aim is to determine an approximation
matrix Y(t) ∈ Rn1×n2 to a time-dependent matrix A(t) ∈ Rn1×n2 under the constraint
that the rank r of Y(t) is much smaller than the rank of A(t) for all t0 ≤ t ≤ T , where
t denotes a time-variable and r ∈ N. In classical literature, this low-rank approximation
problem is known as finding a best approximation to the matrix A(t), which is realized
by a singular value decomposition truncating rows and columns of the factor matrices. In
contrast, we will follow the idea of the dynamical low-rank approximation, which requires
the time derivative

.
Y(t) of the approximation matrix to be in the tangent space of the

approximation manifold such that

‖
.
Y(t)−

.
A(t)‖ = min .

With ‖·‖ we denote the Frobenius norm throughout this thesis.
This minimization problem leads to a differential equation for the approximation matrix

Y(t), which needs to be solved numerically. In order to solve this differential equation in
an efficient way, we make use of a suitable factorization of low-rank matrices. Here, we
choose the decomposition

Y(t) ≈ U(t)S(t) V(t)>, for all t0 ≤ t ≤ T,

as a low-rank representation of Y(t) and evolve evolution equations for the factor matrices
U(t) ∈ Rn1×r, S(t) ∈ Rr×r and V(t) ∈ Rn2×r, where U(t) and V(t) have orthonormal
columns and r ∈ N denotes the rank of Y(t).

We start with recalling the singular value decomposition, which is a fundamental ma-
trix decomposition throughout this thesis. We also give a historic overview of the discovery
of the singular value decomposition and its applications, such as the best low-rank approxi-
mation of a matrix, see Section 1.1. Afterwards, starting from Section 1.2, we mainly trace
ideas and results of [KL07], which is the cornerstone of the dynamical low-rank approxima-
tion. In Section 1.2, we first present the ansatz of the dynamical low-rank approximation,
leading to a differential equation for the approximation matrix Y(t). Second, we follow
the approach in [KL07] for determining differential equations for the factor matrices out of
the differential equation for Y(t) and integrate them in time, see Section 1.3. Finally, we

11

1.1. The singular value decomposition

discuss this integration method with regard to the presence of small singular values in the
approximation matrix in Section 1.4. Here, we focus on the computational point of view,
on the behavior of the time-dependent approximation method under consideration con-
cerning a geometric aspect of the approximation manifold and we study the error bound of
the integrator. Further approximation properties of this integration method were studied
in [KL07].

1.1 The singular value decomposition

We start with a basic concept of matrix decomposition, which we will use in a slightly
modified form throughout this thesis. The theory of matrix decompositions can be dated
to 1809, where C.F. Gauss made a note about how to reduce binary quadratic forms
[Gau09], which he amplified in 1823 in [Gau23] by giving an elimination algorithm. This
was the advent of matrix factorizations.

About fifty years later, E. Beltrami in 1873, and C. Jordan in 1874 both considered
independently from each other bilinear forms and how to simplify them in order to find
their minima and maxima, see [Bel73] and [Jor74], respectively. They detected that for
their computations, it is beneficial to first factorize the bilinear form into three matrices,
where two of them are required to be orthogonal and the third matrix is assumed to be
diagonal. Also, they discovered how to determine each of those three factor matrices.
Although they never wrote down the product of those three matrices in the way we denote
it nowadays, Beltrami and Jordan are certainly the founders of the existence of the singular
value decomposition. Thanks to their pionieering work, we know that each matrix A ∈
Rn1×n2 admits a singular value decomposition (SVD)

A = W1 Σ W>
2 ,

where W1 ∈ Rn1×n1 and W2 ∈ Rn2×n2 are orthonormal matrices and

Σ = diag(σ1, σ2, . . . , σmin{n1,n2}) ∈ Rn1×n2

is a rectangular diagonal matrix assembling the non-negative, real singular values σi for
all i = 1, . . . ,min{n1, n2}.

In fact, Beltrami and Jordan derived the singular value decomposition for a real, square
and nonsingular matrix having distinct singular values. For a classical existence proof of
the singular value decomposition, we refer to [GVL96].

1.1.1 The SVD as a best approximation

In 1907, E. Schmidt first considered the singular value decomposition (though not denoting
it as such) for linear operators and their approximation: in [Sch07, Viertes Kapitel], he
worked on integral equations in infinite dimensional spaces and there, he formulated the
problem of finding a sum of at most r terms consisting of the product of two functions
depending on different variables in order to approximate a continuous function: “Es werde

12

1. The dynamical low-rank approximation

verlangt [die Funktion] durch eine Summe von höchstens [r] Produkten einer stetigen Funk-
tion [. . .] mit einer [anderen] stetigen Funktion [. . .] möglichst gut zu approximieren”, see
[Sch07, p. 467]. Translating his continuous into a discrete setting, we find that his method
is the precursor of the singular value decomposition, where the problem for one variable is
formulated as follows: find an approximation to the time-dependent matrix A(t) ∈ Rn1×n2

for each t ∈ [t0, T] of the form

A(t) ≈
r∑

i=1

xi(t)zi(t)
>

with the constraint

∥∥∥A(t)−
r∑

i=1

xi(t)zi(t)
>
∥∥∥

HS
= min,

where ‖·‖HS is the Hilbert-Schmidt norm. It turns out that when writing the matrix A(t)

in factorized form

A(t) = W1(t) Σ(t) W2(t)
>,

with W1(t) ∈ Rn1×n1 and W2(t) ∈ Rn2×n2 having orthogonal columns and Σ(t) ∈ Rn1×n2

being diagonal and then truncating columns (r + 1), . . . , n1 of the matrix W1(t), as well
as columns (r+ 1), . . . , n2 of the matrix W2(t) and both, rows (r+ 1), . . . , n1 and columns
(r + 1), . . . , n2 of the matrix Σ(t), such that we obtain matrices of smaller size, i.e.,

W1(t) ∈ Rn1×n1
trunc(col(r+1,...,n1))

−−−−−−−−−−−−−−→ U(t) ∈ Rn1×r,

W2(t) ∈ Rn2×n2
trunc(col(r+1,...,n2))

−−−−−−−−−−−−−−→ V(t) ∈ Rn2×r,

Σ(t) ∈ Rn1×n2
trunc(row(r+1,...,n1)), trunc(col(r+1,...,n2))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S(t) ∈ Rr×r,

the resulting matrix

Y(t) :=

r∑

i=1

σi(t)ui(t)vi(t)
> = U(t)S(t) V(t)>,

where ui(t) and vi(t) are the columns of U(t) and of V(t), respectively, and with decreasing
σi(t) for increasing i = 1, . . . , r, is the best approximation to A(t) for each t ∈ [t0, T] with
respect to the condition that rank Y(t) ≤ r:

min
∥∥∥A(t)−

r∑

i=1

xi(t)zi(t)
>
∥∥∥

HS
=
∥∥A(t)−Y(t)

∥∥
HS.

In this way, Schmidt turned the SVD from a theoretical result to a mathematical tool,
which nowadays is indispensable for matrix approximations. In [Sch07, §19], Schmidt
gives a proof of his theorem for this best approximation, which he formulates in words as
“Das [. . .] definierte Maß der besten Approximation [. . .] einer Funktion [. . .] durch eine

13

1.1. The singular value decomposition

Summe von höchstens [r] Produkten einer Funktion [. . .] mit einer [anderen] Funktion [. . .]
verschwindet bei [. . .] wachsendem [r]”.

In 1936, C. Eckart and G. Young have determined the best approximation of one
matrix to another by defining a distance function, which can be obtained by manipulating
its terms, see [EY36]. They also show that the truncated SVD is the best approximation
of a matrix by another matrix of low rank.

L. Mirsky joins this group of developers of the best approximation of a matrix. He
extended this result to unitary invariant norms, such as the Frobenius norm and the spectral
norm for matrices in 1960. He used the same techniques in his proof as Schmidt, but his
motivation was different, since he came up with this minimization problem by studying
properties of unitary invariant matrix norms, see [Mir60]. He arrived at the same conclusion
as Schmidt, Eckart and Young and therefore this result is often called the Schmidt-Eckart-
Young-Mirsky Theorem in mathematical literature. We study how to obtain this result in
the spectral norm denoted by ‖·‖2, where we omit the time dependence:

Without loss of generality, let n1 ≥ n2 and let A =
∑n2

i=1 σiuiv
>
i be given in the singular

value decomposed form, where σi are the singular values of A and ui and vi denote the
orthonormal columns of the matrices W1 and W2, respectively. Let Y ∈ Rn1×n2 with

Y =

r∑

i=1

σiuiv
>
i ,

then we have

A−Y =

n2∑

i=r+1

σiuiv
>
i

and σr+1 is the largest singular value of A−Y. Therefore, by definition of the spectral
norm we find

‖A−Y‖2 = σr+1.

Let further Z ∈ Rn1×n2 with rank Z = r and r � n2. Then it follows by the rank-nullity
theorem that

rank Z + ker Z = n2 ⇐⇒ ker Z = n2 − r.

Then,

dim(ker Z) + dim(span{v1, . . . , vr+1}) = (n2 − r) + (r + 1) = n2 + 1 ≥ n2.

Hence, ker Z ∩ span{v1, . . . , vr+1} 6= ∅. For z ∈ ker Z ∩ span{v1, . . . , vr+1} with ‖z‖2 = 1,
we have Z z = (0, . . . , 0)> and z = α1v1 + · · · + αr+1vr+1, for αi ∈ R \ {0} for all i =

1, . . . , r + 1. Therefore, with

‖z‖22 =

r+1∑

i=1

|αi|2 = 1,

14

1. The dynamical low-rank approximation

we have

‖A−Z‖22 = ‖A−Z‖22 ‖z‖22

≥ ‖(A−Z)z‖22 = ‖A z‖22 =

∥∥∥∥∥
r+1∑

i=1

αi A vi

∥∥∥∥∥

2

2

=

∥∥∥∥∥
r+1∑

i=1

αiσiuiv
>
i vi

∥∥∥∥∥

2

2

=

r+1∑

i=1

|αiσi|2

≥
r+1∑

i=1

|αiσr+1|2 = σ2r+1

r+1∑

i=1

|αi|2 = σ2r+1

= ‖A−Y‖22,

which shows that Y is the best approximation matrix of rank r to the matrix A.

1.1.2 Reduction of computational cost

Schmidts contribution in determining the best approximation matrix of lower rank to a
given matrix with full rank opened the way for the singular value decomposition being
a crucial computational tool. Eckart and Young give the first approach of how to find
the approximation matrix Y and they are the first who name this procedure a “truncated
singular value decomposition”.

When assuming r � {n1, n2}, we can save computational memory and time: instead
of storing the full matrix A ∈ Rn1×n2 , which means saving (n1 · n2) entries, we only store
the factor matrices of the truncated singular value decomposition Y = U S V>. Due to
the dimensions of the factor matrices, this requires the storage of only (n1r + r2 + n2r)

entries.
Hence, in favor of computational efficiency and for reducing the complexity of the

problems we will deal with throughout this thesis, we consider the rank r to be significantly
smaller than the dimensions of the matrix.

1.2 Ansatz of the dynamical low-rank approximation

Formulated for the two-dimensional case, the overall problem throughout this thesis is the
following: let A(t) ∈ Rn1×n2 , find an approximation matrix

Y(t) ∈ Rn1×n2 , with rank Y(t) = r,

to A(t) for all t0 ≤ t ≤ T , where r � {n1, n2}. A best approximation matrix Y(t), which,
compared to the matrix A(t), is of low rank r and hence is in the low-rank manifold M
satisfies

Y(t) ∈M such that ‖Y(t)−A(t)‖ = min . (1.1)

By the Schmidt-Eckart-Young-Mirsky Theorem discussed in Section 1.1, we know that a
truncated singular value decomposition solves this minimization problem.

15

1.2. Ansatz of the dynamical low-rank approximation

Although the truncated SVD results in the best approximation to the given problem, it
has several drawbacks. From the computational point of view, it is expensive to compute
a truncated SVD at each time t with regard to computational time and memory. Also,
computing a pointwise best approximation does not necessarily yield a smooth approxi-
mation matrix-valued function t 7→ Y(t). Further, the SVD does not result in a unique
decomposition: with orthogonal matrices Q1 ∈ Rn1×n1 and Q2 ∈ Rn2×n2 , we can replace
Ũ = U Q1, Ṽ = V Q2 and S̃ = Q>1 S Q2 and then we have U S V> = Y = ŨS̃Ṽ

> ∈M.
A method, which does not suffer from those disadvantages, i.e., is computationally

feasible, results in a smooth approximation Y(t) and works on unique representations of
the factor matrices, follows the ansatz of the dynamical low-rank approximation given in
[KL07]. There, instead of the best approximation as above, a low-rank approximation
Y(t) ∈ M is determined from the condition that for every t ∈ [t0, T], the time derivative.
Y(t), which is in the tangent space TY(t)M, satisfies

.
Y(t) ∈ TY(t)M such that ‖

.
Y(t)−

.
A(t)‖ = min . (1.2)

The ansatz of computing the best approximation (1.1) and the approach (1.2) for
computing a low-rank approximation both are reasonable for the case when the matrix
A(t) that needs to be approximated is given explicitly. This is different in case when A(t)

is known implicitly: an essential benefit of the approach (1.2) is its extension to the case,
when the matrix A(t) is given as the unknown solution to a matrix differential equation

.
A(t) = F (t,A(t)), A(t0) = A0 . (1.3)

Here, we replace
.
A(t) in (1.2) by F (t,Y(t)), such that the minimization problem for the

implicit case reads
.
Y(t) ∈ TY(t)M such that ‖

.
Y(t)− F (t,Y(t))‖ = min . (1.4)

Hence, the approximation matrix Y(t) is determined from the condition, that its time
derivative, which is in the tangent space TY(t)M is chosen, such that the residual in the
differential equation is minimized. In other words, out of all elements δY in the tangent
space TY(t)M, the matrix

.
Y(t) is the one that minimizes the defect. Therefore, condition

(1.4) is equivalent to the task of finding
.
Y(t) ∈ TY(t)M that satisfies

〈
.
Y(t)− F (t,Y(t)), δY〉 = 0 for all δY ∈ TY(t)M. (1.5)

From the numerical analysis perspective, this is a Galerkin condition on the tangent space
TY(t)M. In fact, it was P.A.M. Dirac from the quantum mechanics community, who used
this orthogonality condition (1.5) in 1930 in order to find an approximation to the time-
dependent Schrödinger equation, see [Dir30a, Dir30b]. Since condition (1.5) holds for all
tangent matrices δY, they can vary, which is why this ansatz is also known as variational
principle in the quantum mechanics literature.

A few years later, J.I. Frenkel interpreted Dirac’s orthogonality condition (1.5) as the
minimization condition (1.4), see [Fre34]. This shows that

.
Y(t) is the orthogonal projection

of F (t,Y(t)) onto TY(t)M. Denoting the orthogonal projection operator onto the tangent

16

1. The dynamical low-rank approximation

space of the low-rank manifold by P(Y(t)), we have the differential equation onM given
by

.
Y(t) = P(Y(t))F (t,Y(t)), (1.6)

which is equivalent to condition (1.5) as well as to the minimization problem (1.4). In
the fundamental work of O. Koch and Ch. Lubich [KL07], this condition is proposed
to be the ansatz of the dynamical low-rank approximation. In the quantum dynamics
literature it is well known as the Dirac–Frenkel variational principle, see, e.g., [Lub08, II.1].
Based on this principle, there are several results in the chemical physics literature amongst
others, which propose computationally efficient methods for determining approximations in
quantum molecular dynamics, e.g., the multiconfiguration time-dependent Hartree method
[BJWM00]. A near-optimality result for variational approximations based on the Dirac–
Frenkel variational principle is given in [Lub05].

Thinking in terms of the low-rank manifoldM and the orthogonal projection onto the
tangent space TY(t)M, we imagine condition (1.6) as

M

TYM

Y .
Y

F (t,Y)

Figure 1.1: Orthogonal projection onto the tangent space of the low-rank manifold. The
red dashed line represents the orthogonal projection, which results in

.
Y. Out of all δY ∈

TYM,
.
Y is the tangent element that minimizes the distance between F (t,Y) and the

tangent space ofM at the approximation matrix Y.

Providing an initial value Y(t0) = Y0 ∈ M of low rank for the differential equation
(1.6), the resulting initial value problem

.
Y(t) = P(Y(t))F (t,Y(t)), Y(t0) = Y0 (1.7)

needs to be solved numerically in order to obtain a low-rank approximation Y(t) to the
matrix A(t) given in (1.3), with Y(t0) ≈ A(t0). Determining the approximation matrix

17

1.3. An integration method

Y(t) requires solving the ordinary differential equation (ODE) (1.7) and hence contrary
to the best approximation, the ansatz of the dynamical low-rank approximation yields a
smooth approximation matrix Y(t).

Although the approximation matrix Y(t) is of low rank, it is still of size n1×n2. Hence,
if the size of Y(t) is large, then solving (1.7) becomes expensive from the computational
perspective. In order to determine the solution of (1.7) in an efficient way, the idea is
to profit from the fact that Y(t) is of rank r by choosing a rank r decomposition of the
approximation matrix, which is obtained by the SVD. Note that here we do not need
the truncated SVD, since Y(t) is already of low rank r. We study this approach in the
subsequent section.

We remark that if the matrix A(t0) is given explicitly, we project
.
A(t) orthogonally

onto the tangent space TY(t)M, such that the resulting initial value problem is given by

.
Y(t) = P(Y(t))

.
A(t), Y(t0) = Y0 .

Compared to the best approximation, solving the above initial value problem requires only
the increments

.
A(t) instead of the matrix A(t). In situations where the time derivative of

A(t) is sparser than the matrix itself, we can save computational time and memory when
determining the approximation matrix Y(t) via the dynamical low-rank approximation.

Throughout this work, we will focus on the case when A(t) is given as the unknown
solution of the differential equation (1.3). Our results also hold for the explicit case by
simply choosing F (t,Y(t)) as

.
A(t). If we change this perspective, we emphasize it in the

particular situations, e.g., in the exactness results in Section 2.2.1 as well as in Section 4.4
for Tucker tensors and in Section 5.1 for tensor trains.

1.3 An integration method

The first approach for solving the differential equation (1.7) for the approximation matrix
evolved in the previous section is proposed in [KL07]. In this section, we follow the idea
to use a SVD-like decomposition of Y(t) and derive differential equations for its factors.
Then, after having solved the initial value problems for the factors U(t), S(t) and V(t),
we obtain the desired approximation matrix Y(t).

1.3.1 Unique representation of the tangent factor matrices

The differential equation (1.7) that we have to solve in order to obtain a low-rank approxi-
mation Y(t) is equivalent to finding its time derivative

.
Y(t) ∈ TY(t)M such that the defect

of the given differential equation (1.3) is orthogonal to TY(t)M for all tangent elements
δY in the tangent space of the low-rank manifold M. But which form does δY admit?
We first take a look on their representation in the tangent space at Y(t) ∈M.

Moreover, contrary to the SVD, which is not a unique factorization of Y(t) in general,
see Section 1.1, we require a unique decomposition of the tangent matrix δY ∈ TY(t)M as
well as of the tangent matrices for the factors U, S and V (omitting the time dependence).

18

1. The dynamical low-rank approximation

From Section 1.1 we know that each rank r matrix Y ∈ Rn1×n2 admits a SVD fac-
torization. Here, we do not require the full-rank matrix S to be diagonal and hence we
consider the SVD-like decomposition

Y = U S V>,

with orthonormal U ∈ Rn1×r, i.e., U>U = In1 ,

orthonormal V ∈ Rn2×r, i.e., V>V = In2

and (non-)diagonal S ∈ Rr×r.

Let us collect the orthonormal matrices U and V in the manifolds

Vn1,r := {U ∈ Rn1×r|U>U = In1} and Vn2,r := {V ∈ Rn2×r|V>V = In2},

respectively, where each of them is a Stiefel manifold [Sti35, §1]. Now, since the SVD exists
for every matrix Y ∈ Rn1×n2 , there exists a map

Rr×r × Vn1,r × Vn2,r → Rn1×n2 ,

(S,U,V) 7→ U S V> = Y,

which is surjective as the SVD in general is a non-unique decomposition. In order to assure
uniqueness in the tangent space, we extend this map to become a bijection for the tangent
elements. To this end, we denote by

TUVn1,r := {δU ∈ Rn1×r|δU>U + U> δU = 0} = {δU ∈ Rn1×r|U> δU ∈ skewr},
and TVVn2,r := {δV ∈ Rn2×r|δV>V + V> δV = 0} = {δV ∈ Rn2×r|V> δV ∈ skewr},

the tangent spaces to the Stiefel manifolds Vn1,r and Vn2,r at the orthonormal matrices U

and V, respectively. With those tangent spaces at hand, we consider the linear map

Rr×r × TUVn1,r × TVVn2,r → TYM× skewr × skewr,

(δS, δU, δV) 7→ (δU S V>+ U δS V>+ U SδV> = δY, U> δU, V> δV).

Counting the dimensions of the domain and of the codomain, respectively, we see that they
coincide and hence we conclude that this map is surjective. Moreover, the kernel of this
linear map is (0,0,0), which is why it is also injective and therefore in fact, this map is an
isomorphism. This means that each element in the tangent space TYM of the low-rank
manifold at the approximation matrix Y admits the representation

δY = δU S V>+ U δS V>+ U SδV> . (1.8)

Further, since U> δU and V> δV are skew-symmetric matrices, we impose the orthogo-
nality constraints

U> δU = 0 and V> δV = 0 (1.9)

19

1.3. An integration method

in order to obtain unique representations of the tangent matrices for S, U and V: mul-
tiplying the form of δY given in (1.8) by U> from the left and by V from the right, we
find

δS = U> δY V . (1.10)

Further, since the matrix S ∈ Rr×r is of full rank, its inverse exists. Therefore, multiplying
δY first by V, then by S−1, both, from the right, and using the form (1.10) of δS yields

δU = (In1 −U U>)δY V S−1. (1.11)

Similarly, we obtain a unique representation of δV by multiplying (1.8) from the left by
U> and by S−1 such that

δV = (In2 −V V>)δY>U S−>. (1.12)

1.3.2 Differential equations for the factor matrices

The underlying representation of the low-rank matrix that is sought admits the form Y(t) =

U(t)S(t) V(t)>. Using this decomposition, the time derivative of the low-rank matrix Y(t)

is determined by the Leibniz rule, which results in
.
Y(t) =

.
U(t)S(t) V(t)> + U(t)

.
S(t) V(t)> + U(t)S(t)

.
V(t)>. (1.13)

Moreover, since U(t) and V(t) have orthonormal columns, we have U(t)>U(t) = In1 and
V(t)>V(t) = In2 , respectively. Again, by the Leibniz rule, we obtain

.
U(t)>U(t) + U(t)>

.
U(t) = 0n1 and

.
V(t)>V(t) + V(t)>

.
V(t) = 0n2

and hence, translating the orthogonality conditions (1.9) to this time-dependent setting,
we require

U(t)>
.
U(t) = 0n1 and V(t)>

.
V(t) = 0n2 . (1.14)

In the following, we will use representation (1.13) for the time derivative of Y, but for ease
of presentation we omit using the time dependence t.

With the unique representations (1.10)-(1.12) of the tangent factor matrices and the
unique form (1.8) of δY at hand, we are now in the situation to deduce differential equa-
tions for the factor matrices S, U and V.

Recalling that the minimization condition (1.4) is equivalent to the Galerkin condition
(1.5), viz.,

〈
.
Y − F (t,Y), δY〉 = 0 for all δY ∈ TYM,

the idea is to choose δY in a way that provides ordinary differential equations for the
factor matrices. Since the Galerkin condition holds for all tangent matrices

δY = δU S V>+ U δS V>+ U SδV>,

20

1. The dynamical low-rank approximation

we first choose δU = δV = 0. With the form (1.13) of
.
Y and with the orthogonality

constraints (1.14), this yields

0 = 〈
.
Y −

.
A,U δS V>〉

= 〈U>
.
US V>V + U>U

.
S V>V + U>U δS

.
V>V−U>

.
A V, δS〉

= 〈
.
S−U>

.
A V, δS〉.

It follows that

.
S = U>

.
A V . (1.15)

Next, for deriving the differential equation for U, we choose δY ∈ TYM to be of the
form δY = δU S V>, i.e., δS = δV = 0. Then, by using the form (1.15) of

.
S, we find

0 = 〈
.
Y −

.
A, δU S V>〉

= 〈
.
US + U

.
S−

.
A V, δU S〉

= 〈
.
USS> + U

.
SS> −

.
A V S>, δU〉

= 〈
.
USS> + U U>

.
A V S> −

.
A V S>, δU〉.

Now, due to the orthogonality condition U> δU = 0n1 , the tangent matrix lies in the
range of the orthogonal complement of the space spanned by the columns of U. In other
words, by defining

PU = U U> and P⊥U = In1 −U U>,

as the orthogonal projections onto the spaces spanned by the columns of U as well as
the orthogonal projection onto the complements of those spaces, we conclude that δU ∈
range P⊥U. Therefore, there exists an arbitrary δW ∈ Rn1×n2 , such that δU = P⊥UδW.
Hence, it follows that

0 = 〈
.
USS> + U U>

.
A V S> −

.
A V S>,P⊥UδW〉

= 〈P⊥U
.
USS> + P⊥U U U>

.
A V S> − P⊥U

.
A V S>, δW〉

= 〈
.
USS> − P⊥U

.
A V S>, δW〉.

Since this holds for an arbitrary matrix δW ∈ Rn1×n2 , it yields

0 =
.
USS> − P⊥U

.
A V S>

and by multiplying by S−> as well as by S−1 from the right, we obtain a differential
equation for the factor matrix U, which is of the form

.
U = P⊥U

.
A V S−1. (1.16)

The derivation of the differential equation for the factor matrix V goes along similar
lines. The Galerkin condition (1.5) holds for all tangent matrices δY ∈ TYM and in
particular for δY = U SδV>, i.e., when choosing δU = δS = 0. Inserting this δY into

21

1.3. An integration method

(1.5), using the representation (1.13) of the time derivative of Y, adhering the orthogonality
constraints (1.14) and inserting the time derivative (1.15) of S results in

0 = 〈
.
Y −

.
A,U SδV>〉

= 〈U>
.
US V>+ U>U

.
S V>+ U>U S

.
V> −U>

.
A,SδV>〉

= 〈S>
.
S V>+S>S

.
V> − S>U>

.
A, δV>〉

= 〈S>U>
.
A V V>+S>S

.
V> − S>U>

.
A, δV>〉

= 〈V V>
.
A>U S +

.
VS>S−

.
A>U S, δV〉.

Defining

PV = V V> and P⊥V = In2 −V V>

to be the orthogonal projection onto the space spanned by the columns of V and the or-
thogonal projection onto the complement space, we conclude by the orthogonality condition
V> δV = 0 in (1.9) that δV ∈ range P⊥V. Hence, there exists an arbitrary δZ ∈ Rn1×n2 ,
such that δV = P⊥VδZ. Therefore, we find

0 = 〈V V>
.
A>U S +

.
VS>S−

.
A>U S, δV〉

= 〈
.
VS>S− P⊥V

.
A>U S,P⊥VδZ〉

= 〈P⊥V
.
VS>S− P⊥V

.
A>U S, δZ〉

= 〈
.
VS>S− P⊥V

.
A>U S, δZ〉.

This equation holds for any δZ ∈ Rn1×n2 and so we conclude that

0 =
.
VS>S− P⊥V

.
A>U S,

which by multiplying first by S−1 and second by S−> from the right yields a differential
equation for V, which then is of the form

.
V = P⊥V

.
A>U S−>. (1.17)

The idea of the integration method proposed in [KL07] is to solve the system of differ-
ential equations (1.15)-(1.17) for the factor matrices of the low-rank representation of Y

with appropriately given initial values U(t0), S(t0) and V(t0), which ideally come from a
truncated SVD of the initial value A(t0) of the differential equation (1.3). In a nutshell,
we solve the system of equations

.
S(t) = U(t)>

.
A(t) V(t), S(t0) = S0,

.
U(t) = P⊥U

.
A(t) V(t)S(t)−1, U(t0) = U0,

.
V(t) = P⊥V

.
A(t)>U(t)S(t)−>, V(t0) = V0,

(1.18)

with initial values S(t0) ∈ Rr×r, U(t0) ∈ Rn1×r and V(t0) ∈ Rn2×r, respectively. Solving
(1.18) for one time step t0 → t0 + h = t1 with time step size h > 0 and multiplying the

22

1. The dynamical low-rank approximation

resulting factor matrices by each other yields the low-rank approximation matrix Y(t) to
A(t) at time t = t1, i.e.,

Y(t1) = U(t1)S(t1) V(t1)
>.

Note that in practice, in order to avoid expensive computations, we actually never build
this product.

To continue with the integration procedure in time, we simply take the factor matrices
at time t1 as initial values for the next time integration from t1 → t1 +h = t2 and so forth.

We remark that it is important to assure orthonormality of the initial values for the
factor matrices U(t) and V(t) at subsequent time steps. In other words, the solutions
of the differential equations for U(t) and V(t) must stay orthonormal. Now, due to the
orthogonality conditions (1.14), the time derivatives of U(t)>U(t) and of V(t)>V(t) are
given by

.
U(t)>U(t) + U(t)>

.
U(t) = 0n1 and

.
V(t)>V(t) + V(t)>

.
V(t) = 0n2 ,

respectively. This means that U(t)>U(t) and V(t)>V(t) are constant and since the
initial values U(t0) and V(t0) are supposed to have orthonormal columns, we conclude
that U(t) and V(t) retain orthonormal columns during the time-integration of the system
(1.18). From the computational perspective, when integrating this system of ODEs numer-
ically, this property is preserved by, e.g., orthogonality-preserving Runge–Kutta methods
described in [HLW06, IV.9].

1.3.3 Schematic illustration of the integrator

Throughout this thesis, we will present several numerical integrators. For ease of under-
standing their scheme, we visualize their structure and the procedure within figures. To
this end, we depict vectors, matrices and tensors by nodes having one, two and more
branches in the following way:

Figure 1.2: Schematic illustration of one-, two- and high-dimensional objects.

Note that the number of branches illustrates the dimension of the object. Hence, we
imagine to increase the dimension of an object by sticking more and more branches to the
node.

By means of this illustration, we depict a matrix-matrix multiplication, such as the
product U S V> = Y for U ∈ Rn1×r, V ∈ Rn2×r and S ∈ Rr×r as

23

1.4. Discussion about the discretized dynamical low-rank approximation in the presence
of small singular values

Figure 1.3: Schematic illustration of a matrix-matrix product.

In terms of those figures, we think of a matrix-matrix multiplication as merging branches
with the same dimension, such that they fuse to one branch. The tensor-matrix product
will be explained and depicted in Figure 4.1 in Chapter 4, where we deal with Tucker
tensors.

With those figures at hand, we are now in the situation to illustrate the structure of
the integration method described in Section 1.3.2. Suppose that an initial value Y0, which
approximates A0 is given. Then, following the integration method, we first perform a
SVD of Y0 in order to obtain initial values for the differential equations for the factor
matrices and afterwards we solve the system of ODEs (1.18), which yields updated factor
matrices U1, S1 and V1 after one time step. Finally, this results in an approximation
matrix Y1 ≈ A(t1). The procedure is depicted in the following figure:

Figure 1.4: Schematic illustration of one time step of the integration method described in
Section 1.3.2.

1.4 Discussion about the discretized dynamical low-rank ap-
proximation in the presence of small singular values

The presence of small singular values in the low-rank approximation of a large matrix is
very common. Unless the matrix has a distinct gap in the distribution of its singular values,
truncating all the smallest singular values below a tolerance ε yields a remaining matrix of
reduced rank that still has singular values of magnitude O(ε). Even if there is a distinct
gap in the singular value distribution such that two groups of large and negligibly small
singular values, respectively, are formed, it is typically not known a priori at which rank

24

1. The dynamical low-rank approximation

the former group ends. We are also in a time-dependent setting where the distribution
of singular values may change over time. Underestimating the effective rank means we
neglect a significant part of the matrix, which leads to poor accuracy, but overestimating
the effective rank yields an approximation with small singular values.

1.4.1 Computational aspect

A first difficulty with small singular values can be seen in the system of differential equations
(1.18). The non-zero singular values of Y(t) are those of the r×r matrix S(t), whose inverse
appears in the last two differential equations for U(t) and for V(t), respectively. The
presence of small singular values therefore leads to severe problems when these differential
equations are integrated numerically by standard methods such as Runge–Kutta methods.

1.4.2 Curvature of the low-rank manifold

Another difficulty with small singular values is related to the curvature of the low-rank
manifold M. In [KL07, Lemma 4.2], the authors compare the orthogonal projection of
an arbitrary matrix B ∈ Rn1×n2 at Y ∈ M and at Ỹ ∈ M, where the smallest non-zero
singular value σr(Ỹ) of Ỹ is bounded from below by

σr(Ỹ) ≥ ρ > 0.

Further, they suppose that the distance of the two matrices Y and Ỹ at which the orthog-
onal projection is available, is bounded by

‖Y−Ỹ‖ ≤ 1

8
ρ.

Then, the difference of the orthogonal projection of the matrix B at Y and at Ỹ, respec-
tively, is bounded by

‖P(Y) B−P(Ỹ) B‖ = ‖(P(Y)− P(Ỹ)) B‖ ≤ 8ρ−1‖Y−Ỹ‖‖B‖2. (1.19)

The proof of this bound is given in [KL07, Proof of Lemma 4.2]. Studying the right-hand
side of this estimate, we observe that it depends on the inverse of the smallest non-zero
singular value of Ỹ. Translating this result to our differential equation (1.7), viz.,

.
Y(t) = P(Y)F (t,Y), Y(t0) = Y0,

this means that the local Lipschitz constant of the tangent space projection P at Y, is
proportional to the inverse of the smallest non-zero singular value of Y. Now, in case
when the approximation matrix Y has only large singular values, this is a valuable result,
since then ρ−1 becomes small. In contrast, if Y has small singular values, then the local
Lipschitz constant of the orthogonal projection P(Y) becomes large und so the local Lips-
chitz constant of the full right-hand side of the differential equation is unbearably large for
an error analysis of the integration method described in Section 1.3, where this Lipschitz
constant is used. This observation has an impact on the error analysis of the integration

25

1.4. Discussion about the discretized dynamical low-rank approximation in the presence
of small singular values

method presented in Chapter 2. Illustrating the above bound (1.19), we see the relation
between this observation and the curvature of the low-rank manifold:

TYM
Y .

Y

F (t,Y(t))

T
Ỹ
M

Ỹ

.

Ỹ

F (t, Ỹ(t))

Figure 1.5: Effect of the orthogonal projection onto the low-rank manifold at matrices
with small singular values. We see that the higher the curvature, the larger the distance
between the tangent spaces onto which we project orthogonally.

The local Lipschitz constant of the tangent space projection P(Y) is a measure of
the curvature of M at Y. We thus observe that the curvature of the low-rank manifold
M corresponds to the size of the singular values: it is proportional to the inverse of the
smallest non-zero singular value of Y. From the numerical point of view, we conclude with
the arguments in Section 1.4.1 that the integration method described in Section 1.3 does
not perform well in regions onM, where the curvature is high.

1.4.3 Error bound

Following the dynamical low-rank approximation approach described in Section 1.2 and
solving the differential equations for the factor matrices of the low-rank representation as
presented in Section 1.3, produces an approximation error, which we will discuss in this
section.

In [KL07, Theorem 6.1], the authors show local quasi-optimality of this method, where
they compare the dynamical low-rank approximation Y(t) with the best approximation
X(t), in case when a continuously best approximation X(t) ∈ M to the solution A(t) of
the differential equation (1.3) exists for all t0 ≤ t ≤ T . In the situation when

• the r-th singular value of the best approximation X(t) has a lower bound, i.e.,

σr(X(t)) ≥ ρ > 0

• the best approximation X(t) is bounded by

‖X(t)−A(t)‖ ≤ 1

16
ρ (1.20)

26

1. The dynamical low-rank approximation

• F is bounded by B > 0 along the approximations X(t) and Y(t), i.e.,

‖F (t,X(t))‖ ≤ B, ‖F (t,Y(t))‖ ≤ B

• F satisfies a one-sided Lipschitz condition, i.e.,

∃ λ ∈ R, such that 〈F (t,Y)− F (t, Ỹ),Y−Ỹ〉 ≤ λ‖Y−Ỹ‖2, for all Y, Ỹ ∈M

• for the best approximation X(t) it holds that

∃ L > 0, such that ‖F (t,X(t))− F (t,A(t))‖ ≤ L‖X(t)−A(t)‖,

for all t0 ≤ t ≤ T , the approximation error with initial value Y(t0) = X(t0) is bounded by

‖Y(t)−A(t)‖ ≤ ‖Y(t)−X(t)‖+ ‖X(t)−A(t)‖

≤
(

1

16
Bρ−1 + L

)
e(16Bρ

−1+λ)t

∫ t

t0

‖X(s)−A(s)‖ds+
1

16
ρ.

(1.21)

For a proof of this result we refer to [KL07, Theorem 6.1].
In the case when the lower bound ρ of the smallest singular value of the best approxi-

mation is reasonably large, this error estimate is suitable due to the inverse of ρ on the
right-hand side of the estimate. On the other hand, in case when the lower bound of
σr(X(t)) is small, its inverse on the right-hand side of (1.21) leads to a large contribution
of the exponential to the error bound of the low-rank approximation. Hence, this error
bound for the integration method described in Section 1.3, which is given in terms of the
best approximation X(t) to the full-rank solution A(t), is not significant, if the smallest
singular value of that best approximation is undersized. Then, the error ‖Y(t) − A(t)‖
might be small, but this is not reflected in the error bound (1.21).

Moreover, the situation that the best approximation is (1/16)ρ-distance away from
the full-rank solution A(t) as assumed in (1.20) does not mirror a general setting, but is
rather specific. In case when the bound ρ of the smallest singular value σr(X(t)) is small,
it means that A(t) is close to its best approximation X(t). Therefore, we conclude that
either X(t) would be (almost) of full rank or A(t) is (almost) of low rank, i.e., it is close
to the low-rank manifoldM in regions where its curvature is high, see Figure 1.5.

Furthermore, in the explicit situation, when there is no distinct gap in the distribution
of the singular values and when

A(t) = M(t) + R(t),

where M(t) ∈M and ‖
.
R(t)‖ ≤ ε, an O(ε) error is proven, even for (small) singular values

ρ ∼ ε in [KL07, Theorem 5.5.], which can be extended to the implicit case.

27

28

2 Error analysis of the
matrix projector-splitting integrator

The objective of this chapter is to show that the matrix projector-splitting integrator is
insensitive to the presence of small singular values, a property that is not shared by any
standard integrator such as explicit or implicit Runge–Kutta methods, whose behavior
deteriorate when singular values become small.

The presence of small singular values in the low-rank approximation of a large matrix
is very common. In case when the matrix has small singular values and we choose the
approximation rank r to be larger than the effective rank, then we are overestimating the
matrix and this yields an approximation matrix with small singular values.

Here, we are concerned with time-dependent matrices A(t) ∈ Rn1×n2 , t0 ≤ t ≤ T , for
large n1 and n2. These matrices are either known explicitly, or are the unknown solution
of a matrix differential equation

.
A(t) = F (t,A(t)), A(t0) = A0 . (2.1)

We seek an approximate solution Y(t) to (2.1) on the manifold M of rank r � {n1, n2}
matrices of size n1 × n2. To construct an evolution equation for Y(t) ∈ M we follow the
concept of projecting the right-hand side of the differential equation orthogonally onto the
tangent space TYM ofM at the current approximation matrix Y(t), just as described in
Chapter 1. This yields the differential equation for Y(t) on the manifoldM,

.
Y(t) = P(Y(t))F (t,Y(t)), Y(t0) = Y0 ∈M. (2.2)

In order to solve this differential equation in an efficient way, we follow the matrix projector-
splitting integrator proposed by Ch. Lubich and I.V. Oseledets [LO14], which we recall in
Section 2.1, by first deriving the integration scheme and then giving a practical integration
procedure. Afterwards, in Section 2.2, we will discuss two essential properties of the
matrix projector-splitting integrator: first, we will deal with the exactness property of the
integrator, which was proven in [LO14, Theorem 4.1], but we give a new proof in Section
2.2.1, which uses the appearing subprojections within the integration scheme and therefore
aims to give a deeper insight about the exactness. This proof was neither published nor
submitted elsewhere before. Second, we will recall in Section 2.2.2 the property that the
matrix projector-splitting integrator preserves either the range or the corange or both of
the current approximation matrix, see [LO14, Lemma 3.1]. Those two properties enable

29

2.1. The matrix projector-splitting integrator

us to give error bounds that are independent of small singular values. This error analysis
is published in [KLW16] by the author in collaboration with E. Kieri and Ch. Lubich.
Here, we give the proof in much more detail and in a partly modified way in Section 2.3.
Afterwards, in Section 2.4, we handle three specific situations and give error bounds for
those cases, see [KLW16]. All error bounds are measured in the Frobenius nom ‖·‖. Finally,
we will corroborate our theoretical results by several numerical examples in Section 2.5,
where we mainly follow the experiments in [KLW16], but additionally discuss error bounds
of the Strang splitting, see [Str68], in the presence of small singular values.

In the following, we will sometimes refer to the matrix projector-splitting integrator
simply as projector-splitting integrator or matrix integrator.

2.1 The matrix projector-splitting integrator

To enter the stage, we will first present the integration method for determining low-rank
approximations to (2.2). This integration scheme is fundamental with regard to integrating
higher-dimensional tensors, since their integration follows the same principle, see later
Chapter 4.

After having derived the integrator, we will also give the algorithm in Section 2.1.2.
We will carry out this section by following the lines of [LO14], where the matrix projector-
splitting integrator was proposed. Further details can be read therein, since we will restrict
ourselves on presenting the integration method.

2.1.1 Deriving the integrator

In this section, we will derive the projector-splitting integrator, which was proposed in
[LO14].

Our aim is to solve equation (2.2) for the approximation matrix Y(t) of low rank r in
an efficient way. Further, we want to improve the method described in Section 1.3 with
regard to small singular values.

The approximation matrix Y(t) is in the low-rank manifold and therefore it can be
factorized as Y(t) = U(t)S(t) V(t)>. From the derivation of the integration method in
Section 1.3, where the factor matrices of Y(t) are integrated, we have an explicit form
(1.18) of the derivatives of the factors U,S and V. Using this representation yields

.
Y =

.
US V>+ U

.
S V>+ U S

.
V>

=
(
(I−U U>)F (t,Y) V S−1

)
S V>+ U

(
U> F (t,Y) V

)
V>

+ U S
(
(I−V V>)F (t,Y)>U S−>

)>

= F (t,Y) V V>−U U> F (t,Y) V V>+ U U> F (t,Y),

where we have (partially) omitted the time dependence for ease of presentation. Setting
this equal to the representation (2.2) of

.
Y in terms of the orthogonal projection P(Y) onto

the tangent space of the low-rank manifold, results in

P(Y)F (t,Y) = F (t,Y) V V>−U U> F (t,Y) V V>+ U U> F (t,Y). (2.3)

30

2. Error analysis of the matrix projector-splitting integrator

We observe that the orthogonal projection P(Y) can be written as a sum of three sub-
projections consisting of the orthogonal projectors U U> and V V>. Denoting the three
summands on the right-hand side in terms of projections as

P+
1 F (t,Y) = F (t,Y) V V>,

P−1 F (t,Y) = U U> F (t,Y) V V>,

P+
2 F (t,Y) = U U> F (t,Y),

gives us the equivalent expression

P(Y)F (t,Y) = P+
1 F (t,Y)− P−1 F (t,Y) + P+

2 F (t,Y).

The fact that P(Y)F (t,Y) is in TYM does not guarantee that each term on the right-
hand side of (2.3) is also in this tangent space of the low-rank manifold. However, we
observe that projecting the three terms separately onto the tangent space of the current
approximation matrix gives

P(Y)
(
F (t,Y) V V>

)
=
(
F (t,Y) V V>

)
V V>−U U>

(
F (t,Y) V V>

)
V V>

+ U U>
(
F (t,Y) V V>

)

= F (t,Y) V V>,

P(Y)
(
U U> F (t,Y) V V>

)
=
(
U U> F (t,Y) V V>

)
V V>

−U U>
(
U U> F (t,Y) V V>

)
V V>

+ U U>
(
U U> F (t,Y) V V>

)

= U U> F (t,Y) V V>,

P(Y)
(
U U> F (t,Y)

)
=
(
U U> F (t,Y)

)
V V>−U U>

(
U U> F (t,Y)

)
V V>

+ U U>
(
U U> F (t,Y)

)

= U U> F (t,Y),

and so each of the three terms in (2.3) is in the tangent space of the low-rank manifold
M. Therefore, each auxiliary matrix Y±i (t) ∈ M, with i = 1 and ± as well as with i = 2

and + that satisfies
.
Y±i (t) = ±P±i (Y)F (t,Y±i (t)), Y±i (t0) = Y±,0i , (2.4)

stays in the low-rank manifold and so it can be factorized as

Y±i = U±i S±i V±,>i . (2.5)

Our study about the orthogonal projection P(Y) leads us to two important observations.
First, we see that the projection can be rewritten in terms of a composition of three subpro-
jections P±i (Y). Second, projecting F (t,Y) by each of those subprojections yields a matrix
that is already in the tangent space TYM and therefore, solutions Y±i of subproblems (2.4)
stay in the low-rank manifold. These observations suggest that instead of integrating

.
Y(t) = P+

1 F (t,Y)− P−1 F (t,Y) + P+
2 F (t,Y), Y(t0) = Y0 (2.6)

31

2.1. The matrix projector-splitting integrator

directly, we follow the Lie–Trotter splitting method, where we solve (2.4) for 1+, 1− and
2+. We formulate the matrix projector-splitting integrator from t0 → t1 and for t0 ≤ t ≤ t1
as:

1. Y+
1 -step: Update Y+

1 (t0)→ Y+
1 (t1) by solving

.
Y+

1 (t) = P+
1 (Y+

1 (t0))F (t,Y+
1 (t)), Y+

1 (t0) = Y0 (2.7)

2. Y−1 -step: Update Y−1 (t0)→ Y−1 (t1) by solving
.
Y−1 (t) = −P−1 (Y−1 (t0))F (t,Y−1 (t)), Y−1 (t0) = Y+

1 (t1) (2.8)

3. Y+
2 -step: Update Y+

2 (t0)→ Y+
2 (t1) by solving

.
Y+

2 (t) = P+
2 (Y+

2 (t0))F (t,Y+
2 (t)), Y+

2 (t0) = Y−1 (t1). (2.9)

Finally, take Y1 = Y+
2 (t1) ≈ Y(t1) as an approximation to the solution of (2.2). This is

the actual matrix projector-splitting integrator formulated in an abstract way.
It is possible to simplify the above integration scheme by using the fact that each

solution of the subproblems in the above integration scheme stays in the low-rank manifold,
if the initial value is in there. Hence, with (2.5), a comparison of both sides of (2.7) yields

.
U+

1 S+
1 V+,>

1 + U+
1

.
S+
1 V+,>

1 + U+
1 S+

1

.
V+,>

1 = F (t,Y+
1) V+

1 V+,>
1

⇐⇒
(.
U+

1 S+
1

)
V+,>

1 + U+
1 S+

1

.
V+,>

1 = F (t,Y+
1) V+

1 V+,>
1 .

The last equality is satisfied if
(.
U+

1 S+
1

)
= F (t,Y+

1) V+
1 and

.
V+

1 = 0. (2.10)

Hence, V+
1 ∈ Rn2×r is a constant orthonormal matrix. For the second subproblem (2.8),

we have
.
U−1 S−1 V−,>1 + U−1

.
S−1 V−,>1 + U−1 S−1

.
V−,>1 = −U−1 U−,>1 F (t,Y−1) V−1 V−,>1 ,

which holds true if
.
S−1 = −U−,>1 F (t,Y−1) V−1 and

.
U−1 =

.
V−1 = 0 (2.11)

and similarly for the third supbroblem, we find
.
U+

2 S+
2 V+,>

2 + U+
2

.
S+
2 V+,>

2 + U+
2 S+

2

.
V+,>

2 = U+
2 U+,>

2 F (t,Y+
2)

⇐⇒
.
U+

2 S+
2 V+,>

2 + U+
2

(.
S+
2 V+,>

2

)
= U+

2 U+,>
2 F (t,Y+

2)

⇐⇒
(.
S+
2 V+,>

2

)
= U+,>

2 F (t,Y+
2) and

.
U2

+ = 0. (2.12)

We can already observe at this stage that the matrices V±1 stay constant during the
time integration of the first two and the matrices U−1 , U+

2 are not changed during the
last two integration steps. Therefore, we simply do not consider them in the following

32

2. Error analysis of the matrix projector-splitting integrator

scheme of the projector-splitting integrator. Also, we drop the indices and superscripts
for ease of notation and generalize notation by U and V. We will distinguish these basis
matrices by denoting their time dependence in their superscripts. Renaming U S =: K

and S V> =: L> , we conclude that solving the system of differential equations (2.7)–(2.9)
within the Lie–Trotter splitting integrator is equivalent to solving

1. K-step: Update U0 → U1, S0 → Ŝ1 by solving

.
K(t) = F (t,K(t) V0,>) V0, K(t0) = U0 S0

and orthogonalizing K(t1) = U1 Ŝ1

2. S-step: Update Ŝ1 → S̃0 by solving

.
S(t) = −U1,> F (t,U1 S(t) V0,>) V0, S(t0) = Ŝ1

3. L-step: Update V0 → V1, S̃0 → S1 by solving

.
L(t)> = U1,> F (t,U1 L(t)>), L(t0)

> = S̃0 V0,>

and orthogonalizing L(t1) = V1 S1,>.

The orthogonalization in the K- and in the L- step can be performed by a QR decom-
position or by a SVD, respectively. In the remainder of this thesis, we will use the QR
decomposition for this computation - not only within this matrix projector-splitting inte-
grator, but also within the nested Tucker integrator, see Section 4.2.

Finally, merging the updated factor matrices yields Y1 = U1 S1 V1,> ≈ Y(t1). Note
that this product in practice is never computed in order to avoid an expensive computa-
tional effort. Compared to solving the equivalent system (2.7)–(2.9), this is an improvement
with respect to the computational cost and memory for the integration procedure, since
K ∈ Rn1×r, S ∈ Rr×r and L ∈ Rn2×r are matrices of smaller size.

To continue with integrating in time, we take U1,S1 and V1 as initial values to start
the time integration from t1 → t2, and analogously for the subsequent time steps. We
depict one time step of the matrix projector-splitting integrator in the following figure:

33

2.1. The matrix projector-splitting integrator

Figure 2.1: Schematic illustration of the matrix projector-splitting integration method.

We comment on the colors in the figure: the light colors depict the not yet updated
matrices, i.e. Y0 is illustrated by the light green dot, the initial matrices U0,S0,V0 are
depicted in light pink, light yellow and light blue, respectively. The updated basis matrices
are then illustrated by the same, but darker, color. Since the matrix S is changed in each
step of the projector-splitting integrator, the color changes in each step ranging from light
yellow to deep orange. Finally, after having multiplied the three updated basis matrices,
we obtain the approximation matrix Y1, which we depict in darker green.

Note that a first improvement of this integrator, compared to the method described
in Section 1.3, can be seen here: we observe that the right-hand sides of the differential
equations above are independent of the inverse of the matrix S, which might contain small
singular values.

Recall that the basis matrices V and U are not changed during the first two and the
last two integration steps, respectively. They are not involved into the integration process

34

2. Error analysis of the matrix projector-splitting integrator

and so we can imagine to simply drop them in the correspondent step. The red dashed
lines depict the cutting-off of the not yet or/and already updated matrices V or/and
U. The observation about the constant basis matrices in the appropriate steps within
the integration scheme will play an important role in the error analysis of the projector-
splitting integrator in Section 2.3. Beforehand, we will discuss this essential property in
Section 2.2.2

2.1.2 Practical integration scheme

The implementation of the projector-splitting integrator follows directly from the deriva-
tion of the integration scheme. It requires solving the differential equations for K,S and
L> and additionally two QR decompositions to orthonormalize the columns of K and L,
respectively, in order to obtain orthonormal updated basis matrices U and V. The de-
scription of the practical integration procedure for the time interval [t0, T] with time steps
(j−1)h = tj−1 → tj = jh for j = 1, . . . , n and tn = T is given in Algorithm 1. It computes
factors of a low-rank approximation Yn = Un Sn Vn,> after n time steps, which is taken
as an approximation to Y(tn).

Algorithm 1: Projector-splitting integrator
Data: Low-rank matrix Y0 = U0 S0 V0,>, F (t,Y), t0, tn, h
Result: Approximation matrix Yn = Un Sn Vn,>

1 begin
2 for j = 1 to n do
3 set Kj−1 = Uj−1 Sj−1

4 solve
.
K(t) = F

(
t,K(t) Vj−1,>)Vj−1,

with initial value K(tj−1) = Kj−1 and return Kj = K(tj)

5 compute QR factorization Kj = Uj Ŝj

6 solve
.
S(t) = −Uj,> F

(
t,Uj S(t) Vj−1,>)Vj−1,

with initial value S(tj−1) = Ŝj and return S̃j−1 = S(tj)

7 set Lj−1,> = S̃j−1 Vj−1,>

8 solve
.
Lj,>(t) = Uj,> F

(
t,Uj L(t)>

)
,

with initial value L(tj−1)
> = Lj−1,> and return Lj,> = L(tj)

>

9 compute QR factorization Lj = Vj Sj,>

10 set Yn = Un Sn Vn,>

The differential equations in lines 4, 6 and 8 need to be solved numerically and we
therefore apply approximation methods such as a Runge–Kutta method. In case when F
is independent of the time t and linear in Y, we can apply a Krylov subspace method for
computing the action of a matrix exponential, see [HL97, Saa92].

Note that in most applications, the low-rank initial value Y0 is not known beforehand.
So in order to initialize the algorithm, we first perform a truncated SVD as described in
Section 1.1, since we know by the Theorem of Eckart and Young that it results in a best
approximation to the given A0.

35

2.2. Two substantial properties of the integrator

Moreover, in case when F is solution independent, we are in the situation of projecting.
A(t) onto the tangent space TYM. This implies that the right-hand sides of the differential
equations for K,S and L in the scheme described in Section 2.1.1 also do not depend on the
solution. Therefore, we can simply determine closed-form solutions to the three substeps,
which for one time step t0 → t1 are given by

K(t1) = K(t0) +
(∫ t1

t0

.
A(s)ds

)
V(t0) = K(t0) +

(
A(t1)−A(t0)

)
V(t0),

S(t1) = S(t0)−U(t1)
>
(∫ t1

t0

.
A(s)ds

)
V(t0) = S(t0)−U(t1)

>(A(t1)−A(t0)
)
V(t0),

L(t1)
> = L(t0)

> + U(t1)
>
(∫ t1

t0

.
A(s)ds

)
= L(t0)

> + U(t1)
>(A(t1)−A(t0)

)
.

(2.13)

This simplification of course also reduces the computational complexity, since there is no
differential equation to solve. The corresponding practical integration is given in Algorithm
2, where we denote ∆ Aj = A(tj) − A(tj−1), for j = 1, . . . , n. The algorithm then just
uses the increment ∆ Aj instead of the time derivative

.
A(t).

Algorithm 2: Projector-splitting integrator, explicit case
Data: Low-rank matrix Y0 = U0 S0 V0,>, F (t,Y), t0, tn
Result: Approximation matrix Yn = Un Sn Vn,>

1 begin
2 for j = 1 to n do
3 set Kj−1 = Uj−1 Sj−1

4 set Kj = Kj−1 + ∆ Aj Vj−1

5 compute QR factorization Kj = Uj Ŝj

6 set S̃j−1 = Ŝj −Uj,>∆ Aj Vj−1

7 set Lj−1,> = S̃j−1 Vj−1,>

8 set Lj,> = Lj−1,> + Uj,>∆ Aj

9 compute QR factorization Lj = Vj Sj,>

10 set Yn = Un Sn Vn,>

2.2 Two substantial properties of the integrator

We devote this section to two properties, which will play an essential role in the error analy-
sis of the matrix projector-splitting integrator. We start with discussing the remarkable
exactness property, which was proven in [LO14, Theorem 4.1]. We also give a new proof
that gives more insight why this surprising result holds. Afterwards, we will point out the
property of constant projectors during the integration procedure, which was already briefly
mentioned in the derivation of the scheme.

36

2. Error analysis of the matrix projector-splitting integrator

2.2.1 Exactness

We are accustomed to the fact that applying a numerical integrator to a given differential
equation results in an approximate solution for which we can perform an error analysis
that gives error bounds for the considered numerical integration method. Since this is
the usual expectation with regard to a numerical solver, the exactness property of the
projector-splitting integrator is astonishing.

In case when the matrix A(t) is not given implicitly as the solution to a given differential
equation, as considered in the derivation of the integrator, but it is given explicitly, the
differential equation for the low-rank approximation matrix is given by

.
Y(t) = P(Y(t))

.
A(t), A(t0) = A0 . (2.14)

Further, let the matrix A(t) ∈ M be of low rank r for t0 ≤ t ≤ t1 and the initial value
A0 be equal to the starting value Y0 of the algorithm. Then, by the additional technical
assumption that a product of the coranges of A(t1) and Y(t0), respectively, is invertible,
we conclude that the numerical solution of the matrix projector-splitting integrator applied
to (2.14) with A0 = Y0 reproduces the exact matrix A(t) in the time grid points, i.e.,

Y1 = A(t1).

Note that the assumption about the non-singularity of the product of the V-matrices is
not present in the prerequisites in [LO14, Theorem 4.1]. However, going through their
proof, it is obvious that this assumption is needed there.

The proof of [LO14, Theorem 4.1] simply goes through the substeps from bottom to top,
i.e. from the L-step to the K-step and suddenly ends up with the exactness. In contrast,
we will execute a new proof, which gives more insight into the appearing projections. We
aim to give an improved explanation about where the exactness property comes from.

Theorem 2.1 (Exactness of the projector-splitting integrator). Suppose that A(t) ∈ M
for all t0 ≤ t ≤ T , A(t0) = Y(t0) and that the product VA(t1)

>V(t0) of the coranges
of A(t1) and Y(t0), respectively, is invertible. Then, the Lie–Trotter projector-splitting
integrator is exact, i.e. Y1 = A(t1), for any t1 ∈ [t0, T].

In order to show this exactness property, we first show that in case when A(t) is of
low rank, the solutions of the subproblems within the integrator are simply projections of
A(t1) and A(t0), respectively. We formulate this observation in the following key lemma.

Lemma 2.2. Let A(t) ∈M for all t0 ≤ t ≤ T and let A(t0) = Y(t0). Then the solutions
of the first two substeps of the projector-splitting integrator at t1 ∈ [t0, T] are of the form

Y+
1 (t1) = P+

1 (Y+
1 (t0)) A(t1), and Y−1 (t1) = P+

2 (Y+
1 (t1)) A(t0).

Proof. Since
.
A(t) is known explicitly and the right-hand side of the first subproblem within

the K-step is solution independent, see (2.13), we can formulate a closed-form solution as

Y+
1 (t1) = Y+

1 (t0) + P+
1 (Y+

1 (t0))∆ A .

37

2.2. Two substantial properties of the integrator

To start the integrator, let us denote Y+
1 (t0) = Y(t0). By assumption, it holds that

A(t0) = Y(t0) = U(t0)S(t0) V(t0)
> and hence we observe

P+
1 (Y+

1 (t0)) A(t0) = A(t0) V(t0) V(t0)
> = A(t0) = Y+

1 (t0).

This can be also seen by the fact that P+
1 projects onto the corange of Y+

1 (t0), but Y+
1 (t0)

and A(t0) have the same corange. Hence, in fact, projecting A(t0) by P+
1 (Y+

1 (t0)) has
no impact on A(t0). Therefore, it follows for the solution of the first subproblem of the
integrator that

Y+
1 (t1) = Y+

1 (t0) + P+
1 (Y+

1 (t0)) A(t1)− P+
1 (Y+

1 (t0)) A(t0)

= P+
1 (Y+

1 (t0)) A(t1).
(2.15)

The solution of the second subproblem can be expressed in closed form as

Y−1 (t1) = Y−1 (t0)− P−1 (Y−1 (t0))∆ A .

The splitting integrator is characterized by choosing the solution of the previous substep
as initial value for the current approximation step. So by means of (2.15), we observe that
the initial value for the second substep can be written in terms of A(t1) as

Y−1 (t0) = Y+
1 (t1) = P+

1 (Y+
1 (t0)) A(t1). (2.16)

Furthermore, by assumption A(t) ∈ M for all considered times t, and so we can perform
a SVD such as A(t1) = UA(t1)SA(t1) VA(t1)

>. Then, by using (2.15), we obtain

U(t1)S(t1) V(t0)
> = Y+

1 (t1) = A(t1) V(t0) V(t0)
>

= UA(t1)SA(t1) VA(t1)
>V(t0) V(t0)

>.

Now, by assumption, the product VA(t1)
>V(t0) is invertible and therefore we conclude

that the range of A(t1), which is given by UA(t1), lies in the range of the updated basis
matrix U(t1) determined by the projector-splitting integrator. Therefore, projecting A(t1)

onto the space spanned by the range of U(t1) in fact does not move A(t1) on the low-rank
manifoldM, i.e.,

P+
2 (Y+

1 (t1)) A(t1) = A(t1). (2.17)

Denoting the composition of two projections by ◦, we therefore have

P−1 (Y−1 (t0)) A(t1) = P−1 (Y+
1 (t1)) A(t1) =

(
P+
1 (Y+

1 (t0)) ◦ P+
2 (Y+

1 (t1))
)
A(t1)

= P+
1 (Y+

1 (t0)) A(t1),

which is why we conclude with (2.16) that Y−1 (t0) = P−1 (Y−1 (t0)) A(t1). Projecting A(t0)

onto the space spanned by the range and corange of the initial value Y−1 (t0) of the second
subproblem is the same as solely projecting it onto its range, i.e.,

P−1 (Y−1 (t0)) A(t0) =
(
P+
2 (Y+

1 (t1)) ◦ P+
1 (Y+

1 (t0))
)
A(t0) = P+

2 (Y+
1 (t1)) A(t0).

38

2. Error analysis of the matrix projector-splitting integrator

This can also be seen by the fact that the corange of A(t0) and of Y−1 (t0) or Y+
1 (t0),

respectively, are the same, so projecting does not change A(t0).
Therefore, we finally conclude that the solution of the second substep of the integrator

is given by

Y−1 (t1) = Y−1 (t0)− P−1 (Y−1 (t0)) A(t1) + P−1 (Y−1 (t0)) A(t0)

= P+
2 (Y+

1 (t1)) A(t0),

which completes the proof.

With the key lemma at hand, we now prove the exactness property of the matrix
integrator.

Proof of Theorem 2.1. The approximation to A(t1) after one time step of the projector-
splitting integrator is determined by the solution of the third subproblem within the inte-
gration scheme, which is given by

Y1 = Y+
2 (t1) = Y+

2 (t0) + P+
2 (Y+

2 (t0))∆ A .

Now, since the range of Y+
1 (t1) and of Y+

2 (t0) is the same, the projection P+
2 at those two

different approximations maps onto the same space spanned by their range. Using the key
Lemma 2.2, we can therefore rewrite the initial value of the third subproblem as

Y+
2 (t0) = Y−1 (t1) = P+

2 (Y+
2 (t0)) A(t0).

Since P+
2 is a range-projection and due to the fact that the range of the update U(t1)

contains the range of the given A(t1), see (2.17), we finally obtain

P+
2 (Y+

2 (t0)) A(t1) = P+
2 (Y+

1 (t1)) A(t1) = A(t1),

and so we conclude

Y1 = Y+
2 (t0) + P+

2 (Y+
2 (t0)) A(t1)− P+

2 (Y+
2 (t0)) A(t0) = A(t1).

Note that this result can be shown in an analogous way for the Strang splitting scheme,
since latter consists of the same subprojections P+

1 ,P
−
1 ,P

+
2 .

A generalization of this exactness theorem as well as of the key lemma for the higher-
dimensional case will be given and proven in Chapter 4, where we will deal with the Tucker
tensor format.

2.2.2 Constant projections

We have seen in the derivation of the matrix projector-splitting integrator that the method
splits differential equation (2.2) into three subproblems. Within this projector-splitting
integrator, we actually solve a system of two differential equations, see (2.10)-(2.12), in
each step. There, we keep

39

2.2. Two substantial properties of the integrator

• V0 constant when updating U0 → U1 and S0 → Ŝ1 in the K-step,

• V0 and U1 constant when updating Ŝ1 → S̃0 in the S-step,

• U1 constant when updating V0 → V1 and S̃0 → S1 in the L-step.

Therefore, the solutions to the subproblems, starting with Y0 = Y+
1 (t0) = U0 S0 V0,> are

given by:

• K-step: Y+
1 (t0) = U0 S0 V0,> → U1 Ŝ1 V0,> = Y+

1 (t1),

• S-step: Y−1 (t0) = U1 Ŝ1 V0,> → U1 S̃0 V0,> = Y−1 (t1),

• L-step: Y+
2 (t0) = U1 S̃0 V0,> → U1 S1 V1,> = Y+

2 (t1),

which is also illustrated in Figure 2.1. We observe that integration of the first subproblem
does not change the corange of Y+

1 , solving the second subproblem keeps both, the range
and the corange of Y−1 and integrating the last subproblem does not affect the range of
Y+

2 .
With regard to the projections that appear in each subproblem, we conclude that they

are constant during the integration process, since they are composed of the basis matrices
U and V:

P+
1 (Y+

1 (t0))F (t,Y+
1) = F (t,Y+

1) V0 V0,>,

P−1 (Y−1 (t0))F (t,Y−1) = U1 U1,> F (t,Y−1) V0 V0,>,

P+
2 (Y+

2 (t0))F (t,Y+
2) = U1 U1,> F (t,Y+

2).

In other words, by projecting F onto the corange and/or range of Y, its corange and/or
range are/is fixed. Then, performing a time integration “in the direction” of U and/or V,
we only update the factor matrices of Y that are not fixed.

For ease of understanding, we depict this property of the integrator in Figure 2.2. As an
example, the low-rank manifold is to be viewed as a hyperboloid, which is a ruled surface
and hence is constructed by straight lines in two different directions. In our setting, we
think of those lines as being U- and V-directions. Starting from Y+

1 (t0) = Y+,0
1 , which

consists of U0 and V0, amongst others, we fix the direction of the corange and walk, i.e.
integrate in time, into the direction of U on the blue V0-line in Figure 2.2, such that
we end up on another crossing point Y+

1 (t1) on the hyperboloid. Next, since range and
corange of Y+

1 (t1) are not changed during the integration, we seemingly do not move in any
direction due to the low dimension of the exemplary ruled surface in Figure 2.2. Finally,
when updating V, we walk on the straight U1-line, depicted in pink in Figure 2.2, until
we hit a V-line, which then gives the updated basis matrix V1 and eventually end up at
Y1 = Y+

2 (t1).

40

2. Error analysis of the matrix projector-splitting integrator

Figure 2.2: The integrator walks on straight lines.

This property of keeping the corange and/or range of the approximation matrix makes
plausible why the matrix projector-splitting integrator does not suffer from small singular
values. Suppose, the hyperboloid has a high curvature in the region of the saddle. By
[KL07], this reflects small singular values of the current approximation matrix Y±i . Now,
since the integration of each substep within the projector-splitting integrator is performed
on those straight lines, this integrator does not “see” the (high) curvature of the manifold,
just because of keeping the corange and/or range within the integration procedure.

This is a crucial property for the error analysis of the matrix integrator, which will be
treated next.

2.3 Robustness of the projector-splitting integrator with re-
spect to small singular values

After having presented the integrator and discussed its beneficial properties, we will now
turn to the main result of this chapter. We perform an error analysis, where the resulting
error bound is independent of singular values, whether they are small or large. The two
main ingredients for proving robustness of the integrator are the exactness property given
in Section 2.2.1 and the projections that stay constant during each integration step, see
Section 2.2.2. In principle, we will follow [KLW16, Theorem 2.1, Lemma 2.2], but before-
hand, we give a clear structure of the proof and point out its strategy. The corresponding
proofs of Theorem 2.4 and Lemma 2.5 then are broken down in detail and in a partly
modified way.

41

2.3. Robustness of the projector-splitting integrator with respect to small singular values

Assumption 2.3. We assume that

(1) F is Lipschitz continuous:

‖F (t,Y)− F (t, Ỹ)‖ ≤ L‖Y−Ỹ‖ ∀ Y, Ỹ ∈ Rn1×n2 ,

(2) F is bounded:

‖F (t,Y)‖ ≤ B ∀ Y ∈ Rn1×n2 ,

(3) F is in the tangent space TYM up to a small perturbation term:

F (t,Y) = M(t,Y) +R(t,Y),

where M maps to the tangent bundle of the low-rank manifoldM and the remainder
R is small onM,

M(t,Y) ∈ TYM and ‖R(t,Y)‖ ≤ ε ∀ Y ∈M, ∀ t0 ≤ t ≤ T,

(4) the initial value A0 ∈ Rn1×n2 and the starting value Y0 ∈M of the numerical method
are δ-close:

‖A0−Y0‖ ≤ δ.

M

TYM

Y
M(t,Y)

F (t,Y)

R(t,Y)

Figure 2.3: The situation, in which we give the convergence analysis of the projector-
splitting integrator. The blue arrow depicts the projected F (t,Y), which we imagine to
be the tangential part M(t,Y). Adding the time-dependent matrix R(t,Y) to M(t,Y)

results in a sum, which is out of the tangent space. Within the figure, the red dashed
line seems to be far away from the low-rank manifold, but in fact, by assumption, the
perturbation term is controlled by ε. The black dashed line depicts the region around the
trajectory (black solid line), in which we need the decomposition (3) of F (t,Y).

We will take a closer look on the situation for which we analyze the error of the
dynamical low-rank approximation by discussing the single items in the assumption.

42

2. Error analysis of the matrix projector-splitting integrator

(1) & (2) As usual in the numerical analysis of ordinary differential equations, those two
assumptions could be weakened to a local Lipschitz condition and a local bound
in a neighborhood of the exact solution of (2.1), where we denote its solution
operator by A(t) = ΦF (t, t0,A

0), respectively. For convenience we will work
with a global Lipschitz condition and bound.

(3) This assumption is needed along the solution trajectory {Y(t) : t0 ≤ t ≤ T} ⊂
M in order to obtain an approximation error Y(t)−A(t) = O(ε) for the time-
continuous dynamical low-rank approximation Y(t) ∈ M. It is reasonable to
make this assumption in a neighborhood onM of the trajectory. For convenience
only, this assumption is made here for all Y ∈M, but we would obtain the same
result if we impose the assumption only in a small neighborhood on M of the
trajectory.

The obvious choice for the decomposition and the way we imagine the tangential
part of F is M(t,Y) = P(Y)F (t,Y) ∈ TYM, where again P(Y) denotes the
orthogonal projection onto the tangent space, see Figure 2.3. We will not use
any Lipschitz bound forM , since this would involve a local Lipschitz constant of
P(Y), which is inversely proportional to the smallest non-zero singular value of
Y and can thus become arbitrarily large, see [KL07, Lemma 4.2]. By assumption
(2) and the bound of the perturbation term R(t,Y), we have ‖M(t,Y)‖ =

‖F (t,Y)−R(t,Y)‖ ≤ B+ ε. For convenience, we want M(t,Y) to be bounded
by the same bound as for F (t,Y). Therefore, we choose the bound B of F (t,Y)

large enough, such that

‖M(t,Y)‖ ≤ B ∀ Y ∈M and ∀ t0 ≤ t ≤ T.

(4) We will see in the error analysis that the error bound depends on this distance,
which is why we require it in Assumption 2.3 for the main theorem of this
chapter. It means that we cannot expect a good approximation result, if A(t0)

is far away from the low-rank manifold in terms of the Frobenius norm, i.e. if
δ is large. In practice, this assumption can be realized by performing a SVD of
the initial value A0, such as described in Section 1.1, which yields a best rank r
approximation Y0.

We are now in the position to state the convergence result of the dynamical low-rank
approximation when applying the projector-splitting integrator.

Theorem 2.4. Under Assumption 2.3, the error of the Lie–Trotter and of the Strang
splitting method at tn = t0 + nh, with step size h > 0, is bounded by

‖A(tn)−Yn‖ ≤ c0δ + c1ε+ c2h for tn ≤ T,

where the constants ci only depend on L,B and T .

We give the proof for the Lie–Trotter projector-splitting integrator. In case when the
Strang splitting is applied, this proof also holds, since the Strang splitting consists of the

43

2.3. Robustness of the projector-splitting integrator with respect to small singular values

Lie–Trotter splitting for twice half the time step. This surprising result is supported by
numerical evidence given within a numerical example in Section 2.5.3. It shows an error
behavior of order one of the Strang splitting integration scheme.

We show this error bound by portioning the proof into several parts. Given the differ-
ential equation

.
A(t) = F (t,A(t)), A(t0) = A0, (2.18)

where the inital value A0 ∈ Rn1×n2 can be of full rank, we compare its solution, which is
denoted by ΦF (t, t0,A

0), with the solution of the problem when starting on the low-rank
manifold, i.e.,

.
A(t) = F (t,A(t)), A(t0) = Y0, (2.19)

where Y0 ∈ M and the solution operator is given by ΦF (t, t0,Y
0). Having brought the

situation onto the low-rank manifold, we then apply the Lie–Trotter projector-splitting
integrator and obtain after n time steps at time tn = t0 + nh the approximate solution
Yn. The analysis of the error ΦF (tn, t0,Y

0) − Yn of the projector-splitting integrator
completes the error estimates of Theorem 2.4, such that we have

‖A(tn)−Yn‖ ≤ ‖ΦF (tn, t0,A
0)− ΦF (tn, t0,Y

0)‖+ ‖ΦF (tn, t0,Y
0)−Yn‖.

t0 tt1 t2 t3 tn−1 tn

Y0

ΦF (tn, t0,Y
0)

A0

ΦF (tn, t0,A
0)

Y1

Y2

Y3 Yn−1
Yn

Figure 2.4: Schematic illustration of the convergence analysis. The uppermost curve (in
red) depicts the exact solution A(t) = ΦF (t, t0,A

0) of (2.18), whereas the lowermost (in
black) shows the solution obtained by the Lie–Trotter projector-splitting integrator. The
line in between (in blue) represents the exact solution to the given problem (2.19) when
starting with a low-rank initial value.

44

2. Error analysis of the matrix projector-splitting integrator

While the analysis of the propagation of the initial distance A0−Y0 can be done by
applying the Grönwall inequality, bounding the second term is not a straightforward task.
We bound the error of the projector-splitting integrator by first analyzing its local error
and then conclude the global error by propagating those local errors until the final time,
see [HNW93, Lady Windermere’s fan]. To this end, we consider the case, when F (t,Y)

already defines a vector field on the manifold, i.e., when the perturbation term R(t,Y) = 0,
and formulate the corresponding problem as

.
X(t) = M(t,X(t)), X(t0) = X0, (2.20)

where X0 ∈ M. The solution to this problem is denoted by ΦM (t, t0,X0). With this
auxiliary problem at hand, we bound the local error of the projector-splitting integrator
by comparing the exact solution of the unperturbed problem (2.20) with the exact solution
of (2.19) and with the numerical solution Yk obtained by the projector-splitting integrator,
for all k = 0, . . . , n− 1, such that

‖ΦF (tk+1, tk,Y
k)−Yk+1‖ ≤ ‖ΦF (tk+1, tk,Y

k)−X(tk+1)‖+ ‖X(tk+1)−Yk+1‖.

The following figure renders a closer look of the strategy of showing this error estimate.

t0 tt1 t2 t3 tn−1 tn

ΦF (tn, t0,Y
0)

ΦF (t2, t1,Y
1)

ΦF (tn, t1,Y
1)

ΦF (tn, t2,Y
2)

ΦF (tn, tn1,Y
n−1)

Y0

Y1

X0

X(t1)

X1

X(t2)

X2
X(tn)

ΦF (t1, t0,Y
0)

ΦF (t2, t1,Y
0)

Y2

Yn−1
Yn

Figure 2.5: Schematic illustration of the convergence analysis of the projector-splitting
integrator. The uppermost curve (in blue) depicts the exact solution ΦF (t, t0,Y

0) of
(2.19), when starting with a low-rank initial value. The lowermost line (in black) shows the
numerical solution of (2.19) when applying the Lie–Trotter projector-splitting integrator.
The curve in between (green) represents the exact solution of (2.20), which is the case
when the right-hand side is a vector field, i.e. it is in the tangent space TXM.

45

2.3. Robustness of the projector-splitting integrator with respect to small singular values

The difficulty of the proof of Theorem 2.4 lies in estimating the local errors X(tk+1)−
Yk+1 . We formulate this result in the following lemma for the first time step t0 → t1.

Lemma 2.5. Let X0 ∈M be the initial value of (2.20) with ‖X0−Y0‖ ≤ h(4BLh+ 2ε).
Then, under Assumption 2.3 and with step size h > 0, there is the local error bound

‖X(t1)−Y1‖ ≤ h(9BLh+ 4ε),

where t1 = t0 + h.

Proof. To give the proof a clear structure, we will portion it out in several steps. In step 1,
we will rewrite the differential equation (2.2) for the approximation matrix Y(t) in terms of
a matrix M(t,X(t)), which is in the tangent space of the low-rank manifold at the current
approximation Y(t), plus a perturbation term ∆(t,Y(t)). This perturbation term appears
in each subproblem of the projector-splitting integrator and therefore its effect needs to be
investigated, which will be done in step 2. We analyze the influence of the perturbation
term onto the solution in each subproblem in step 3. Due to the nature of the Lie–Trotter
splitting scheme, the solution of each step is taken as initial value for the subsequent one.
Hence, the perturbation term appears in the solution of the splitting integrator in nested
form. We will show in step 4 that we can move the perturbation terms out of the splitting
scheme, despite the nested form of the solution Y1. What comes to our help here, is the
exactness property and the constant projections, which we have shown and explained in
Sections 2.2.1 and 2.2.2, of the projector-splitting integrator. Finally, in step 5, we will
bound the perturbation terms appearing in the substeps of the integration method.

First step: Rewriting the differential equation for Y in terms of
.
X(t).

Before considering the solution Y1 of the projector-splitting integrator, we first write the
differential equation (2.2), to which we apply this integration method, in a way which
facilitates the error analysis.

Following the third condition in Assumption 2.3, M(t,Y(t)) ∈ TYM and so

P(Y(t))M(t,Y(t)) ∈ TYM.

Therefore, by inserting
.
X(t) = M(t,X(t)), we obtain

.
Y(t) = P(Y(t))F (t,Y(t)) = M(t,Y(t)) + P(Y(t))R(t,Y(t))

=
.
X(t)−M(t,X(t)) +M(t,Y(t)) + P(Y(t))R(t,Y(t))

=
.
X(t)− F (t,X(t)) + F (t,Y(t))

+R(t,X(t))−R(t,Y(t)) + P(Y(t))R(t,Y(t)).

(2.21)

Denoting

∆(t,Y(t)) = F (t,Y(t))− F (t,X(t))−
(
I−P(Y(t))

)
R(t,Y(t)) +R(t,X(t)),

we consider the evolution equation for Y(t) as an evolution equation for X(t) with a
perturbation term ∆(t,Y) and so we have the differential equation

.
Y(t) =

.
X(t) + ∆(t,Y(t)), Y(t0) = Y0 . (2.22)

46

2. Error analysis of the matrix projector-splitting integrator

By assumptions (1) and (3), i.e., by the Lipschitz condition on F and the bound of R, the
perturbation term is bounded by

‖∆(t,Y(t))‖ ≤ L‖Y(t)−X(t)‖+ 2ε. (2.23)

We will use the fact that without the perturbation term ∆(t,Y(t)), the arising initial value
problem

.
Ỹ(t) = P(Ỹ(t))

.
X(t), Ỹ(t0) = X(t0)

with solution Ỹ(t) = X(t) is solved exactly by the splitting integrator according to [LO14,
Theorem 4.1] or Theorem 2.1 in Section 2.2.1. Setting G±i (t,Y) = ±P±i (Y)

.
X(t), the exact

solution of the projector-splitting integrator is given as

X(t1) = ΦG+
2

(t1, t0,ΦG−1
(t1, t0,ΦG+

1
(t1, t0,X(t0)))).

Second step: Investigating the effect of the perturbation term in each substep.
Since the evolution equation (2.22) is solved numerically by the projector-splitting integra-
tor, we have to take the subprojections, which appear in the splitting scheme, into account
for our analysis. The subprojection P−1 is a projection onto the range and corange of the
current approximation matrix. Hence, it is a composition of the projections P+

1 and P+
2

and so we can write P−1 = P+
2 ◦ P+

1 . Now, combining an arbitrary but fix subprojection
P±i with each P+

1 , P
−
1 and P+

2 , changes either P
+
1 or P+

2 or both into P−1 = P+
2 ◦P+

1 , which
then cancels with the already existing projection P−1 . So we are left with

P±i (Y±i)P(Y) = P±i (Y±i)
(
P+
1 (Y+

1)− (P+
2 ◦ P+

1)(Y+
1) + P+

2 (Y+
2)
)

= P±i (Y±i).

Therefore, we have

.
Y(t) = P(Y(t))F (t,Y(t))

=
(
P+
1 (Y+

1 (t))− P−1 (Y−1 (t)) + P+
2 (Y+

2 (t))
)
F (t,Y(t))

=
(
P+
1 (Y+

1 (t))− P−1 (Y−1 (t)) + P+
2 (Y+

2 (t))
)
P(Y)F (t,Y(t))

=
(
P+
1 (Y+

1 (t))− P−1 (Y−1 (t)) + P+
2 (Y+

2 (t))
)(.
X(t) + ∆(t,Y(t)

)
,

and so the differential equations solved in the substeps of the splitting integrator can be
written as

.
Y±i (t) = ±P±i (Y±i (t))

.
X(t)± P±i (Y±i (t))∆(t,Y±i (t)),

where t0 ≤ t ≤ t0 + h. Setting ∆±i (t,Y) = ±P±i (Y)∆(t,Y) we have in abbreviated form

.
Y±i (t) = F±i (t,Y±i (t)) = G±i (t,Y±i (t)) + ∆±i (t,Y±i (t)), (2.24)

with solution Y±i (t) = ΦF±i
(t, t0,Y

±
i (t0)). For analyzing the effect of the perturbation

term ∆(t,Y(t)) in (2.22) on the solution obtained by the projector-splitting integrator, we

47

2.3. Robustness of the projector-splitting integrator with respect to small singular values

compare the solution ΦF±i
(t, t0,Y

±
i (t0)) of the full subproblem (2.24) with the solution of

the perturbation-free differential equation
.
Ỹ
±
i (t) = P(Ỹ

±
i (t))

.
X(t) = G±i (t, Ỹ

±
i (t)), Ỹ

±
i (t0) = Y±i (t0), (2.25)

which is denoted by Ỹ
±
i (t) = ΦG±i

(t, t0, Ỹ
±
i (t0)). Using the nonlinear variation-of-constants

formula by W. Gröbner [Grö67] and V.M. Alekseev [Ale61] proposed independently from
each other and brought together in [HNW93, Theorem I.14.5], we see how the solu-
tions of the differential equations (2.24) and (2.25) are connected. Denoting the deriva-
tive of ΦG±i

(t1, s,Y) with respect to the initial value Y by ∂ΦG±i
(t1, s,Y) and with

Y±i (s) = ΦF±i
(s, t0,Y

±
i (t0)), we have, at t1 = t0 + h,

ΦF±i
(t1, t0,Y

±
i (t0)) = ΦG±i

(t1, t0,Y
±
i (t0))

+

∫ t1

t0

∂ΦG±i
(t1, s,Y

±
i (s)) ·∆±i (s,Y±i (s)) ds.

(2.26)

The effect of the perturbation term on the solution in each substep of the projector-splitting
integrator is described by the integrand.

Third step: Surveying the integrand.
We bound the integrand by considering it as a directional derivative, which describes
the behavior of the solution for the unperturbed problem (2.25) in the direction of the
perturbation term. We ask, how influential the perturbation term ∆±i (t,Y±i (t)) with
respect to the solution Ỹ

±
i (t) is. To answer this question, we fix the direction by fixing the

perturbation term in the sense that we consider it at an arbitrary but fix time t0 ≤ s ≤ t1
and vary the derivative of the flow ΦG±i

with respect to the initial value:

E±i (τ, s) = ∂ΦG±i
(t1, τ,Y

±
i (s)) ·∆±i (s,Y±i (s)).

This yields

ΦF±i
(t1, t0,Y

±
i (t0)) = ΦG±i

(t1, t0,Y
±
i (t0)) +

∫ t1

t0

E±i (τ, s)
∣∣∣
τ=s

ds.

To emphasize the fact that s is fixed, we simply drop the dependence on s in the notation,
such that Y±i (s) becomes Y±i and for the perturbation term we have ∆±i (s,Y±i (s)) =

P±i (Y±i)∆(s,Y±i (s)) = P±i (Y±i)∆ as a short form. Now, expressing the directional deriva-
tive of ΦG±i

with respect to the initial value by explicitly taking the limit yields

E±i (τ) = lim
θ→0

1

θ

(
ΦG±i

(t1, τ,Y
±
i +θP±i (Y±i)∆)− ΦG±i

(t1, τ,Y
±
i)
)
.

In the following, we show that E±i (τ) is actually independent of τ ∈ [t0, t1]. To this end,
we make use of the observation that the range and the corange of Y±i are preserved under
the subflows ΦG±i

as discussed in Section 2.2.2, i.e.,

P±i (ΦG±i
(t1, τ,Y

±
i)) = P±i (Y±i). (2.27)

48

2. Error analysis of the matrix projector-splitting integrator

Moreover, the projections P±i (Y±i) are invariant under adding a multiple of P±i (Y±i)∆ to
the argument Y±i :

P±i (Y±i +P±i (Y±i)∆) = P±i (Y±i). (2.28)

Now, computing the derivative of E±i (τ) backwards in time with respect to τ yields

Ė±i (τ) = − lim
θ→0

1

θ

(
G±i (τ,ΦG±i

(t1, τ,Y
±
i +θP±i (Y±i)∆))−G±i (τ,ΦG±i

(t1, τ,Y
±
i))
)

= ∓ lim
θ→0

1

θ

(
P±i
(
ΦG±i

(t1, τ,Y
±
i +θP±i (Y±i)∆)

) .
X(τ)− P±i (ΦG±i

(t1, τ,Y
±
i))

.
X(τ)

)

(2.27)
= ∓ lim

θ→0

1

θ

(
P±i
(
Y±i +θP±i (Y±i)∆

) .
X(τ)− P±i (Y±i)

.
X(τ)

)

(2.28)
= ∓ lim

θ→0

1

θ

(
P±i (Y±i)

.
X(τ)− P±i (Y±i)

.
X(τ)

)

= 0.

Hence, E±i (τ) in fact does not depend on τ with t0 ≤ τ ≤ t1 and so we have

E±i (τ) = ∂ΦG±i
(t1, τ,Y

±
i) · P±i (Y±i)∆

= ∂ΦG±i
(t1, t1,Y

±
i) · P±i (Y±i)∆

= P±i (Y±i)∆,

since ∂ΦG±i
(t1, t1,Y

±
i) is the identity matrix.

Therefore, in (2.26) we are left with

ΦF±i
(t1, t0,Y

±
i (t0)) = ΦG±i

(t1, t0,Y
±
i (t0)) +

∫ t1

t0

E±i (τ, s)
∣∣∣
τ=s

ds

= ΦG±i
(t1, t0,Y

±
i (t0)) +

∫ t1

t0

P±i (Y±i (s))∆(s,Y±i (s)) ds

= ΦG±i
(t1, t0,Y

±
i (t0)) +

∫ t1

t0

E±i (s) ds.

For a convenient notation, we denote E±i :=
∫ t1
t0
E±i (s) ds, such that we obtain the result

Y1 of one step of the splitting method as

Y1 = ΦF+
2

(t1, t0,ΦF−1
(t1, t0,ΦF+

1
(t1, t0,Y

0)))

= ΦG+
2

(t1, t0,ΦG−1
(t1, t0,ΦG+

1
(t1, t0,Y

0) + E+
1) + E−1) + E+

2 .
(2.29)

Fourth step: Moving the perturbation terms out of the splitting scheme.
Though having simplified the integrand, it is still not straightforward how to analyze the
influence of the perturbation onto the solution of the unperturbed subproblems (2.25). The
difficulty lies in the fact that the terms E±i appear in nested form in the splitting scheme
(2.29). What comes to our help is again the preservation of the range and corange of the
approximation matrix by the solution operators ΦF±i

and ΦG±i
, see Section 2.2.2. Using

this crucial feature, we are able to move the error terms E+
1 and E−1 out of the splitting

49

2.3. Robustness of the projector-splitting integrator with respect to small singular values

scheme, such that we get rid of the nestedness. In the following we first list the substeps
within the splitting scheme. Since Y−1 (t0) = Y+

1 (t1) and Y+
2 (t0) = Y−1 (t1), we have

Y+
1 (t1) = ΦF+

1
(t1, t0,Y

+
1 (t0)) = ΦG+

1
(t1, t0,Y

+
1 (t0)) + E+

1 , (2.30)

Y−1 (t1) = ΦF−1
(t1, t0,Y

+
1 (t1)) = ΦG−1

(t1, t0,Y
+
1 (t1)) + E−1 ,

Y1 = Y+
2 (t1) = ΦF+

2
(t1, t0,Y

−
1 (t1)) = ΦG+

2
(t1, t0,Y

−
1 (t1)) + E+

2 .

Since the solution operator ΦF−1
(t, t0,Y

+
1 (t1)) preserves both the range and corange of

Y+
1 (t1), and since P+

2 (Y) is the projection onto the range of Y, for Y ∈M, we have

P+
2 (Y−1 (t1)) = P+

2 (Y+
1 (t1)).

Looking at (2.29), we observe that the error term E+
2 of the solution of the third subproblem

is not nested in the splitting scheme. Next, we show that solving the third subproblem in
(2.25) when starting with a perturbed initial value Y−1 (t1) = ΦG−1

(t1, t0,Y
+
1 (t1)) + E−1 ,

where E−1 is the perturbation term here, gives the same result as when the initial value is
unperturbed but the perturbation is added to the solution ΦG+

2
(t1, t0,ΦG−1

(t1, t0,Y
+
1 (t1)).

In other words, we show that the perturbation term E−1 can be moved out of the splitting
scheme. To this end, we consider how the difference of the two solutions, when starting
with or without the perturbation term E−1 , changes in time. This is the point where
the range and corange preservation of the subflows plays a key role: since the solution
operator ΦG+

2
preserves the range and ΦG−1

preserves both, the range and the corange of
the correspondent initial value, we find

d

dt

(
ΦG+

2
(t, t0,ΦG−1

(t1, t0,Y
+
1 (t1)) + E−1)− ΦG+

2
(t, t0,ΦG−1

(t1, t0,Y
+
1 (t1)))

)

= G+
2

(
t,ΦG+

2
(t, t0,Y

−
1 (t1))

)
−G+

2

(
t,ΦG+

2

(
t, t0,ΦG−1

(t1, t0,Y
+
1 (t1))

))

= P+
2

(
ΦG+

2
(t, t0,Y

−
1 (t1))

) .
X(t)− P+

2

(
ΦG+

2

(
t, t0,ΦG−1

(t1, t0,Y
+
1 (t1))

)) .
X(t)

= P+
2 (Y−1 (t1))

.
X(t)− P+

2

(
ΦG−1

(t1, t0,Y
+
1 (t1))

) .
X(t)

= P+
2 (Y+

1 (t1))
.
X(t)− P+

2 (Y+
1 (t1))

.
X(t)

= 0,

for all t0 ≤ t ≤ t1. It follows that

ΦG+
2

(
t, t0,ΦG−1

(
t1, t0,Y

+
1 (t1)

)
+ E−1

)
− ΦG+

2

(
t, t0,ΦG−1

(
t1, t0,Y

+
1 (t1)

))

= ΦG+
2

(
t0, t0,ΦG−1

(
t1, t0,Y

+
1 (t1)

)
+ E−1

)
− ΦG+

2

(
t0, t0,ΦG−1

(
t1, t0,Y

+
1 (t1)

))

= ΦG−1

(
t1, t0,Y

+
1 (t1)

)
+ E−1 − ΦG−1

(
t1, t0,Y

+
1 (t1)

)

= E−1 .

This is equivalent to

ΦG+
2

(
t, t0,ΦG−1

(
t1, t0,Y

+
1 (t1)

)
+ E−1

)
= ΦG+

2

(
t, t0,ΦG−1

(
t1, t0,Y

+
1 (t1)

))
+ E−1 .

50

2. Error analysis of the matrix projector-splitting integrator

Going back to the splitting scheme, this remarkable observation results in

Y1 = ΦG+
2

(t1, t0,Y
−
1 (t1)) + E+

2

= ΦG+
2

(
t1, t0,ΦG−1

(t1, t0,Y
+
1 (t1)) + E−1

)
+ E+

2

= ΦG+
2

(
t1, t0,ΦG−1

(t1, t0,Y
+
1 (t1))

)
+ E−1 + E+

2 .

To get rid of the nestedness of the final error term E+
1 within the splitting scheme, we

show that the solution for the first subproblem when starting with Y+
1 (t0) in (2.25) and

then adding the perturbation E+
1 to this solution is the same as taking Y+

1 (t0) + E+
1 as

initial value for (2.25). Due to the corange preservation, we observe that

P+
1 (Y+

1 (t0))E
+
1 = P+

1 (Y+
1 (t0))

∫ t1

t0

P+
1 (Y+

1 (s))∆(s,Y+
1 (s)) ds

= P+
1 (Y+

1 (t0))P+
1 (Y+

1 (t0))

∫ t1

t0

∆(s,Y+
1 (s)) ds

=

∫ t1

t0

∆(s,Y+
1 (s)) ds

= E+
1 .

Further, we remind that the solution operator ΦG+
1

preserves the corange of the initial
value and that the projection P+

1 (Y+
1 (t0)) is invariant under a multiple of P+

1 (Y+
1 (t0))E

+
1 ,

see (2.28). This yields

d

dt

(
ΦG+

1
(t, t0,Y

+
1 (t0) + E+

1)− ΦG+
1

(t, t0,Y
+
1 (t0))

)

= G+
1

(
t,ΦG+

1
(t, t0,Y

+
1 (t0) + E+

1)
)
−G+

1

(
t,ΦG+

1
(t, t0,Y

+
1 (t0))

)

= P+
1

(
ΦG+

1
(t, t0,Y

+
1 (t0) + E+

1)
) .
X(t)− P+

1

(
ΦG+

1
(t, t0,Y

+
1 (t0))

) .
X(t)

= P+
1

(
Y+

1 (t0) + E+
1

) .
X(t)− P+

1 (Y+
1 (t0))

.
X(t)

= P+
1

(
Y+

1 (t0) + P+
1 (Y+

1 (t0))E
+
1

) .
X(t)− P+

1 (Y+
1 (t0))

.
X(t)

= P+
1 (Y+

1 (t0))
.
X(t)− P+

1 (Y+
1 (t0))

.
X(t)

= 0.

Hence, the difference of the flow ΦG+
1
when starting with Y+

1 (t0) + E+
1 or with Y+

1 (t0),
respectively, does not change in time. This means that

ΦG+
1

(t1, t0,Y
+
1 (t0) + E+

1)− ΦG+
1

(t1, t0,Y
+
1 (t0)) = (Y+

1 (t0) + E+
1)−Y+

1 (t0)

= E+
1 ,

which is equivalent to

ΦG+
1

(t1, t0,Y
+
1 (t0) + E+

1) = ΦG+
1

(t1, t0,Y
+
1 (t0)) + E+

1 . (2.31)

Therefore, looking at the splitting scheme, we have

Y1 = ΦG+
2

(
t1, t0,ΦG−1

(
t1, t0,ΦG+

1
(t1, t0,Y

+
1 (t0)) + E+

1

))
+ E−1 + E+

2

= ΦG+
2

(
t1, t0,ΦG−1

(
t1, t0,ΦG+

1
(t1, t0,Y

+
1 (t0) + E+

1)
))

+ E−1 + E+
2 .

51

2.3. Robustness of the projector-splitting integrator with respect to small singular values

Now, since Y+
1 (t0) and E+

1 have the same range, their sum is of rank at most r. If its
rank is less than r, we can perturb it by a small term, which is of no consequence to our
error bound and can be controlled by Lady Windermere’s fan. Hence, the sum is of rank
r and therefore we choose X(t0) = Y+

1 (t0) +E+
1 , where we obtain by the exactness result

of [LO14, Theorem 4.1] and accordingly Theorem 2.1 in Section 2.2.1 the exact solution
for the unperturbed problem, given by

ΦG+
2

(t1, t0,ΦG−1
(t1, t0,ΦG+

1
(t1, t0,Y

+
1 (t0) + E+

1))) = X(t1).

Therefore, the solution for (2.19) is reduced to

Y1 = X(t1) + E−1 + E+
2 .

Fifth step: Bounding the perturbation terms.
In order to bound

E±i = ±
∫ t1

t0

P±i (Y±i (s))∆(s,Y±i (s)) ds

= ±P±i (Y±i (t0))

∫ t1

t0

∆(s,Y±i (s)) ds,

(2.32)

we bound the perturbation term ∆(s,Y±i (s)). Using the estimate (2.23) for Y±i , we have
to determine the Frobenius norm of Y±i (s)−X(s), where s plays the role of t and Y±i (t)

solves
.
Y±i (t) = P±i (Y±i (t))F (t,Y±i (t)) (2.33)

with initial value Y±i (t0) and X(t) is the solution of
.
X(t) = M(t,X(t)) (2.34)

with initial value X(t0) = X0. Then, by the bound B for F (t,Y±i (t)) and M(t,Y±i (t)) for
all Y±i (t) ∈M, we obtain by integrating (2.33) and (2.34) on both sides, respectively, the
bounds

‖Y±i (t1)−Y±i (t0)‖ ≤ Bh and ‖X(t1)−X(t0)‖ ≤ Bh.

We observe that for the first substep 1+, we have with (2.30) and (2.31) that

Y+
1 (t1) = ΦG+

1
(t1, t0,Y

0) + E+
1 = ΦG+

1
(t1, t0,X0),

where ΦG+
1

(t1, t0,X0) is the solution of the unperturbed problem (2.25) for i = 1 and +,
i.e.,

.
Ỹ

+

1 (t) = P(Ỹ
+

1 (t))
.
X(t) = G+

1 (t, Ỹ
+

1 (t)), Ỹ
+

1 (t0) = X0 .

Now, integrating this differential equation on both sides, we obtain, again by the bound-
edness of M(t,X(t)), the estimate

‖ΦG+
1

(t1, t0,X0)−X0‖ ≤ Bh.

52

2. Error analysis of the matrix projector-splitting integrator

Hence,

‖Y+
1 (t1)−X(t1)‖ ≤ ‖ΦG+

1
(t1, t0,X0)−X0‖+ ‖X(t1)−X0‖ ≤ 2Bh.

Therefore, for t0 ≤ s ≤ t1 = t0 + h the above bound yields

‖Y+
1 (s)−X(s)‖ ≤ ‖Y+

1 (s)−Y+
1 (t1)‖+ ‖Y+

1 (t1)−X(t1)‖+ ‖X(t1)−X(s)‖
≤ 4Bh.

Since Y−1 (t0) = Y+
1 (t1), we have further

‖Y−1 (s)−X(s)‖ ≤ ‖Y−1 (s)−Y−1 (t0)‖+ ‖Y+
1 (t1)−X(t1)‖+ ‖X(t1)−X(s)‖

≤ 4Bh.

With regard to Y+
2 (t0) = Y−1 (t1), we similarly bound

‖Y+
2 (s)−X(s)‖ ≤ ‖Y+

2 (s)−Y+
2 (t0)‖+ ‖Y−1 (t1)−Y−1 (t0)‖

+ ‖Y+
1 (t1)−X(t1)‖+ ‖X(t1)−X(s)‖

≤ 5Bh.

Hence, taking the norm of (2.32) for each perturbation term and using (2.23) we obtain

‖E±i ‖ =

∥∥∥∥P±i (Y±i (t0))

∫ t1

t0

∆(s,Y±i (s)) ds

∥∥∥∥

≤
∫ t1

t0

‖∆(s,Y±i (s))‖ ds

≤
∫ t1

t0

L‖Y±i (s)−X(s)‖+ 2ε ds

and so, collecting the above estimates, this results in

‖E+
1 ‖ ≤ h

(
4BLh+ 2ε

)
, ‖E−1 ‖ ≤ h

(
4BLh+ 2ε

)
and ‖E+

2 ‖ ≤ h
(
5BLh+ 2ε

)
.

Finally, this gives the stated error bound for the Lie–Trotter splitting scheme.

We are now in the position to prove the main result of this chapter.

Proof of Theorem 2.4. We first bound the local error ΦF (t1, t0,Y
0) − Y1 by using the

triangle inequality, where we use the result of Lemma 2.5 and compare the solutions of

.
A(t) = F (t,A(t)), A(t0) = Y0

and
.
X(t) = M(t,X(t)), X(t0) = X0

after one time step, which are denoted by ΦF (t1, t0,Y
0) and X(t1), respectively. Following

condition (3) in Assumption 2.3, we have

‖M(t,X(t))− F (t,X(t))‖ = ‖R(t,X(t))‖ ≤ ε

53

2.3. Robustness of the projector-splitting integrator with respect to small singular values

and by condition (1), F is Lipschitz continuous. Hence, we obtain by Grönwall’s inequality

‖ΦF (t1, t0,Y
0)−X(t1)‖ ≤ eL(t1−t0)‖Y0−X0‖+ eL(t1−t0)

∫ t1

t0

e−L|s−t0|ε ds

≤ eLh‖Y0−X0‖+ eLhhε

= eLh
(
h(4BLh+ 2ε) + hε

)
,

which together with Lemma 2.5 yields an estimate of the local error that compares the
solution of the Lie–Trotter splitting method with the exact solution of problem (2.19) when
starting with a low-rank initial value Y0 ∈M, i.e.,

‖ΦF (t1, t0,Y
0)−Y1‖ ≤ ‖ΦF (t1, t0,Y

0)−X(t1)‖+ ‖X(t1)−Y1‖
≤
(
eLh(4BLh+ 3ε) + (9BLh+ 4ε)

)
h.

This estimate is visualized in Figure 2.5.

For simplicity of notation, we denote c = c(B,L, h, ε) =: eLh(4BLh+3ε)+(9BLh+4ε)

for the remainder of the proof. Further, the solution operator ΦF (t, s, ·) of the differential
equation with different initial values A, Ã ∈ Rn1×n2 satisfies, again due to the Lipschitz
continuity of F and the Grönwall inequality,

‖ΦF (t, s,A)− ΦF (t, s, Ã)‖ ≤ eL(t−s)‖A−Ã‖ for all A, Ã ∈ Rn1×n2 , t > s. (2.35)

To bound the global error, we propagate the local errors until the final time T = t0 + nh

and then add the transported errors up. This procedure is described as Lady Windermere’s
fan, see [HNW93]. For an illustration of this procedure, see Figure 2.5.

So let Yk be the solution of the Lie–Trotter projector-splitting integrator after k time
steps, for k = 0, . . . , n − 1. The local errors are then given by ΦF (tk+1, tk,Y

k) −Yk+1.
Now, propagating those local errors by the flow ΦF until time step tn = t0 + nh yields

‖ΦF (tn, tk,Y
k)− ΦF (tn, tk+1,Y

k+1)‖
=
∥∥ΦF

(
tn, tk+1,ΦF (tk+1, tk,Y

k)
)
− ΦF (tn, tk+1,Y

k+1)
∥∥

≤ eL(tn−tk+1)‖ΦF (tk+1, tk,Y
k)−Yk+1‖

≤ (eLh)n−k−1ch.

Now, the accumulation of the propagated local errors results in the global error of the

54

2. Error analysis of the matrix projector-splitting integrator

projector-splitting integrator, which is given by

‖ΦF (tn, t0,Y
0)−Yn‖ ≤ ‖ΦF (tn, t0,Y

0)− ΦF (tn, t1,Y
1)‖

+ ‖ΦF (tn, t1,Y
1)− ΦF (tn, t2,Y

2)‖
+ . . .

+ ‖ΦF (tn, tn−2,Y
n−2)− ΦF (tn, tn−1,Y

n−1)‖
+ ‖ΦF (tn, tn−1,Y

n−1)−Yn)‖
≤ ch ·

(
(eLh)n−1 + (eLh)n−2 + · · ·+ (eLh) + 1

)

= ch ·
n−1∑

k=0

(eLh)k

= ch
(eLnh − 1

eLh − 1

)

≤ che
Lnh − 1

Lh

= c(B,L, h, ε)
eL(T−t0) − 1

L

≤ (4 + 3eLh0)
eL(T−t0) − 1

L
· ε

+ (9 + 4eLh0)B(eL(T−t0) − 1) · h,

where h0 is an upper bound of the stepsize h. Defining

c1 = (4 + 3eLh0)
eL(T−t0) − 1

L
and c2 = (9 + 4eLh0)B(eL(T−t0) − 1) (2.36)

gives the main part of the stated error bound. Remarkably, the constants c1 and c2 are
independent of possibly appearing small singular values in the approximation matrix.

Now, since the stated problem (2.18) starts with A(t0), which is not necessarily a
matrix of low rank, we also have to estimate the propagated error of the distance between
the initial value A(t0) and the starting value Y0. Using assumption (4) and the stability
of the flow operator (2.35), this yields the propagated initial error at final time, given by

‖ΦF (tn, t0,A
0)− ΦF (tn, t0,Y

0)‖ ≤ eL(T−t0)‖A0−Y0‖.

Finally, by defining

c0 = eL(T−t0) (2.37)

and collecting the above error bounds, as depicted in Figure 2.4, the global error of the
Lie–Trotter splitting scheme at tn = t0 + nh is bounded by

‖A(tn)−Yn‖ ≤ ‖ΦF (tn, t0,A
0)− ΦF (tn, t0,Y

0)‖+ ‖ΦF (tn, t0,Y
0)−Yn‖

≤ c0δ + c1ε+ c2h.

The Strang splitting scheme is formed by concatenating a half-step of the Lie–Trotter
scheme with a half-step of its adjoint. Now, since the same error bound holds for the
adjoint scheme, we conclude that it is also valid for the Strang splitting scheme.

55

2.4. Error bounds for specific situations

2.4 Error bounds for specific situations

The above error analysis is given for the case when the matrix A(t) that needs to be
approximated is given implicitly by the vector field F (t, ·) and in case when the subproblems
are solved exactly. In this section, we will handle three further situations, where we lean
on [KLW16]. First, we will show in Section 2.4.1 that the error bound simplifies if A(t) is
given explicitly. Second, we will handle the case when the substeps within the integration
procedure are solved inexactly, e.g. when a numerical integrator such as a Runge–Kutta
method is applied for solving the subproblems, see Section 2.4.2. Third, we discuss in
Section 2.4.3, how the error bound improves in case when a one-sided Lipschitz condition
is imposed, in order to alleviate the Lipschitz condition on F .

2.4.1 The explicit case

We consider the case where A(t) is a given time-dependent matrix to which we search an
approximation matrix Y(t) of rank r. In this case the matrix projector-splitting integrator
solves

.
Y(t) = P(Y(t))

.
A(t), Y(t0) = Y0 .

We have already seen in (2.13) in Section 2.1.2 that we can determine the solutions to the
corresponding subproblems in closed form, where due to the independence of the solution
in each subproblem, the integrator just uses the increments A(t1)−A(t0). If we can split
up the possibly full rank matrix A(t) into a low-rank matrix X(t) ∈M and a perturbation
term R(t) of possibly full rank for all t, i.e.,

A(t) = X(t) + R(t),

then the derivative of A(t), which is projected onto TYM, satisfies
.
A(t) = M(t) +

.
R(t),

where, similarly to (2.20), X(t) solves
.
X(t) = M(t) with X(t0) = X0 ∈M. In order to be

able to apply the error analysis from Section 2.3 to the present situation, we impose

‖R(t0)‖ ≤ δ and ‖
.
R(t)‖ ≤ ε, (2.38)

such that conditions (3) and (4) in Assumption 2.3 are satisfied. Note that M(t) ∈ TYM,
since X(t) is of low rank r. Further, since F (t,Y) =

.
A(t) is independent of Y, the

Lipschitz constant is L = 0. Thus, we are in the situation of Theorem 2.4, where the error
bound can be adapted appropriately for the present explicit case. We will not provide an
error analysis here, just briefly comment on the steps within the proof of Lemma 2.5 and
Theorem 2.4, where equations or estimates change due to the explicit case.

In the first step of Lemma 2.5, the intension is to rewrite the differential equation for
Y(t) in terms of

.
X(t). Now, since F (t,Y(t)) is solution independent, we have

.
Y(t) = P(Y(t))

.
A(t) = P(Y(t))M(t) + P(Y(t))

.
R(t) = M(t) + P(Y(t))

.
R(t)

=
.
X(t) + P(Y(t))

.
R(t).

(2.39)

56

2. Error analysis of the matrix projector-splitting integrator

Hence, at first glance, it seems that there is no need to insert
.
X(t) = M(t) as is done in

(2.21), since we already have the desired form by means of
.
X(t). But here, we have to be

careful concerning the projected remainder term: we cannot bound it by simply taking the
norm, since this would involve a dependence on singular values of the projection, which
we want to avoid. Therefore, we do insert a zero by adding

.
X(t) and subtracting M(t) as

is done in (2.21), since this enables us to bound the perturbation term ∆(t,Y) within the
modified right-hand side of (2.39):

‖∆(t,Y(t))‖ = ‖
(
I−P(Y(t))

) .
R(t,Y(t)) +

.
R(t,X(t))‖ ≤ 2ε.

Steps 2–4 hold for this explicit case without any changes. Instead, step 5 contains bounds
for the perturbation terms E±i , where ∆(t,Y(t)) comes into play. There, for our situation
we have the estimate

‖E±i ‖ ≤
∫ t1

t0

‖∆(s,Y±i (s))‖ ds ≤ 2(t1 − t0)ε

for each perturbation term. Therefore, the error stated in Lemma 2.5 for the explicit case
changes to

‖Y1−X(t1)‖ ≤ 4(t1 − t0)ε.

Following the lines of the proof of Theorem 2.4 with this result, the local error of the
Lie–Trotter projector-splitting integrator in the explicit case is then given as

‖Φ .
A

(t1, t0,Y
0)−Y1‖ ≤ 7(t1 − t0)ε.

Then, the accumulation of the propagated local errors until final time tn and the assump-
tion (2.38) about the initial distance results in the global error of the projector-splitting
integrator for the explicit case, which we find as

‖A(tn)−Yn‖ ≤ δ + 7(tn − t0)ε, t0 ≤ tn = T.

Note that the error bound depends on the time interval [t0, tn], though it is independent
of the time step size h.

2.4.2 Inexact solution within the integration steps

Let us consider the case when the projector-splitting integrator does not compute the ex-
act values Y±i (t1), but solves the three substeps inexactly. This occurs for example when
applying a numerical method, such as a Runge–Kutta method, for determining solutions
within the projector-splitting integrator. Another situation, where we solve substeps ap-
proximately will be discussed in Chapter 4, where we present the integrator for Tucker
tensors. Independently of the reason, let us suppose that we solve the substeps inexactly
and obtain

Ŷ
±
i (t1) = ΦF±i

(t1, t0, Ŷ
±
i (t0)) + Ê

±
i .

57

2.4. Error bounds for specific situations

In the first step, in fact, instead of K(t1) a perturbed value K(t1) + EK(t1) is computed
and so we find

Ŷ
+

1 (t1) =
(
K(t1) + EK(t1)

)
V0,> = K(t1) V0,>+ EK(t1) V0,>

= Y+
1 (t1) + Ê

+

1 ,

and the error satisfies

Ê
+

1 = EK(t1) V0,>V0 V0,> = P+
1 (Y+

1 (t0))Ê
+

1 .

The latter equation is a natural condition from the way the differential equations for the
factors U,S,V of Y = U S V> are actually solved in the algorithm. For the second
substep we compute S(t1) + ES(t1) and obtain the approximate solution

Ŷ
−
1 (t1) = U1

(
S(t1) + ES(t1)

)
V0,> = U1 S(t1) V0,>+ U1 ES(t1) V0,>

= Y−1 (t1) + Ê
−
1 ,

where

Ê
−
1 = U1 U1,>U1 ES(t1) V0,>V0 V0,> = P−1 (Y−1 (t0))Ê

−
1 .

Finally, in the last step instead of L(t1)
>, we compute L(t1)

>+EL, such that the solution
results in

Ŷ
+

2 (t1) = U1
(
L(t1)

> + EL(t1)
)

= U1 L(t1)
> + U1 EL(t1)

= Y+
2 (t1) + Ê

+

2 ,

where

Ê
+

2 = U1 U1,>U1 EL(t1) = P+
2 (Y+

2 (t0))Ê
+

2 .

So in one full step of the method, instead of Y1 we actually compute

Ŷ
1

= ΦF+
2

(t1, t0,ΦF−1
(t1, t0,ΦF+

1
(t1, t0,Y

0) + Ê
+

1) + Ê
−
1) + Ê

+

2

= ΦG+
2

(t1, t0,ΦG−1
(t1, t0,ΦG+

1
(t1, t0,Y

0) + E+
1 +Ê

+

1) + E−1 +Ê
−
1) + E+

2 +Ê
+

2 .

Suppose now that the errors are bounded by

‖Ê±i ‖ ≤ η, (2.40)

then the bounds for the total error in each step are given by

‖E+
1 +Ê

+

1 ‖ ≤ h(4BLh+ 2ε+ η),

‖E−1 +Ê
−
1 ‖ ≤ h(4BLh+ 2ε+ η),

‖E+
2 +Ê

+

2 ‖ ≤ h(5BLh+ 2ε+ η).

58

2. Error analysis of the matrix projector-splitting integrator

Therefore, we need to adapt the assumption about the initial values in Lemma 2.5 appro-
priately, such that the error estimate becomes

‖Ŷ1 −X(t1)‖ ≤ h(9BLh+ 4ε+ 2η).

In this situation the error bound of Theorem 2.4 changes, with the same proof, to

‖A(tn)− Ŷ
n‖ ≤ c0δ + c1ε+ c2h+ c3η,

where c0, c1 and c2 are as before, and

c3 = (2 + eLh0)(eL(T−t0) − 1)/L. (2.41)

In case when the reason for the inexact solution of the substeps comes from the application
of a Runge–Kutta method of order p in order to solve the differential equations for K,S

and L, the bound (2.40) of the additional errors is of size

η = O(hp).

2.4.3 A one-sided Lipschitz condition

We have seen in Theorem 2.4 that the constants depend on the Lipschitz constant L of
F (t,Y). Now, in case of a stiff differential equation, L becomes very large, which is a
drawback, since then the constants and therefore the error bounds increase. However, we
can overcome this difficulty mildly by the one-sided Lipschitz condition [HNW93, Section
IV.12], which stays moderate in the stiff case. Suppose that with respect to the Frobenius
inner product 〈·, ·〉 we have the one-sided Lipschitz bound

〈F (t,Y)− F (t, Ỹ),Y−Ỹ〉 ≤ `‖Y−Ỹ‖2 for all Y, Ỹ ∈ Rn1×n2 ,

with ` ≤ L and possibly `� L. In this case, Lemma 2.5 is left unchangend: the bound of
the perturbation term ∆(t,Y) in (2.23) still depends on the Lipschitz constant L. However,
the error propagation in the proof of Theorem 2.4 improves to

‖ΦF (t, s,A)− ΦF (t, s, Ã)‖ ≤ e`(t−s)‖A−Ã‖ for all A, Ã ∈ Rn1×n2 , t > s,

where the factor eL(t−s) from (2.35) is replaced by the smaller factor e`(t−s). Following
the proof with respect to this adaption, we obtain an error bound of the same form as in
Theorem 2.4, but compared to (2.37) and (2.36) with improved constants

c0 = e`(T−t0), c1 = (4 + 3e`h0)(e`(T−t0) − 1)/`, c2 = (9 + 4e`h0)BL(e`(T−t0) − 1)/`.

Note that the constant c2 still depends on the Lipschitz constant L, which stems from
(2.23). In case of inexact solution, the additional constant c3 in the error bound (2.41) of
the previous section is reduced to

c3 = (2 + e`h0)(e`(T−t0) − 1)/`.

59

2.5. Numerical experiments

2.5 Numerical experiments

In this section, we will illustrate our theoretical results about the error bounds of the
projector-splitting integrator. The numerical examples themselves are taken from [KLW16],
but the algorithms are relaunched. In Section 2.5.1, we give a striking example that demon-
strates the performance of a standard numerical integrator and the projector-splitting in-
tegrator in the presence of small singular values. Afterwards, in Section 2.5.2, we show
how two matrices can be added, such that the sum becomes a matrix of low rank. In the
numerical example in Section 2.5.3, we compare the Lie–Trotter projector-splitting inte-
grator with the Strang splitting method in terms of small singular values. There, we will
corroborate the surprising partial result of Theorem 2.4 that the Strang splitting method
converges with order one in the time step size h. The last numerical example, given in
Section 2.5.4, deals with a stiff differential equation, where the Lipschitz constant of the
right-hand side is large. Due to our error analysis, we would expect the splitting integrator
to fail in this situation. To the contrary, we will show that the method performs well also
in this case.

2.5.1 The effect of small singular values

We illustrate the favorable behavior of the projector-splitting integrator in the presence of
small singular values compared to a standard numerical integration method by applying
those two explicit methods in order to solve (2.2). We apply the classical 4th-order Runge–
Kutta method to solve the system of differential equations (1.18) for U,S and V within the
integration method described in Section 1.2, and the (first-order) Lie–Trotter projector-
splitting integrator of [LO14], described in Section 2.1. In this example, A(t) ∈ R100×100

is given explicitly by constructing two 100× 100 skew-symmetric matrices W1,W2 and a
diagonal matrix D of the same dimension with exponentially decreasing diagonal elements
dj = 2−j , j = 1, . . . , 100. By means of those matrices, we generate

A(t) = etW1et D
(
etW2

)>

on the time interval 0 ≤ t ≤ 1. The singular values of A(t) are σj(t) = etdj , j = 1, . . . , 100.
Figure 2.6 shows the approximation errors that is, the Frobenius norm of the difference

between the given matrix A(t) and the numerical solution Yn = Un Sn Vn,> of rank r
obtained with n steps of stepsize h for t = nh, at t = 1. The errors versus the stepsize are
shown for both methods and for different ranks.

60

2. Error analysis of the matrix projector-splitting integrator

10 -5 10 -4 10 -3 10 -2 10 -1

time step size

10 -10

10 -5

10 0

e
rr

o
r

4
th

 order Runge-Kutta method

rank 16

rank 8

rank 4

10 -5 10 -4 10 -3 10 -2 10 -1

time step size

10 -10

10 -5

10 0

er
ro

r

Lie-Trotter projector-splitting integrator

rank 4

rank 8

rank 16

rank 32

Figure 2.6: Comparing the Runge–Kutta method (left) and the Lie–Trotter integrator
(right) for different approximation ranks and stepsizes.

The Runge–Kutta method with approximation ranks r = {4, 8, 16} turns out to be
stable only for small step sizes and small approximation ranks. For larger approximation
ranks r (e.g. r = 32) the Runge–Kutta method demands very small step sizes, proportional
to σr. This restriction is due to the small singular values of S(t) in (1.18).

In contrast, we are able to choose large time steps for the Lie–Trotter projector-splitting
integrator independently of the chosen rank. The error decays linearly with h as h → 0,
and decreases with increasing rank, which indicates that the method is accurate and robust
with respect to small singular values.

2.5.2 Matrix addition

We consider the addition of two matrices, C = A + B, where A ∈ Rn1×n2 is a matrix of
low rank r, and B ∈ Rn1×n2 is an increment. The sum is to be computed approximately
with a result in the low-rank manifold M. Such truncated (or retracted) additions are
required in iterative methods on low-rank matrix manifolds, in particular in optimization
problems; see, e.g., [AO15].

In case when B ∈ TAM, a standard approach is to first compute A + B, which is of
rank 2r and then to project the result onto M using a truncated SVD, see Section 1.1.
Note that the truncated SVD gives a best approximation on the manifold. However, this
comes to a computational expensive cost of O(N3) operations, where N = max{n1, n2}.

Alternatively, as proposed in [AO15, LOV15], we can perform approximate addition on
the low-rank manifold using the projector-splitting integrator. We then solve

.
Y(t) = P(Y) B, Y(0) = A (2.42)

from t0 = 0 up to t1 = 1 using one step of the Lie–Trotter projector-splitting scheme. As
before, P(Y) denotes the orthogonal projection onto the tangent space TYM at Y ∈ M.
We then get an approximation Y1 ∈M for C = A+B. Note that we never leave the low-
rank manifoldM when using the splitting method. Computing a low-rank approximation

61

2.5. Numerical experiments

to the sum C = A + B by the splitting method requires O(Nr2) operations, which is
computationally less expensive when assuming that r � N .

In our numerical experiment we illustrate this procedure for an example with small
singular values. We construct A ∈ R100×100 of rank r = 10 with singular values, which
exponentially decrease as σj = e−j , j = 1, . . . , 10. We let B be a random matrix in TAM.
We add C = A + B directly to get the full-rank solution, and compare this with solving
(2.42) using the Lie–Trotter splitting integrator, which gives us the low-rank solution Y1.
We also compare with the projection Ỹ

1
obtained by a truncated SVD. This comparison

is illustrated in Figure 2.7. We see how the error of the splitting method decays as the
norm of the increment B is reduced. Note also how close the solution given by the splitting
method is to the SVD approximation, at reduced computational cost.

10
-2

10
-1

10
0

||B||

10
-6

10
-4

10
-2

10
0

e
rr

o
r

Figure 2.7: Error for matrix addition using the projector-splitting method for tangential
increments B of decreasing norm.

2.5.3 A discrete nonlinear Schrödinger equation for matrices

We consider a discrete nonlinear Schrödinger equation, modeling a Bose–Einstein conden-
sate in an optical lattice [TS01]. The problem reads

i
.
A(t) = −1

2
LA(t)− 1

2
A(t)L− ε|A(t)|2 �A(t),

Ajk(0) = exp(−(j − j1)2/σ2 − (k − k1)2/σ2)+
− exp(−(j − j2)2/σ2 − (k − k2)2/σ2), j, k = 1, . . . , n1,

(2.43)

where L = tridiag (1, 0, 1) and A ∈ Rn1×n1 . The squared modulus is taken elementwise
and � denotes the elementwise product. We use n1 = 100, σ = 10, (j1, k1) = (60, 50), and
(j2, k2) = (50, 40). Note that L is not a discretized derivative, but a bounded operator
modeling the coupling between nodes in the lattice. Since the Frobenius norm of the exact
solution is conserved, the right-hand side of (2.43) is bounded and Lipschitz continuous in
a neighborhood around the exact solution.

62

2. Error analysis of the matrix projector-splitting integrator

We let Y(t) denote an approximation to A(t) on the low-rank manifoldM, with rank
r = 10. The linear terms in (2.43) map onto the tangent space TYM, while the nonlinear
term does not. This makes the dependence of the error on ε explicit. In the table below
we study the effect of varying ε and the time step size h. We show the error in Frobenius
norm after solving the problem up to t = 5 with different ε and h, using the Lie–Trotter
projector-splitting scheme. Each subproblem is solved using the 4th-order Runge–Kutta
method with time step size h = 0.001. The approximate solution is compared to a full
rank reference solution, computed with 4th-order Runge–Kutta using the time step size
h = 0.0005.

ε \ h 1 10−1 10−2 10−3

1 9.83e-2 9.73e-2 9.73e-2 9.73e-2

10−1 1.32e-4 8.63e-5 8.63e-5 8.63e-5

10−2 3.13e-6 3.51e-7 3.44e-7 3.44e-7

10−3 2.47e-7 3.44e-9 1.26e-9 1.26e-9

10−4 2.19e-8 2.58e-10 4.09e-11 4.00e-11

Table 2.1: Error in Frobenius norm after solving (2.43) using the Lie–Trotter splitting
scheme with different ε and h.

We see how the error decays with ε as predicted. We also see convergence with respect
to h in the bottom rows of the table, albeit not of a clear order. The unclear convergence
rate with respect to h may be an indication that the error estimate is not quite sharp.

Next, for the same differential equation (2.43) with the same parameters, we apply the
Strang projector-splitting integrator, where we first solve the differential equations for K

and S for half a time step from t0 → t0 + h/2, then we solve the ODE for L for one full
time step t0 → t0 + h and afterwards we solve the ODEs for S and K from t0 + h/2→ t1.
Each subproblem is solved by the classical 4th-order Runge–Kutta method with time step
size h = 0.001. We show the error of the Strang splitting scheme in Frobenius norm in the
following table:

63

2.5. Numerical experiments

ε \ h 1 10−1 10−2 10−3

1 9.73e-2 9.73e-2 9.73e-2 9.73e-2

10−1 9.96e-5 8.63e-5 8.63e-5 8.63e-5

10−2 8.14e-7 3.44e-7 3.44e-7 3.44e-7

10−3 8.76e-8 1.37e-9 1.26e-9 1.26e-9

10−4 5.10e-9 1.19e-10 4.00e-11 4.00e-11

Table 2.2: Numerical evidence for linear convergence of the Strang splitting integrator in
case when the perturbation term is small.

The results for the Strang splitting scheme look similar to the results for the Lie–
Trotter splitting integrator. Surprisingly, for ε = 10−4, we observe linear convergence of
the Strang splitting integrator. For a larger ε, the influence of the perturbation term might
be too strong, such that we do not see a clear convergence rate for ε = {1, 10−1, 10−2, 10−3}.
When there are no small non-zero singular values, the standard error estimates for splitting
methods are valid and the Strang splitting scheme converges towards Y(kh) at second order
in h. In the presence of small singular values, however, this does not seem to be the case,
and due to the h-dependence in the bounds of the remainder term ‖∆(t,Y)‖ this is also
not promised by our analysis.

2.5.4 A stiff differential equation

Since the error analysis of the projector-splitting integrator given in Section 2.3 relies on
both, the boundedness and Lipschitz continuity of F , it does not transfer directly to stiff
problems such as spatially discretized partial differential equations. Numerical evidence
however suggests that the projector-splitting scheme is robust and accurate also in this
case. We consider the time-dependent Schrödinger equation in two dimensions with a
harmonic potential,

iut(x, t) = −1

2
∆u(x, t) +

1

2
x>Axu(x, t), x ∈ R2, t > 0,

u(x, 0) = π−1/2 exp
(1

2
x21 +

1

2
(x2 − 1)2

)
,

with A =

(
2 −1

−1 3

)
.

As the right-hand side contains a second order differential operator, its spatial semidis-
cretization scales as ∆x−2, where ∆x is the spatial gridsize and therefore the Lipschitz
constant of the right-hand side is of the same magnitude. While the initial data is of rank
1, the non-diagonal potential will increase the effective rank of the solution during time
evolution. We discretize the problem using Fourier collocation with m×m grid points on
Ω = [−7.5, 7.5]2. The spatially localized solution is essentially supported within Ω. The
approximate solution at the respective grid points is arranged in an m ×m matrix. We

64

2. Error analysis of the matrix projector-splitting integrator

solve low-rank approximations to the problem with ranks r = 1, 2, . . . , 20 using the Lie–
Trotter splitting scheme, integrating up to the time t = 5. We use m = 64 and m = 128,
and time steps of length h = 0.02 and h = 0.01. The subproblems are solved to high
accuracy by approximating the action of the matrix exponential in a Krylov subspace, see,
e.g., [HL97, Saa92], generated by the Arnoldi process [Arn51]. We compare the low-rank
approximation to a full-rank reference solution computed by standard Fourier collocation,
see, e.g., [Boy01], and Arnoldi time stepping withm = 128 and h = 0.01. The error is mea-
sured in the Frobenius norm, scaled such that it approximates the continuous L2(Ω)-norm.
We depict it in the following figure:

2 4 6 8 10 12 14 16 18 2010−10

10−8

10−6

10−4

10−2

100

Figure 2.8: Error at different approximation ranks when solving the Schrödinger equation
on an m ×m spatial grid. We use m = 64 (dashed) and m = 128 (solid) grid points per
dimension, and the time steps h = 0.02 (×) and h = 0.01 (plain).

The error decreases exponentially with the rank, which indicates that the method is
robust with respect to small singular values also for stiff problems. For the time step
h = 0.02 we see how the error at high approximation ranks is slightly larger for the finer
spatial grid, suggesting a dependence on the Lipschitz constant. The dependence is however
mild, and the method much more robust with respect to stiffness than explained by the
theory presented in Theorem 2.4.

65

66

3 A low-rank splitting integrator
for stiff matrix differential equations

We have ended the previous chapter with a numerical example that illustrates a good
performance of the projector-splitting integrator also for a stiff matrix differential equation
in order to compute low-rank approximations of matrix ODEs. To our best knowledge, it
is not known or shown why the projector-splitting integrator has this favorable behavior
with regard to stiff differential equations. The difficulty in its error analysis is the usage
of the Lipschitz constant of the right-hand side. To omit this difficulty, we will propose an
integration method for stiff matrix differential equations, which in contrast can be analyzed
without introducing the Lipschitz constant of the right-hand side.

We are dealing with a specific right-hand side of the differential equation, of which the
solution needs to be approximated in terms of low rank. The class of stiff and semi-linear
matrix differential equations we consider in the time interval t0 ≤ t ≤ T is given by

.
A(t) = B A(t) + A(t) B>+G(t,A(t)), A(t0) = A0,

where A(t) ∈ Rn1×n1 is the unknown matrix that satisfies the differential equation and
G : [t0,∞) × Rn1×n1 → Rn1×n1 is a given function. We aim to find a low-rank approxi-
mation Y(t) ∈ M = {Y(t) ∈ Rn1×n1 : rank Y(t) = r} to the solution of the above matrix
differential equation. We propose an integration scheme, which handles the stiff part of
the differential equation by simply splitting it off and consider two subproblems, which
can be treated separately. For both arising subproblems we compute a low-rank solution
by following the dynamical low-rank approximation proposed in [KL07]. The subproblem
for the linear stiff part can be integrated explicitly and efficiently by use of exponential
integrators. For the nonlinear non-stiff subproblem we apply the projector-splitting inte-
grator proposed in [LO14]. This procedure is derived in Section 3.1, where we also give a
practical algorithm that is simple and efficient. Afterwards, we perform an error analysis
in Section 3.2 that does not require the Lipschitz constant of the stiff right-hand side of
the above matrix differential equation and further shows the key property of the method
being robust with respect to small singular values, which might appear in case of over-
approximation, i.e., when choosing the approximation rank rather large. The method we
propose proves to be of first order. In Section 3.3 we discuss the order of convergence
when applying a second order method, such as the Strang splitting scheme. As a special
case of the above stiff matrix differential equation, we consider differential Lyapunov equa-
tions (DLEs) in Section 3.4, which are of crucial importance in many applications, e.g.,

67

3.1. The low-rank Lie–Trotter splitting integrator

Kalman filtering [Kal60, KB61, AG15] or model reduction of linear time-varying systems
[LSS16, San04]. Another important class of matrix differential equations that follow the
structure of the above given stiff matrix differential equation are differential Riccati equa-
tions (DREs) [Rei72, BL18]. They play an essential role in optimal and robust control
problems [Men07], optimal filtering [DS87] and differential games [Baş91, BM17]. Finally,
we illustrate the favorable behavior of the proposed method for stiff matrix ODEs with the
help of numerical examples given in Section 3.6.

This chapter is based on a joint work of the author with A. Ostermann and C. Piazzola,
see [OPW18].

3.1 The low-rank Lie–Trotter splitting integrator

We consider the following matrix differential equation
.
A(t) = B A(t) + A(t) B>+G(t,A(t)), A(t0) = A0, (3.1)

for t0 ≤ t ≤ T , where A(t) ∈ Rn1×n1 is the unknown solution matrix and the function
G : [t0,∞)×Rn1×n1 → Rn1×n1 is supposed to be nonlinear. The matrix B ∈ Rn1×n1 is time-
independent. In many cases, where we have to deal with a stiff matrix differential equation
of type (3.1), there is a parabolic partial differential equation underlying, where the elliptic
operator is assumed to generate a strongly continuous semigroup. After discretizing this
parabolic partial differential equation in space, we obtain the matrix B, which is the spatial
discretization of the elliptic differential operator. Therefore, the stiffness of (3.1), which is
given by the linear part B A(t)+A(t) B>, is induced by the matrix B. The exact full-rank
solution of the above differential equation can be represented by the variation-of-constants
formula as

A(t) = e(t−t0)B A(t0)e
(t−t0)B> +

∫ t

t0

e(t−s)BG(s,A(s))e(t−s)B
>

ds.

We aim to compute an approximate solution Y(t) ∈ M to A(t), which is of low rank r
with r � n1. The difficulty is the stiffness of the right-hand side of (3.1), which makes a
direct application of the dynamical low-rank approximation by employing the projector-
splitting integrator unfeasible. We have seen in the chapter before that in this case, the
error bound of the projector-splitting integrator depends on the Lipschitz constant of the
full right-hand side. In order to elude difficulties with the Lipschitz constant of stiff matrix
differential equations of the class (3.1), the key idea is to separate the ODE into a stiff
and a non-stiff subproblem, respectively. For both subproblems we compute a low-rank
solution.

3.1.1 Splitting into two subproblems

The idea behind splitting away the stiff part from the non-stiff part of the differential
equation (3.1) is to benefit from the independent integration of the two arising subproblems,
which are of the form, for t0 ≤ t ≤ T ,

.
A1(t) = B A1(t) + A1(t) B>, A1(t0) = A0

1 (3.2)

68

3. A low-rank splitting integrator for stiff matrix differential equations

and

.
A2(t) = G(t,A2(t)), A2(t0) = A0

2 . (3.3)

We denote the solutions to the subproblems (3.2) and (3.3) at t0 +h with initial values A0
1

and A0
2 by the solution operators ΦB

h (A0
1) and ΦG

h (A0
2), respectively. For an introduction

to splitting methods we refer to [HLW06] and [MQ02]. We pursue the strategy to solve
the differential equations for A2(t) and A1(t) subsequently by applying the Lie–Trotter
splitting scheme with time step size h, i.e.,

Lh := ΦB
h ◦ ΦG

h . (3.4)

We will refer to this scheme as full-rank Lie–Trotter splitting.
It results in an approximation A1 of the solution A(t) of (3.1) at t = t0 + h. Starting

with A0
2 = A0, we obtain

A(t) ≈ A1 = Lh A0 = ΦB
h ◦ ΦG

h (A0).

The exact solution of the homogeneous problem (3.2) is given by

A1(t0 + h) = ehB A0
1 ehB

>
.

To continue with the full-rank Lie–Trotter splitting in time, we take the approximate
solution Lh A0 as initial value and apply the Lie–Trotter splitting scheme in order to
solve the differential equations (3.2) and (3.3), respectively, which yields an approximation
A2 = Lh

(
Lh A0

)
. Proceeding with this approach until the final time tn = t0 + nh = T ,

we obtain the approximation

An = Lnh A0,

which is an approximation to the matrix A(t) at t = t0 + nh.
Now, A1(t) is the result of the action of a matrix exponential and therefore, it can

be efficiently computed also for large time step sizes h. Numerical methods of choice are
Krylov subspace methods [Saa92, HL97], Taylor interpolation [AMH11] and interpolation
at Leja points [CKOR16]. Moreover, efficient implementations on GPUs are possible, see,
e.g., [EO13].

The approximate solution A1 = Lh A0 is a full-rank matrix approximation to A(t1)

after one time step. Since we aim to compute a rank r approximation Y(t) to A(t) at the
time grid points, we next determine low-rank solutions of (3.2) and (3.3).

3.1.2 The low-rank integrator

We first consider the stiff subproblem (3.2). Due to the linearity of the stiff part, we observe
that for any Y ∈ M, B Y + Y B> ∈ TYM and thus, (3.2) defines a vector field on the
low-rank manifold M. Denoting the rank r approximation to A1(t) by Y1(t) ∈ M, this
can be retraced by a simple calculation, where we apply the orthogonal projection P(Y1)

69

3.1. The low-rank Lie–Trotter splitting integrator

defined in (2.3) in Section 2.1 onto the right-hand side of (3.2). Since Y1 ∈ M, it admits
the factorization Y1 = U S V> and we obtain

P(Y1)
(
B Y1 + Y1 B>

)
=
(
B Y1 + Y1 B>

)
V V>−U U>

(
B Y1 + Y1 B>

)
V V>

+ U U>
(
B Y1 + Y1 B>

)

= B Y1 + Y1 B>V V>−U U>B Y1−Y1 B>V V>

+ U U>B Y1 + Y1 B

= B Y1 + Y1 B>,

i.e., the stiff part was already in the tangent space of the low-rank manifold M. Hence
for an initial value on the low-rank manifoldM, the solution of (3.2) stays inM, see also
[HM12, Lemma 1.22]. This means that subproblem (3.2) is rank-preserving and so starting
with a rank r initial value Y0

1, the solution of

.
Y1(t) = B Y1(t) + Y1(t) B>, Y1(t0) = Y0

1 (3.5)

stays of rank r for all times. Therefore it is sufficient but crucial to start the integration
with a low-rank initial value and apply a suitable time integration method, such as an
exponential integrator [HO10, AMH11] in order to obtain a rank r approximation Y1 ≈ A1.

Instead, for the second subproblem (3.3) we employ the dynamical low-rank approach
[KL07]. There, we project the right-hand side of the nonstiff subproblem (3.3) orthogonally
onto the tangent space TY2(t)M. This results in an evolution equation for Y2(t), which is
of the form

.
Y2(t) = P(Y2(t))G(t,Y2(t)), Y2(t0) = Y0

2, (3.6)

where the initial value Y0
2 is a rank r matrix and the orthogonal projection is denoted by P.

This differential equation needs to be solved numerically. Now, standard integrators show
difficulties due to the presence of small singular values, which we have already discussed
in Section 1.4. Therefore, we apply the projector-splitting integrator in order to obtain a
low-rank approximation to (3.6), which is proven in Section 2.3 to be robust with regard to
small singular values. Its integration scheme is described in detail in Section 2.1.1 and the
practical integration procedure for the implementation is given in Section 2.1.2. We denote
the solution of the projector-splitting integrator applied to (3.6) after one time step of size
h by the solution operator ϕGh . After having applied the projector-splitting integrator to
(3.6), the resulting low-rank approximation after one time step at t0 + h is

Y1
2 = ϕGh (Y0

2).

In a nutshell, the integration method we propose consists of first splitting the matrix
differential equation (3.1), and then approximating the subproblems (3.2) and (3.3) with
respect to low-rank. Hence combining the flow ϕGh of the low-rank solution of (3.3) with
the exact flow ΦB

h of (3.2), which is of low rank when starting with a low-rank initial

70

3. A low-rank splitting integrator for stiff matrix differential equations

data, yields the desired approximation matrix Y(t). We call this procedure the low-rank
Lie–Trotter splitting and denote it by

Ih := ΦB
h ◦ ϕGh . (3.7)

Therefore, starting with a rank r approximation Y0 to A0, we obtain the low-rank ap-
proximation of the solution of (3.1) at t = t0 + h, given by

Y(t) ≈ Y1 = Ih(Y0) = ΦB
h ◦ ϕGh (Y0). (3.8)

In order to continue with the low-rank Lie–Trotter splitting in time, we take the solution
Ih(Y0) of the first step as the initial value for the subsequent step and again apply the
integration scheme. After n time steps, we obtain the low-rank approximation to Y(t) at
tn = t0 + nh = T , given by

Yn = Inh (Y0).

3.1.3 Algorithmic description of the integrator

The implementation of the low-rank Lie–Trotter splitting integrator first follows the lines
of the practical algorithm of the projector-splitting integrator given in Section 2.1.2. Af-
terwards, in order to compute the low-rank approximation of the linear subproblem (3.5),
it benefits from the SVD-like factorization of the low-rank initial value, since it simply
has to build products. We do not build the intermediate approximation matrix Y2 after
having updated the basis matrices, denoted by U,S and V

>
. Instead, we write

ehB Y2 ehB
>

=
(

ehBU
)
S
(
V
>

ehB
>
)

=
(

ehBU
)
S
(

ehBV
)>

and first build the products with the matrix exponentials. Afterwards, we perform two
QR decompositions of the resulting matrices, which gives us the updated basis matrices U

and V and the matrix S, which is build up from a product of three matrices, i.e., we have

(
ehBU

)
S
(

ehBV
)> QR

=
(
U Ś

)
S
(
S̀>V>

)
= U

(
ŚSS̀>

)
V> = U S V>,

which we then take as low-rank approximation. Hence, note that solving the linear dif-
ferential equation (3.5) requires computing the matrix exponential, which can simply be
determined by the Matlab-routine expm, or, of course, by a Krylov subspace method for
computing the action of a matrix exponential, see [Saa92, HL97]. Afterwards we perform
two QR decompositions. Hence, from the computational point of view, we do not solve a
differential equation here.

In contrast, the differential equations for K,S and L need to be solved numerically and
we therefore apply approximation methods such as a Runge–Kutta method.

The description of the practical integration procedure for the time interval [t0, tn] with
time steps (j− 1)h = tj−1 → tj = jh for j = 1, . . . , n is given in Algorithm 3. It computes

71

3.2. Error analysis of the low-rank Lie–Trotter splitting integrator

factors of a low-rank approximation Yn = Un Sn Vn,> after n time steps, which is taken
as an approximation to Y(tn).

Algorithm 3: Low-rank Lie–Trotter splitting integrator
Data: Low-rank matrix Y0 = U0 S0 V0,>, G(t,Y), t0, tn, h
Result: Approximation matrix Yn = Un Sn Vn,>

1 begin
2 for j = 1 to n do
3 set Kj−1 = Uj−1 Sj−1

4 solve
.
K(t) = G

(
t,K(t) Vj−1,>)Vj−1,

with initial value K(tj−1) = Kj−1 and return Kj = K(tj)

5 compute QR factorization Kj = U
j
Ŝj

6 solve
.
S(t) = −U

j,>
G
(
t,U

j
S(t) Vj−1,>)Vj−1,

with initial value S(tj−1) = Ŝj and return S̃j−1 = S(tj)

7 set Lj−1,> = S̃j−1 Vj−1,>

8 solve
.
Lj,>(t) = U

j,>
G
(
t,U

j
L(t)>

)
,

with initial value L(tj−1)
> = Lj−1,> and return Lj,> = L(tj)

>

9 compute QR factorization Lj = V
j
S
j,>

10 set Uj
B = exp(hB)U

j

11 compute QR factorization Uj
B = Uj Śj

12 set Vj
B = exp(hB)V

j

13 compute QR factorization Vj
B = Vj S̀j

14 set Sj = Śj S
j

S̀j,>

15 set Yn = Un Sn Vn,>

Note that in most applications, the low-rank initial value Y0 is not known beforehand.
So in order to initialize the algorithm, we first perform a truncated SVD as described in
Section 1.1, since we know by the Theorem of Eckart and Young that it results in a best
approximation to the given A0.

3.2 Error analysis of the low-rank Lie–Trotter splitting inte-
grator

In this section we perform an error analysis of the proposed method. The low-rank Lie–
Trotter splitting integrator (3.7) is constructed in a way, which enables us to show error
bounds without introducing the Lipschitz constant of the full right-hand side of the given
differential equation (3.1), nor of the stiff subproblem (3.2). Also, we benefit from the error
analysis of the matrix projector-splitting integrator given in Section 2.3 in the sense that
the constants of the error bound are not affected by (small) singular values.

Before we start proving the actual error bound, we first describe the framework in
which it can be carried out in favor of the organization of the proof. In the following, we
are given an initial data A0 and a final integration time T such that the matrix differential

72

3. A low-rank splitting integrator for stiff matrix differential equations

equation (3.1) has a solution A(t) for t0 ≤ t ≤ T . We assume that when starting with a
low-rank matrix Y0, the exact rank r solution

Y(t) = e(t−t0)B Y0 e(t−t0)B
>

+

∫ t

t0

e(t−s)BP(Y(s))G(s,Y(s))e(t−s)B
>

ds

of the matrix differential equation (3.1) exists for t0 ≤ t ≤ T .

Assumption 3.1. We assume that

(1) there exist ω ∈ R and a uniform constant c > 0, such that the matrix B satisfies

‖etB Z etB
>‖ ≤ etω‖Z‖, (3.9)

‖etB(B Z + Z B>)etB
>‖ ≤ 1

t
cetω‖Z‖, (3.10)

for all t0 ≤ t ≤ T and all Z ∈ Rn1×n1 ,

(2) G is continuously differentiable,

(3) G is in the tangent space TYM up to a small perturbation term:

G(t,Y) = M(t,Y) +R(t,Y),

where M(t,Y) ∈ TYM and ‖R(t,Y)‖ ≤ ε ∀ Y ∈M, ∀ t0 ≤ t ≤ T ,

(4) the initial value A0 ∈ Rn1×n1 and the starting value Y0 ∈M of the numerical method
are δ-close:

‖A0−Y0‖ ≤ δ.

We take a closer look on the situation in which we analyze the error behavior of the
low-rank Lie–Trotter splitting by discussing the prerequisites.

(1) As announced at the beginning of this chapter, we focus here on the case, where
the class of matrix differential equations of the form (3.1) is induced by a spatial
discretization of a parabolic partial differential equation. We assume the constant c
to be uniform in grid size within the spatial discretization. The elliptic operator of
the parabolic partial differential equation is assumed to generate a strongly continu-
ous semigroup in a suitable Banach space. Here, the matrix B stems from the space
discretization of the elliptic operator within the partial differential equation and there-
fore it is reasonable to assume that it also generates a strongly continuous semigroup.
Hence, we conclude that the matrix B satisfies the exponential boundedness (3.9),
see, e.g., [EN06, Proposition 1.4] and the parabolic smoothing property (3.10). These
estimates are typically known in case of a vector differential equation, where they have
a modified form. For ease of recognition that this assumption is a matrix analogon, we
explicate how to transform from the matrix case to the vector case (and vice versa):

Let us define the matrix operator F as

F (A) = B A + A B>, A ∈ Rn1×n1 .

73

3.2. Error analysis of the low-rank Lie–Trotter splitting integrator

Denoting vec(B A + A B>) = Ba, where a = vec(A), we transform both sides of the
above equation into the vectorized form

vec(F (A)) = Ba.

Then, the above bounds can be translated using the vector 2-norm ‖·‖2 into

‖etBz‖2 ≤ etω‖z‖2,

‖etBBz‖2 ≤
1

t
cetω‖z‖2,

for all t > 0 and all z = vec(Z) ∈ Rn2
1 . These properties are well known in the

context of semigroup theory for strongly elliptic operators, for further details see, e.g.,
[Paz83, EN06].

(2) Assuming that the nonlinearity G is continuously differentiable implies the actual
properties we require for proving an error estimate:

– G is Lipschitz continuous:

‖G(t,Y)−G(t, Ỹ)‖ ≤ L‖Y−Ỹ‖, for all Y, Ỹ ∈ Rn1×n1

– G is bounded:

‖G(t,Y)‖ ≤ B. (3.11)

In fact, we only need the weaker assumption of G being continuously differentiable
in a neighborhood of the exact solution A(t) for all t0 ≤ t ≤ T . This would imply
that G is required to be locally Lipschitz continuous and also locally bounded. Later
in the proof, we will apply Lady Windermere’s fan [HNW93], where we sum up the
transported local errors. There, we would have different Lipschitz constants depending
on the current approximation matrix in each local error within the sum, which is
technically cumbersome to deal with. Hence, it is more convenient to impose a global
Lipschitz constant for ease of estimation, but we note that our error estimate still holds
under this weaker local condition.

To avoid notational confusion, we point out that in contrast to the bold face B, which
denotes a matrix, we denote the bound of G as a plain capital B.

(3) Similarly as in Assumption 2.3 in Chapter 2, we assume that G(t,Y) consists of a tan-
gential partM(t,Y) and a small perturbation term R(t,Y). This means that G, when
evaluated along the low-rank solution, is in the tangent space up to a small remainder
of size ε. This assumption is crucial in order to have a good low-rank approximation,
since if the remainder is large, low-rank approximation is inappropriate.

As a consequence of the condition under consideration and by the boundedness of G,
we can estimate the tangential part of G as

‖M(t,Y)‖ = ‖G(t,Y)−R(t,Y)‖ ≤ B + ε.

74

3. A low-rank splitting integrator for stiff matrix differential equations

For computational simplicity within estimates in the proof of the upcoming theorem,
we choose the bound B in (3.11) to be large enough, such that M has the same bound
as G, denoted again by B, i.e.,

‖M(t,Y)‖ ≤ B.

Of course, our result also holds if M has a bound that is different from B.

(4) We impose this condition, since we cannot expect a good approximation result, if the
rank r initial value Y0 is far away from the given full-rank initial matrix A0. In order
to guarantee a small distance between those initial values in practice, we perform a
truncated SVD factorization of the matrix A0, since this decomposition results in a
best rank r approximation Y0.

Having discussed the assumptions, we are now in the situation to state the convergence
result of the integration method proposed in Section 3.1.

Theorem 3.2. Under Assumption 3.1, the error of the low-rank Lie–Trotter splitting
integrator at tn = t0 + nh, with step size h > 0, is bounded by

∥∥A(t0 + nh)− Inh (Y0)
∥∥ ≤ c0δ + c1ε+ c2h(1 + |log h|),

where c0, c1 and c2 only depend on ω, B, L and T .

In order to facilitate the convergence analysis of the low-rank Lie–Trotter splitting
integrator, we study the global error by analyzing the errors that appear due to the con-
struction of the integration scheme and so in total make up the error stated in Theorem 3.2.
We collect the contributing terms in the subsequent list, where we follow the chronology
of the integration procedure:

(i) First, we split the stiff matrix differential equation (3.1) into a stiff (3.2) and a non-
stiff (3.3) subproblem. In the error analysis, we compare the exact full rank solution
A(t) at final time step T = t0 +nh of the given problem (3.1) with the solution after
having splitted this differential equation and then composed the exact solutions of
the two arising subproblems. This is the global error of the full-rank Lie–Trotter
splitting (3.4), which we denote by

Ensp = A(t0 + nh)− (ΦB
h ◦ ΦG

h)n(A0). (3.12)

We perform an error analysis in the proof of Proposition 3.3, where we state the error
bound.

(ii) After having splitted the differential equation (3.1), we determine the solution of
the Lie–Trotter splitting integrator when starting on the one hand with a full-rank
initial value A0 and on the other hand when starting with a low-rank matrix Y0 for
the integration of the two subproblems. Comparing the difference of the solutions
depending on the initial data, we find

Enδ = (ΦB
h ◦ ΦG

h)n(A0)− (ΦB
h ◦ ΦG

h)n(Y0).

75

3.2. Error analysis of the low-rank Lie–Trotter splitting integrator

In fact, this is the propagation of the δ-difference between the full-rank initial data
A0 and its low-rank approximation Y0 by the Lie–Trotter splitting method.

We analyze this error in the proof of Theorem 3.2.

(iii) Finally, within the proposed integrator, we determine a low-rank solution of the
two subproblems by applying the low-rank Lie–Trotter splitting, where we use the
projector-splitting integrator amongst others. We compare this low-rank approxima-
tion Inh with the solution of the full-rank Lie–Trotter splitting integrator Lh with
low-rank initial value Y0, i.e.,

Enlr = (ΦB
h ◦ ΦG

h)n(Y0)− (ΦB
h ◦ ϕGh)n(Y0).

A proof of the distance between the full-rank and the low-rank splitting integration
procedure, respectively, is performed in Proposition 3.4.

For a better overview of the appearing errors, we depict the composition of the global error
of the low-rank Lie–Trotter splitting method in the following figure.

t0 tt1 t2 t3 tn−1 tn

A(t)

A0

A1

A2

An = (ΦB
h ◦ ΦG

h)n(A0)

A(tn)

A(t1)

A(t2)

Y1

Y2

Yn = (ΦB
h ◦ ϕGh)n(Y0)

Y0

(ΦB
h ◦ ΦG

h)n(Y0)

E1
sp

E1
δ

E1
lr

En
sp

En
δ

En
lr

Figure 3.1: Schematic illustration of the convergence analysis. The uppermost curve (in
red) depicts the exact solution A(t) of (3.1), whereas the lowermost (in green) shows the
solution obtained by the low-rank Lie–Trotter splitting (3.7). All other lines (in blue)
represent the solutions obtained by the application of the Lie–Trotter splitting (3.4) either
to a full-rank initial data (solid lines) or to a low-rank initial data (dashed-dotted lines).

The global error in Theorem 3.2 is a composition of three terms, which we study in the
following.

76

3. A low-rank splitting integrator for stiff matrix differential equations

We start with the error estimates of the full-rank Lie–Trotter splitting scheme (3.4).
The ideas in the proof can be traced back to, e.g., [JL00] and [EO15].

Proposition 3.3. Under Assumption 3.1, the full-rank Lie–Trotter splitting (3.4) is first-
order convergent, i.e., its error at tn = t0 + nh, with time step size h > 0, is bounded
by

‖A(t0 + nh)− (ΦB
h ◦ ΦG

h)n(A0)‖ ≤ C3h(1 + |log h|).

The constant C3 only depends on ω, B, L and T .

Proof. The solution of the given matrix differential equation (3.1) can be expressed by
means of the variation-of-constants formula. Given the initial value A(tk−1), the solution
at time tk = tk−1 + h after one time step with step size h > 0 is

A(tk) = ehB A(tk−1)e
hB> +

∫ h

0
e(h−s)BG

(
tk−1 + s,A(tk−1 + s)

)
e(h−s)B

>
ds, (3.13)

for all k = 1, . . . , n. The exact solution ΦB
h of the first full-rank subproblem (3.2) for

A1(t) at tk with initial value A1(tk−1) = A2 can again be determined by the variation-of-
constants formula and is given by

A1(tk) = ΦB
h (A2) = ehB A2 ehB

>
.

The exact solution of the second full-rank subproblem (3.3) for A2(t) with initial value
A2(tk−1) can be expressed by applying Taylor expansion, see, e.g. [Tay17, Kön03], with
integral form of the remainder, i.e.,

A2(tk) = ΦG
h

(
(A2(tk−1)

)

= A2(tk−1) +
.
A2(tk−1)(tk − tk−1) +

∫ tk

tk−1

(tk − τ)Ä2(tk−1 + τ) dτ

= A2(tk−1) + hG(tk−1,A2(tk−1)) +

∫ h

0
(h− s)Ä2(tk−1 + s) ds,

(3.14)

where we have substituted τ = s + tk−1 in the last equation. Following the Lie–Trotter
splitting scheme, we compose those exact solutions ΦB

h and ΦG
h of the two subroblems and

obtain the solution of the full-rank Lie–Trotter splitting method, which is given by

Lh A2(tk−1) = ΦB
h ◦ ΦG

h (A2(tk−1))

= ΦB
h

(
A2(tk−1) + hG

(
tk−1,A2(tk−1)

)
+

∫ h

0
(h− s)Ä2(tk−1 + s) ds

)

= ehB A2(tk−1)e
hB> + hehBG

(
tk−1,A2(tk−1)

)
ehB

>

+

∫ h

0
(h− s)ehBÄ2(tk−1 + s)ehB

>
ds.

Since the order of integration within the splitting method (3.4) suggests to first solving
the second subproblem, the initial value for the full scheme is A2(tk−1) = A(tk−1). Then,

77

3.2. Error analysis of the low-rank Lie–Trotter splitting integrator

with the exact solution (3.13) of the given ODE (3.1), the local error of the Lie–Trotter
splitting method at tk = tk−1 + h with time step size h > 0 is

eksp = A(tk)− Lh A(tk−1)

=

∫ h

0
e(h−s)BG

(
tk−1 + s,A(tk−1 + s)

)
e(h−s)B

>
ds

− hehBG
(
(tk−1,A(tk−1)

)
ehB

> −
∫ h

0
(h− s)ehBÄ2(tk−1 + s)ehB

>
ds.

In the following, we will rewrite the local error in a simplified form. To this end, let us
denote the integrand of the first integral above as

f(s) = e(h−s)BG(tk−1 + s,A(tk−1 + s))e(h−s)B
>
,

such that
∫ h

0
f(s) ds =

∫ h

0
f(0) + f(s)− f(0) ds =

∫ h

0

(
f(0) +

∫ s

0

.
f(τ) dτ

)
ds. (3.15)

For ease of presentation, we will drop the arguments of the nonlinearity G in the following.
In cases where it differs from the one above, we will denote it explicitly.

Due to the fact that a matrix commutes with its exponential, the time derivative of f
is given as

.
f(τ) =

d

dτ

(
e(h−τ)BG

(
tk−1 + τ,A(tk−1 + τ)

)
e(h−τ)B

>
)

= −B e(h−τ)BG
(
tk−1 + τ,A(tk−1 + τ)

)
e(h−τ)B

>

+ e(h−τ)B
(

d

dτ
G

)
e(h−τ)B

>

− e(h−τ)BG
(
tk−1 + τ,A(tk−1 + τ)

)
B> e(h−τ)B

>

= −e(h−τ)B
[

BG
(
tk−1 + τ,A(tk−1 + τ)

)

+ G
(
tk−1 + τ,A(tk−1 + τ)

)
B>− d

dτ
G

]
e(h−τ)B

>
.

(3.16)

Now, by Assumption 3.1(2), the nonlinearity G is continuously differentiable and hence
its time derivative Ä2(t) is bounded. Therefore, when inserting the simplified form (3.15),
with (3.16), in the local error, we are left with

eksp =

∫ h

0
f(0) ds+

∫ h

0

∫ s

0

.
f(τ) dτ ds

− hehBG
(
(tk−1,A(tk−1)

)
ehB

> −
∫ h

0
(h− s)ehBÄ2(tk−1 + s)ehB

>
ds

= −
∫ h

0

∫ s

0
e(h−τ)B

(
BG+GB>

)
e(h−τ)B

>
dτ ds

+

∫ h

0

∫ s

0
e(h−τ)B

(
d

dτ
G

)
e(h−τ)B

>
dτ ds−

∫ h

0
(h− s)ehBÄ2(tk−1 + s)ehB

>
ds.

(3.17)

78

3. A low-rank splitting integrator for stiff matrix differential equations

For determining an error bound for the full-rank Lie–Trotter splitting method, we bound
each term of the local error separately, but we cannot bound the first integral directly,
since that would give us an undesired dependence on the Lipschitz constant of the linear
part, which is induced by the Frobenius norm of the matrix B that causes the stiffness.
Nevertheless, before we strike a new path in order to bound the first double integral, we
first estimate the two remaining terms. We observe that they mainly consist of matrix
exponentials and time derivatives of G.

So since by Assumption 3.1 (1) and (2) the matrix exponential and the nonlinearity G
are bounded, the second term in (3.17) can be estimated by

∥∥∥∥
∫ h

0

∫ s

0
e(h−τ)B

(
d

dτ
G

)
e(h−τ)B

>
dτ ds

∥∥∥∥ ≤
∫ h

0

∫ s

0
e(h−τ)ω

∥∥∥∥
d

dτ
G

∥∥∥∥ dτ ds

≤ Cehω
(

1

ω2
e−hω +

h

ω
− 1

ω2

)

= C(ω)
(

1 + (hω − 1)ehω
)

= C(ω)

(
1 + hω + (hω)2 +

1

2
(hω)3 +O

(
(hω)4

)

−1− hω − 1

2
(hω)2 − 1

6
(hω)3 −O

(
(hω)4

))

≤ C(ω)h2,

where we have used the power series of the exponential function. Note that the constant
depends on ω.

With the same arguments, we similarly bound the third term of the local error (3.17),
which yields

∥∥∥∥
∫ h

0
(h− s)ehBÄ2(tk−1 + s)ehB

>
ds

∥∥∥∥ ≤
∫ h

0
(h− s)

∥∥∥ehBÄ2(tk−1 + s)ehB
>
∥∥∥ ds

≤ Cehω
h2

2

≤ Ce(T−t0)ω
h2

2

≤ C(T, ω)h2.

Therefore, since the last two terms of the local error are proportional to O(h2), the local
error is reduced to

eksp = −
∫ h

0

∫ s

0
e(h−τ)B

(
BG+GB>

)
e(h−τ)B

>
dτ ds+O(h2). (3.18)

By assumption (1), we have the parabolic smoothing property available, which we apply

79

3.2. Error analysis of the low-rank Lie–Trotter splitting integrator

in order to bound this local error. Substituting α = h− τ and dα = −dτ , it yields

∥∥∥eksp
∥∥∥ =

∥∥∥∥
∫ h

0

∫ s

0
e(h−τ)B

(
BG+GB>

)
e(h−τ)B

>
dτ ds

∥∥∥∥+O(h2)

≤
∫ h

0

∫ s

0
C

1

h− τ e(h−τ)ω‖G‖ dτ ds

≤ C(B)ehω
∫ h

0

∫ h

h−s

1

α
dα ds

≤ C(B)e(T−t0)ω (h(2|log(h)| − 1))

≤ C(B, T, ω) (h(2|log(h)|+ 2))

= C(B, T, ω)h(|log(h)|+ 1).

(3.19)

Now, when determining the global error bound from this local bound, we would lose one
order of the time step size h, which would not lead to a promising error analysis, where
the expected global error is of order one. Therefore, we purse another approach, where we
exploit a recursive form of the global error.

We can retrace the recursive construction by means of the fan in Figure 3.1. The fan
for our situation is depicted by the blue solid lines. There, we see that the global error
Ensp at time T = tn consists of the distance between the propagation of the exact solution
A(tn−1) and the numerical solution An−1 by Lh plus the local error ensp at time tn, i.e.,

Ensp = Lh A(tn−1)− Lh An−1 +ensp. (3.20)

To clarify that this in fact is the global error of the splitting scheme when starting with
A0 = A(t0), we remind that the numerical solution of the Lie–Trotter splitting integrator
after (n − 1) time steps can be recursively written as An−1 = Ln−1h A0. We observe that
the local error (3.18) is contained in the global error for k = n. Later on, we will benefit
from the reduced representation (3.18) within the global error.

In the following, we estimate the global error Ensp by means of Lady Windermere’s fan
[HNW93, II.3]. To this end, we first exploit the form of the exact solution (3.14) of the
nonlinear subproblem, but with initial values A(tn−1) and An−1, respectively. Denoting
the time derivative of G(·,A(tn−1)) by Ä(·) and the time derivative of G(·,An−1) by ¨̃

A(·),

80

3. A low-rank splitting integrator for stiff matrix differential equations

we write

Lh A(tn−1)− Lh An−1 = ehB
(
ΦG
h (A(tn−1))− ΦG

h (An−1)
)
ehB

>

= ehB
(
A(tn−1)−An−1)ehB>

+ ehB
[
h
(
G(tn−1,A(tn−1))−G(tn−1,A

n−1)
)

+

∫ h

0
(h− s)

(
Ä2(tn−1 + s)− ¨̃

A2(tn−1 + s)
)

ds

]
ehB

>

= ehB
(
A(tn−1)−An−1)ehB> + ehB

[
H
(
A(tn−1),A

n−1)] ehB
>

= ehB
(
A(tn−1)− Ln−1h A0

)
ehB

>
+ ehB

[
H
(
A(tn−1),A

n−1)] ehB
>

= ehB
(
A(tn−1)−

(
ΦB
h ◦ ΦG

h

)n−1
A0
)
ehB

>

+ ehB
[
H
(
A(tn−1),A

n−1)] ehB
>

= ehBEn−1sp ehB
>

+ ehB
[
H
(
A(tn−1),A

n−1)] ehB
>
,

where we denote

H
(
A(tn−1),A

n−1) = h
(
G(tn−1,A(tn−1))−G(tn−1,A

n−1)
)

+

∫ h

0
(h− s)

(
Ä2(tn−1 + s)− ¨̃

A2(tn−1 + s)
)

ds,

and where we have used the form (3.12) for the global splitting error En−1sp . With this
representation of the propagated exact and the propagated numerical solution, where the
propagation is executed by Lh, which contains the global error until the previous time
step, we observe that, in fact, the global error Ensp admits a recursive description. Using
this recursiveness, we rewrite the global error as

Ensp = Lh A(tn−1)− Lh An−1 +ensp

= ehBEn−1sp ehB
>

+ ehBH
(
A(tn−1),A

n−1)ehB> + ensp

= ehB
(
Lh A(tn−1)− Lh An−1 +en−1sp

)
ehB

>
+ ehBH

(
A(tn−1),A

n−1)ehB> + ensp

= ehB
(

ehB
(
En−2sp +H

(
A(tn−2),A

n−2)) ehB
>

+ en−1sp

)
ehB

>

+ ehBH
(
A(tn−1),A

n−1)ehB> + ensp

= e2hBEn−2sp e2hB
>

+ e2hBH
(
A(tn−2),A

n−2)e2hB> + ehBH
(
A(tn−1),A

n−1)ehB>

+ ehBen−1sp ehB
>

+ ensp
...

= enhBE0
spenhB

>
+
n−1∑

k=0

e(n−k)hBH
(
A(tk),A

k
)
e(n−k)hB

>
+

n∑

k=1

e(n−k)hBekspe(n−k)hB
>
.

We observe that due to the equality of the initial values A(t0) = A0, the first term within
the above representation of the global error vanishes, since E0

sp = A(t0) −A0 is the null

81

3.2. Error analysis of the low-rank Lie–Trotter splitting integrator

matrix. In order to bound the second term, we have to bound the matrix H
(
A(tk),A

k
)
,

which mainly consists of the nonlinear term G and its continuous time derivative Ä2. Now,
by Assumption 3.1 (2), G is Lipschitz continuous and hence, for all k = 0, . . . , n − 1, we
find

‖H(A(tk),A
k)‖ ≤ h‖G(tk,A(tk))−G(tk,A

k)‖

+

∫ h

0
(h− s)‖Ä2(tk + s)− ¨̃

A2(tk + s)‖ ds

≤ hL‖A(tk)−Ak‖+ C
h2

2

= C(L)(h‖Eksp‖+ h2),

where we remind that Ak is the numerical solution of the full-rank Lie–Trotter splitting
integrator. Note that the constant C depends on L, the Lipschitz constant of G. Now,
using Assumption 3.1 (1), the matrix exponential multiplied by a matrix is bounded and
therefore we find for the second term in the above representation of the global error the
bound
∥∥∥∥∥
n−1∑

k=0

e(n−k)hBH
(
A(tk),A

k
)
e(n−k)hB

>

∥∥∥∥∥ ≤
n−1∑

k=0

e(n−k)hω
∥∥∥H
(
A(tk),A

k
)∥∥∥

≤
n−1∑

k=0

enhωC(L)
(
h‖Eksp‖+ h2

)

= C(L)enhωh

(
n−1∑

k=0

‖Eksp‖+ nh

)

= C(L)e(T−t0)ωh

(
n−1∑

k=0

‖Eksp‖+ (T − t0)
)

≤ C(L, T, ω)h

(
n−1∑

k=0

‖Eksp‖+ 1

)
.

(3.21)

We continue bounding the third term in the representation of the global error. There, we
use the simplified form (3.17) of the local error and also Assumption 3.1 (1), such that we
obtain

82

3. A low-rank splitting integrator for stiff matrix differential equations

∥∥∥∥∥
n∑

k=1

e(n−k)hBekspe(n−k)hB
>

∥∥∥∥∥

≤
n−1∑

k=1

∥∥∥e(n−k)hBekspe(n−k)hB
>
∥∥∥+

∥∥ensp
∥∥

=

n−1∑

k=1

∥∥∥∥e(n−k)hB
(
−
∫ h

0

∫ s

0
e(h−τ)B

(
BG+GB>

)
e(h−τ)B

>
dτ ds+O(h2)

)
e(n−k)hB

>
∥∥∥∥

+
∥∥ensp

∥∥

=
n−1∑

k=1

∫ h

0

∫ s

0

∥∥∥e(h−τ)B
(

e(n−k)hB(BG+GB>)e(n−k)hB
>
)

e(h−τ)B
>

dτ ds
∥∥∥

+ (n− 1)Ch2e(n−k)hω +
∥∥ensp

∥∥

≤
n−1∑

k=1

∫ h

0

∫ s

0
e(h−τ)ω

C

h(n− k)
e(n−k)hω‖G‖ dτ ds+ (n− 1)Ch2e(n−k)hω +

∥∥ensp
∥∥

≤ C(B)enhω
n−1∑

k=1

1

hk
ehω

∫ h

0

∫ s

0
e−τω dτ ds+ Cnh2enhω +

∥∥ensp
∥∥

= C(B)e(T−t0)ω
1

h

n−1∑

k=1

1

k
C(ω)h2 + C(T − t0)he(T−t0)ω +

∥∥ensp
∥∥

= C(B, T, ω)
n−1∑

k=1

1

k
C(ω)h+ C(T, ω)h+

∥∥ensp
∥∥

≤ C(B, T, ω)h|log(n)|+ C(T, ω)h+
∥∥ensp

∥∥
≤ C(B, T, ω)h|log(h)|+ C(T, ω)h+

∥∥ensp
∥∥ ,

where, in the second to last step, we have approximated the n-th partial sum of the
harmonic series by the logarithmic function. We are left with bounding the last local error
ensp of the splitting scheme. Here, we remind that the bound (3.19) of the local error is
given for all k = 1, . . . , n and therefore we can apply it here as well.

In total, we have

‖Ensp‖ ≤ C(L, T, ω)h

(
n−1∑

k=0

‖Eksp‖+ 1

)
+ C(B, T, ω)h(|log(h)|+ 1)

= C(B, T, ω)h(1 + |log(h)|) +

n−1∑

k=0

C(L, T, ω)h‖Eksp‖.

The global error bound follows now from a discrete Grönwall inequality, i.e.,

‖Ensp‖ ≤ C3(B,L, T, ω)h(1 + |log(h)|)enC(L,T,ω)h

= C3(B,L, T, ω)h(1 + |log(h)|).

83

3.2. Error analysis of the low-rank Lie–Trotter splitting integrator

Having estimated the error of the Lie–Trotter splitting for the given full-rank problem
(3.1), we now turn to the low-rank solution of the Lie–Trotter splitting integrator and
compare those two methods. This means that we analyze the difference between them,
i.e.,

Enlr = (ΦB
h ◦ ΦG

h)n(Y0)− (ΦB
h ◦ ϕGh)n(Y0).

Although starting with a low-rank initial matrix Y0, the full-rank Lie–Trotter splitting
integrator ΦB

h ◦ ΦG
h does not result in a low-rank matrix. This can be seen from the

differential equations (3.3) and (3.2), which are solved consecutively: the ODE for G starts
with a low-rank initial value A2(t0) = Y0, though it results in a full-rank solution, since
the right-hand side of this ODE is nonlinear, i.e., it is not in the (linear) tangent space of
the low-rank manifoldM. Since we solve the first subproblem directly, then, starting with
a full-rank initial matrix, the result stays of full rank after one time step. In contrast, the
low-rank Lie–Trotter integrator ΦB

h ◦ϕGh is characterized by solving a differential equation
for the nonlinearity G, which is obtained by the orthogonal projection P(Y2(t)) onto
TY2(t)M. Applying the projector-splitting integrator onto this problem on the tangent
space TY2(t)M yields a low-rank solution, which due to the splitting scheme in turn is the
initial value for the linear subproblem (3.5) that is solved directly. Hence, starting with a
rank r matrix, the solution of (3.5) will stay of rank r, such that the low-rank Lie–Trotter
splitting integrator ΦB

h ◦ϕGh results in a low-rank approximation matrix. We analyze next
the distance between the full-rank and the low-rank integrator, respectively.

Proposition 3.4. Under Assumption 3.1, the difference of the full-rank Lie–Trotter and
the low-rank Lie–Trotter splitting method at tn = t0 + nh, with step size h > 0, is bounded
by

‖(ΦB
h ◦ ΦG

h)n(Y0)− (ΦB
h ◦ ϕGh)n(Y0)‖ ≤ C1ε+ C2h,

where the constants C1 and C2 only depend on ω, B, L and T .

Note that, from the technical perspective, the bound in this proposition is not an error
bound, since we do not compare the result of a numerical method with an exact solution,
but we compare solutions of two numerical methods with each other.

The idea for proving this estimate is to follow the strategy of Lady Windermere’s fan
[HNW93, II.3]: we first consider the appropriate local distances between the full-rank and
the low-rank solution in each step and then we propagate them by the stable solution
operator until the final time T = t0 + nh, where we eventually add the propagated local
distances up and obtain the desired bound. This strategy is visualized by the blue dashed-
dotted lines in Figure 3.1.

Lemma 3.5. Under Assumption 3.1, the local bound of the distance between the full-rank
Lie–Trotter and the low-rank Lie–Trotter splitting method at tk = tk−1 + h, with step size
h > 0, is given by

‖(ΦB
h ◦ ΦG

h)(Yk−1)− (ΦB
h ◦ ϕGh)(Yk−1)‖ ≤ b1εh+ b2h

2,

where the constants b1 and b2 only depend on ω, B, L and T .

84

3. A low-rank splitting integrator for stiff matrix differential equations

Proof. By Assumption 3.1 (1), we employ the exponential boundedness and observe that

‖(ΦB
h ◦ ΦG

h)(Yk−1)− (ΦB
h ◦ ϕGh)(Yk−1)‖ = ‖ΦB

h ◦ (ΦG
h − ϕGh)(Yk−1)‖

≤ ehω‖(ΦG
h − ϕGh)(Yk−1)‖. (3.22)

This time, the difference (3.22) of the two solution operators for the second subproblem
(3.3) in fact is a local error, since it compares the exact solution ΦG

h with the numerical
solution ϕGh . Since ϕ

G
h is the solution obtained by applying the projector-splitting integrator

onto the projected right-hand side, we mainly refer to the error analysis for the robustness
result given in Section 2.3 or in [KLW16].

By Assumption 3.1 (3), we can split up the nonlinearity G(t,Y2(t)) into a linear and
a nonlinear part, viz.,

G(t,Y2(t)) = M(t,Y2(t)) +R(t,Y2(t)).

Now, suppose that there is no nonlinear part, i.e., R = 0. Then, the differential equation
.

W(t) = M(t,W(t)), W(tk−1) = Wk−1 (3.23)

is available with low-rank solution W(tk) ∈ M. The idea of this proof is to relate the
exact solution ΦG

h and the numerical solution ϕGh , respectively, to the exact solution W(t)

of this auxiliary problem. We interpret both, the full-rank and the low-rank differential
equations (3.3) and (3.6), viz.,

.
A2(t) = G(t,A2(t)), A2(t0) = A0

2

and
.
Y2(t) = P(Y2(t))G(t,Y2(t)), Y2(t0) = Y0

2,

respectively, as differential equations for W(t) with a perturbation term. For instance, we
write the ODE for Y2(t) in terms of W(t) and find

.
Y2(t) =

.
W(t) + ∆(t,Y2(t)),

where ∆(t,Y2(t)) = G(t,Y2(t))−G(t,W(t))−
(
I−P(Y2(t))

)
R(t,Y2(t)) +R(t,W(t)).

We need to analyze the influence of the perturbation term in both differential equations
onto their solutions, when determined exactly (ΦG

h) as well as when applying the projector-
splitting integrator (ϕGh), i.e., we are interested in bounds for ΦG

h (Yk−1) −W(tk) and
ϕGh (Yk−1)−W(tk), for all k = 1, . . . , n

A rigorous error analysis that studies the influence of the perturbation term ∆(t,Y2(t))

is given in Lemma 2.5 in Section 2.3. Our Assumption 3.1 fulfills the assumption of that
lemma and so we can directly apply its result. Suppose that the distance of the initial
values is bounded by ‖Yk−1−Wk−1‖ ≤ h(4BLh + 2ε), see Figure 2.4 in Section 2.3 for
Xk−1 = Wk−1, then by following the error estimate of Lemma 2.5, we obtain

‖ϕGh (Yk−1)−W(tk)‖ ≤ h(9BLh+ 4ε). (3.24)

85

3.2. Error analysis of the low-rank Lie–Trotter splitting integrator

Now, for comparing the exact solution of the second full-rank subproblem (3.3) with
the exact solution of the unperturbed, auxiliary problem (3.23), we first observe that by
Assumption 3.1 (3) we have the bound

‖M(t,W(t))−G(t,W(t))‖ = ‖R(t,W(t))‖ ≤ ε.

By condition (2), we know that G is Lipschitz continuous and therefore we can apply
Grönwall’s inequality, which then gives

‖ΦG
h (Yk−1)−W(tk)‖ ≤ eL(tk−tk−1)‖Yk−1−Wk−1‖+ eL(tk−tk−1)

∫ tk

tk−1

e−L|s−tk−1|εds

≤ eLh‖Yk−1−Wk−1‖+ eLhhε

≤ eLhh(4BLh+ 3ε).

Together with (3.24), this in total yields the local bound

‖(ΦB
h ◦ ΦG

h)(Yk−1)− (ΦB
h ◦ ϕGh)(Yk−1)‖

≤ ehω
(
‖ΦG

h (Yk−1)−W(tk)‖+ ‖ϕGh (Yk−1)−W(tk)‖
)

≤ ehω
(
h(9BLH + 4ε) + eLhh(4BLh+ 3ε)

)

≤ e(T−t0)ω
((

4ε+ 3eL(T−t0)ε
)
h+

(
9BL+ eL(T−t0)4BL

)
h2
)
,

which results in the stated local bound with

b1 = e(T−t0)ω
(

4 + 3eL(T−t0)
)

and b2 = e(T−t0)ω
(

9BL+ eL(T−t0)4BL
)
.

With this local estimate at hand, we are now in the situation to prove the global bound
for Enlr = (ΦB

h ◦ ΦG
h)n(Y0) − (ΦB

h ◦ ϕGh)n(Y0) that compares the solution of the full-rank
Lie–Trotter splitting with the solution of the low-rank Lie–Trotter method after n time
steps at T = t0 + nh, starting from a low-rank initial value.

Proof of Proposition 3.4. By condition (2) of Assumption 3.1, G is Lipschitz continuous
and hence we conclude by Grönwall’s inequality for Ã, Â ∈ Rn1×n1 that the solution
operator Lh = ΦB

h ◦ ΦG
h satisfies

‖
(
ΦB
h ◦ ΦG

h

)
(Â)−

(
ΦB
h ◦ ΦG

h

)
(Ã)‖ =

∥∥∥ΦB
h

(
ΦG
h (Â)− ΦG

h (Ã)
)∥∥∥

≤ ehωeLh‖Â− Ã‖
= e(L+ω)h‖Â− Ã‖,

(3.25)

which shows stability of the full-rank Lie–Trotter splitting method Lh. We will use this
stability in order to propagate the local bound from Lemma 3.5 until final time T =

t0 + nh and then accumulate the transported errors. Again, this procedure follows Lady
Windermere’s fan argument, see Figure 3.1.

86

3. A low-rank splitting integrator for stiff matrix differential equations

We start with propagating the local bound given in Lemma 3.5 by Lh and find

‖(ΦB
h ◦ ΦG

h)n−k(Yk)− (ΦB
h ◦ ΦG

h)n−(k+1)(Yk+1)‖
= ‖(ΦB

h ◦ ΦG
h)n−(k+1)

(
(ΦB

h ◦ ΦG
h)(Yk)

)
− (ΦB

h ◦ ΦG
h)n−(k+1)(Yk+1)‖

≤ e(L+ω)h(tn−tk+1)‖(ΦB
h ◦ ΦG

h)(Yk)−Yk+1‖
= e(L+ω)h(tn−tk+1)‖(ΦB

h ◦ ΦG
h)(Yk)− (ΦB

h ◦ ϕGh)(Yk)‖
≤ e(L+ω)h(n−(k+1))(b1εh+ b2h

2).

Now, we obtain a global bound for Enlr by adding those propagated local bounds and find

‖(ΦB
h ◦ ΦG

h)n(Y0)− (ΦB
h ◦ ϕGh)n(Y0)‖

≤ ‖(ΦB
h ◦ ΦG

h)n(Y0)− (ΦB
h ◦ ϕGh)n−1(Y1)‖

+ ‖(ΦB
h ◦ ΦG

h)n−1(Y1)− (ΦB
h ◦ ϕGh)n−2(Y2)‖

...

+ ‖(ΦB
h ◦ ΦG

h)(Yn−1)− (ΦB
h ◦ ϕGh)n(Y0)‖

=
n−1∑

k=0

‖(ΦB
h ◦ ΦG

h)n−k(Yk)− (ΦB
h ◦ ϕGh)n−(k+1)(Yk+1)‖

≤ (b1ε+ b2h)h

n−1∑

k=0

e(L+ω)h(n−(k+1))

= (b1ε+ b2h)h

n−1∑

k=0

e(L+ω)hk

= (b1ε+ b2h)h
e(L+ω)nh − 1

e(L+ω)h − 1

≤ (b1ε+ b2h)h
e(L+ω)nh − 1

(L+ ω)h

= (4 + 3eL(T−t0))e(T−t0)ω
e(L+ω)(T−t0) − 1

(L+ ω)
ε

+ (9BL+ eL(T−t0)4BL)e(T−t0)ω
e(L+ω)(T−t0) − 1

(L+ ω)
h,

which by defining

C1 = (4 + 3eL(T−t0))e(T−t0)ω
e(L+ω)(T−t0) − 1

(L+ ω)

and C2 = (9BL+ eL(T−t0)4BL)e(T−t0)ω
e(L+ω)(T−t0) − 1

(L+ ω)

yields the stated global bound.

Now, the given problem (3.1) starts with a full-rank initial matrix A0, but the proposed
low-rank Lie–Trotter integrator takes a rank r approximation Y0 to A0 as initial value.
Therefore, we have to propagate the initial distance ‖A0−Y0‖ ≤ δ, see condition (4) of

87

3.3. Discussion about the low-rank Strang splitting

our main assumption. This yields the error term Enδ , which we need in order to complete
the list of errors that contribute to the global error of the low-rank Lie–Trotter splitting.

Proof of Theorem 3.2. It is sufficient to give a bound for the propagated initial error
‖A0−Y0‖, since bounds for the other contributing terms are given in Proposition 3.3
and Proposition 3.4.

In the proof of Proposition 3.4, we have seen in (3.25) that the solution operator
(ΦB

h ◦ ΦG
h) is stable. Therefore, by Grönwall’s inequality we find the propagated initial

error at final time T = t0 + nh, i.e.,

‖(ΦB
h ◦ ΦG

h

)n
(A0)−

(
ΦB
h ◦ ΦG

h

)n
(Y0)‖ ≤ e(L+ω)(T−t0)‖A0−Y0‖.

Finally, defining

c0 = e(L+ω)(T−t0)

and collecting the error of the full-rank Lie–Trotter splitting shown in Proposition 3.3,
the bound of the low-rank Lie–Trotter splitting proven in Proposition 3.4 and the above
propagated initial distance, the global error of the low-rank Lie–Trotter splitting integrator
is bounded by

‖A(t0 + nh)−Yn‖ ≤ c0δ + c1ε+ c2(1 + |log(h)|),

where c1 = C1 from Proposition 3.4 and c2 contains the constants C2 from the same
proposition as well as the constant C3 from Proposition 3.3.

We point out that in contrast to standard numerical integrators, the low-rank Lie–
Trotter splitting integrator is not sensitive to the presence of small singular values. It is
constructed in a way, such that it both does not suffer from possibly appearing singular
values, and is completely independent of them, whether they are small or large. The low-
rank solution of the linear problem (3.6) is computed directly by an exponential integrator,
where small singular values do not cause difficulties. Further, they can also occur in
the approximation matrix of the nonlinear subproblem. But since we are applying the
projector-splitting integrator, which in Section 2.3 is proven to be robust with respect to
small singular values, our integration method inherits this favorable property.

3.3 Discussion about the low-rank Strang splitting

The low-rank Lie–Trotter splitting integrator is a first order method. If we want to increase
the order of the method, we follow the Strang splitting scheme, see [Str68], which has
classical order two in the non-stiff case. There, we split the given differential equation
(3.1) in the same way as described in Section 3.1.1 into the subproblems (3.2) and (3.3),
respectively. The approximate solution to A(t) is then given by

A(t) ≈
(

ΦB
h/2 ◦ ΦG

h ◦ ΦB
h/2

)
(A0).

88

3. A low-rank splitting integrator for stiff matrix differential equations

We call this integration method the full-rank Strang splitting. In order to determine a low-
rank solution to the given differential equation (3.1), we then follow the strategy described
in Section 3.1.2, where we bring the splitted subproblems by orthogonal projection onto the
tangent space of the low-rank manifold and obtain the differential equations for Y1(t) and
Y2(t) given in (3.5) and (3.6), respectively. The differential equation for the stiff and linear
part is solved directly, since the right-hand side already defines a vector field. The ODE for
the projected nonlinearity G, instead, is solved by the projector-splitting integrator given
in Section 2.1, where we denoted the flow by ϕGh . Now, solving the low-rank differential
equations by applying the Strang splitting scheme we obtain the approximate solution

Y(t) ≈
(

ΦB
h/2 ◦ ϕGh ◦ ΦB

h/2

)
(Y0).

In order to give error bounds of the low-rank Strang splitting scheme, we follow the strategy
of proving Theorem 3.2 by bounding the error of the full-rank Strang scheme and its
difference to the low-rank Strang splitting method. Imposing the same assumptions for
the second order case, the error estimate of the full-rank Strang splitting conforms to the
first order splitting integrator, see Proposition 3.3. On the other hand, comparing the
full-rank Strang splitting with its low-rank variant, we can simplify the error analysis by
employing Assumption 3.1(1) and find the local bound

∥∥∥
(

ΦB
h/2 ◦ ΦG

h ◦ ΦB
h/2

)
(Yk−1)−

(
ΦB
h/2 ◦ ϕGh ◦ ΦB

h/2

)
(Yk−1)

∥∥∥

=
∥∥∥
(

ΦB
h/2 ◦

(
ΦG
h − ϕGh

)
◦ ΦB

h/2

)
(Yk−1)

∥∥∥

≤ e(h/2)ω‖(ΦG
h − ϕGh)(Yk−1)‖.

We observe that this is of the same form as the estimate in (3.22) within the proof of Lemma
3.5 and hence we have to analyze the error of the projector-splitting integrator. Since we
require the same assumptions, the analysis of this local bound is performed analogously as
in Lemma 3.5, i.e., in fact we have to bound the error of the projector-splitting integrator.
Now, the analysis of the Strang splitting integrator in [KLW16] as mentioned in Theorem
2.4 in Section 2.3, only shows that the Strang splitting is also of order one in the presence
of small singular values. Therefore, collecting the orders of the full-rank Strang and the
low-rank Strang splitting for our problem yields a total error of order one in time.

3.4 Differential Lyapunov equation

As a special case of the class of stiff matrix differential equations given in (3.1), we consider
differential Lyapunov equations (DLEs). For DLEs, the term G(t,A(t)) in (3.1) is solution
independent. We denote the resulting time-dependent matrix as Q(t). This gives us the
DLE

.
A(t) = B A(t) + A(t) B>+ Q(t), A(t0) = A0, (3.26)

89

3.4. Differential Lyapunov equation

where B,Q(t) ∈ Rn1×n1 and A(t) ∈ Rn1×n1 solves (3.26). Its exact solution can be
determined by the variation-of-constans formula and is given by

A(t) = e(t−t0)B A(t0)e
(t−t0)B> +

∫ t

t0

e(t−s)B Q(s)e(t−s)B
>

ds.

In order to find a low-rank approximation Y(t) ∈M for the solution A(t) of the DLE, we
follow the procedure described in Section 3.1. First, we split the DLE into the following
two subproblems,

.
A1(t) = B A1(t) + A1(t) B>, A1(t0) = A0

1,.
A2(t) = Q(t), A2(t0) = A0

2, (3.27)

which, after applying the full-rank Lie–Trotter splitting integrator presented in Section
3.1.1, results in the approximate solution

A(t) ≈ (ΦB
h ◦ ΦQ

h)(A0),

where we have chosen A0 = A0
2 for the initial value and denoted the solution operator of

the second subproblem (3.27) as ΦQ
h . Then, as described in Section 3.1.2, we follow the

dynamical low-rank approach and project the two arising subproblems orthogonally onto
the tangent space, which yields

.
Y1(t) = B Y1(t) + Y1(t) B>, Y1(t0) = Y0

1,.
Y2(t) = P(Y2(t)) Q(t), Y2(t0) = Y0

2 . (3.28)

We continue along the low-rank Lie–Trotter splitting integrator and solve the second sub-
problem by the projector-splitting integrator, where we denote the solution operator as
ϕQ
h . This results in a low-rank approximation

Y(t) ≈ (ΦB
h ◦ ϕQ

h)(Y0),

where Y0 is a rank r approximation to A0. The analysis of the global error of this scheme
for the DLE goes along the proofs performed in Section 3.2, if the DLE satisfies Assumption
3.1. Hence, in order to give error bounds for the above proposed procedure for DLEs, we
simply verify that the DLE fulfills each condition of this assumption.

(1) In the framework of DLEs, the matrix B ∈ Rn1×n1 comes from a spatial discretization
of a superordinate parabolic partial differential equation and generates a strongly
continuous semigroup. Now, by [EN99, Proposition 5.5] we conclude that the matrix
B fulfills the exponential boundedness as well as the parabolic smoothing property
in this assumption.

(2) Since the matrix Q(t) is independent of the exact solution A(t), the derivative with
respect to the solution always exists and is continuous. Therefore Q(t) is continuously
differentiable. This implies that Q(t) is bounded by B and Lipschitz continuous with
Lipschitz constant L = 0.

90

3. A low-rank splitting integrator for stiff matrix differential equations

(3) According to Assumption 3.1(3), we assume that Q(t) is in the tangent space TY2M
up to a small perturbation. To make sure that Q(t) complies with this assumption,
we rewrite

Q(t) = Q(t)− P(Y2) Q(t) + P(Y2) Q(t),

where we identify

P(Y2) Q(t) =: M(t,Y2) ∈ TY2M and Q(t)− P(Y2) Q(t) =: R(t,Y2),

with

‖R(t,Y2)‖ = ‖(I− P(Y2)) Q(t)‖
≤ ‖I− P(Y2)‖‖Q(t)‖
≤ sup

t∈[t0,T]
‖Q(t)‖

≤ ε,

i.e., ε depends on the norm of Q(t). After this adaption, we can write Q(t) =

M(t,Y2) + R(t,Y2), where Q(t) artificially depends on the approximate solution
Y2.

(4) The condition about the initial value cannot be approved here, but we simply assume
that the initial value A0 of the DLE and the rank r initial value Y0 are δ-close. In
practice, this is assured by performing a truncated SVD of the initial matrix A0,
which results in a best-approximation that we take for Y0, see the result of Eckart
and Young in [EY36].

Hence, the DLE as a special case of a stiff differential equation of type (3.1) fulfills the
conditions of Assumption 3.1 and therefore the general framework for an error analysis
proposed in Section 3.2 is suitable for the analysis of the corresponding low-rank Lie–
Trotter integrator for the DLE. Thus, we can simply adapt the error analysis given in
Section 3.2.

With regard to the full-rank Lie–Trotter splitting error, we observe that splitting the
DLE (3.26) into two subproblems is not affected by the modification G(t,Y2(t)) = Q(t).
Hence, the structure of the global error bound for Ensp = A(tn) − (ΦB

h ◦ ΦG
h)(A0) is the

same as in Proposition 3.3. What differs are the appearing constants, since the Lipschitz
constant vanishes in our situation. This results in

‖Ensp‖ = ‖A(t0 + nh)− (ΦB
h ◦ ΦG

h)n(A0)‖ ≤ C(ω,B, T)h(1 + |log(h)|),

where the constant is independent of L.
Furthermore, for the distance between the full-rank Lie–Trotter splitting and its low-

rank variant, the modification of the right-hand side of the second subproblem being in-
dependent of the solution has an impact on the given problem itself, though the error

91

3.5. Differential Riccati equation

analysis as in Proposition 3.4 keeps its procedure. Therefore, taking into account that in
the situation of the DLE, the Lipschitz constant is L = 0, the bound Enlr is reduced to

‖Enlr‖ = ‖(ΦB
h ◦ ΦG

h)n(Y0)− (ΦB
h ◦ ϕGh)n(Y0)‖ ≤ C1ε,

with

C1 = 7e(T−t0)ω
e(T−t0)ω − 1

ω
.

Note that this bound is independent of the time step size h, since the constant C2 from
Proposition 3.4 vanishes.

Finally, the error of the propagated initial distance ‖A0−Y0‖ does not depend on L,
but keeps its form, i.e. we find

‖Enδ ‖ = ‖(ΦB
h ◦ ΦG

h)n(A0)− (ΦB
h ◦ ΦG

h)n(Y0)‖ ≤ c0δ,

where

c0 = eω(T−t0).

3.5 Differential Riccati equation

Classical representatives of stiff matrix differential equations of type (3.1) are Differential
Riccati Equations (DREs), which exhibit the same form of stiffness, but have a specific
nonlinearity. They are of the form

.
A(t) = B A(t) + A(t) B>+ Q(t)−A(t)N A(t), A(t0) = A0, (3.29)

where B,Q(t),N,A(t) ∈ Rn1×n1 and the nonlinear term is quadratic. The exact solution
of the DRE (3.29) is given by

A(t) = e(t−t0)B A(t0)e
(t−t0)B> +

∫ t

t0

e(t−s)B(Q(s)−A(s)N A(s))e(t−s)B
>

ds.

We follow the procedure of the integrator presented in Section 3.1, where we first split the
DRE into a stiff linear part and a non-stiff nonlinear differential equation. Afterwards, we
follow the approach of dynamical low-rank approximation, which results in the differential
equations

.
Y1(t) = B Y1(t) + Y1(t) B>, Y1(t0) = Y0

1,.
Y2(t) = P(Y2(t)) (Q(t)−Y2(t)N Y2(t)) , Y2(t0) = Y0

2 .

We continue following the procedure of the presented integrator: we apply the projector-
splitting integrator to obtain a low-rank approximation to Y2(t) and solve the first sub-
problem directly.

The error analysis of the global error of the low-rank Lie–Trotter splitting integrator
in the situation of the DRE requires a review of Assumption 3.1, which will be done in the
following:

92

3. A low-rank splitting integrator for stiff matrix differential equations

(1) In the framework of the DRE, the matrix B ∈ Rn1×n1 comes from a spatial dis-
cretization of a superordinate parabolic partial differential equation and generates a
strongly continuous semigroup, see, e.g., [EN99]. Therefore, B fulfills the required
bounds in condition (1).

(2) Since the matrix Q(t) is independent of the exact solution A(t), we require the
nonlinear part A(t)N A(t) to be continuously differentiable, such that in total the full
right-hand side Q(t)−A(t)N A(t) is continuously differentiable in the neighborhood
of the exact solution A(t). Therefore, the derivative with respect to the solution
exists and is continuous. Hence, Q(t)−A(t)N A(t) is bounded by B and Lipschitz
continuous with Lipschitz constant L > 0.

(3) The nonlinear term within the DRE is supposed to be in the tangent space up to a
small remainder. To adapt the quadratic term to this condition, we identify

M(t,Y2) = P(Y2) Q(t)−Y2 N Y2, and R(t,Y2) = Q(t)− P(Y2) Q(t),

with ‖R(t,Y2)‖ ≤ ε, such that we rewrite

Q(t)−Y2(t)N Y2(t) = M(t,Y2) +R(t,Y2).

Here, the remainder R(t,Y2) is in the complement of TY2M. Recognizing that
M(t,Y2) as identified above is in the tangent space TY2M requires more care. Recall
that the term M(t,Y2) is the sum of two elements of the tangent space. Now,
P(Y)Q(t) is an element of the tangent space because of the orthogonal projection
onto it. For Y2(t)N Y2(t) we make use of the explicit form of the splitted projection
within the projector-splitting integrator. Since Y2(t) ∈ M, we can factorize this
matrix into Y2 = U S V> and then observe that

P(Y2(t))(Y2 N Y2) = U U>(U S V>N Y2)−U U>(U S V>N U S V>) V V>

+ (Y2 N U S V>) V V>

= U S V>N Y2−U S V>N U S V>+ Y2 N U S V>

= Y2 N Y2,

where we have used the fact that U and V have orthonormal columns. Since TY2M
is a vector space we conclude that M(t,Y2) ∈ TY2M.

(4) Instead of verifying the condition about the δ-distance of the initial value A0 and
the starting value Y0, we assume that this condition holds true. This is a reason-
able assumption due to the available SVD of A0, which results in a rank r best
approximation Y0.

Since the DRE fulfills each condition of Assumption 3.1, we conclude that the global error
of the low-rank Lie–Trotter splitting integrator when applied onto (3.29) is the same as
stated in Theorem 3.2.

93

3.6. Numerical examples

We have splitted the DRE into a linear and a nonlinear part. There exist other splitting
methods that separate the DRE into a DLE plus the nonlinear term. A convergence analy-
sis for such a splitting method in the setting of Hilbert–Schmidt operators was proposed in
[HS14]. Though it is not proven, it is expected that the way of splitting as in [HS14] would
also suit the dynamical low-rank approximation of the DRE, since one subproblem would
simply correspond to the DLE, where the dynamical low-rank approximation is described
in Section 3.4. The second subproblem would consist of the nonlinearity of the DRE and
this will be dealt by the dynamical low-rank approach as described in Section 3.1 for the
nonlinear term. However, we do not amplify this way of splitting, since it requires more
computational effort due to the nested DLE within the first subproblem, which then in
turn has to be solved by the proposed method and cannot be solved directly (as is the case
for the linear part, see Section 3.1.1).

Moreover, a low-rank second-order splitting method is proposed in [Sti15] in the large-
scale case and under the additional assumption that the matrices N and Q(t) are both,
symmetric and positive definite for all t0 ≤ t ≤ T .

3.6 Numerical examples

We now turn to numerical experiments that corroborate the favorable behavior of the low-
rank Lie–Trotter splitting method proposed in Section 3.1 when computing low-rank ap-
proximations of semilinear stiff differential equations. The numerical examples we present
here are taken from [OPW18].

We have seen in the error analysis of the Lie–Trotter splitting method that the error
bounds do not depend on singular values. The first numerical example demonstrates the
robustness of the method with respect to that. Also, it shows first order convergence of the
method when applied to a stiff matrix differential equation without step size restriction
due to the Lipschitz constant of the stiff right-hand side.

The aim of the second numerical experiment is to illustrate the performance of the
low-rank Lie–Trotter splitting proposed in Section 3.1 and to show consistency with the
convergence result of Theorem 3.2. There, the underlying differential equation is a DRE.

3.6.1 A reaction-diffusion equation

The main advantage of the integration method we propose is its insensitivity against stiff-
ness. We illustrate this favorable behavior with the help of an example.

Consider the following two-dimensional partial differential equation

∂tu = α∆u+ u3, u(0, x, y) = 16x(1− x)y(1− y),

where α = 1/50. We solve this problem on the spatial domain Ω to be the unit square,
subject to homogeneous Dirichlet boundary conditions, for times 0 ≤ t ≤ T . Using second
order finite differences, we discretize this partial differential equation in space with m inner
points in each direction and denote the grid size by h, which is h = 1

m+1 . The inner grid

94

3. A low-rank splitting integrator for stiff matrix differential equations

points in x and y direction are denoted by

xi = ih and yj = jh for 1 ≤ i, j ≤ m,

respectively. Denoting the one-dimensional stencil matrix in x direction by B, this results
in the matrix differential equation

.
A(t) = αB[A(t)] + A(t)3, A(t0) = A0,

where B[A(t)] = B A(t) + A(t) B> and A(t) ∈ Rm×m. This stiff differential equation is
of the form we have studied in Section 3.1, where the stiff spatial discretization B[A(t)] of
the elliptic operator within the PDE is induced by the matrix B. The matrix Aij(t) is the
sought after approximation of u(t, xi, yj), 1 ≤ i, j ≤ m. The nonlinearity is realized by an
entrywise product.

In our numerical experiment we choose m = 500. The reference solution is computed
with DOPRI5, a Runge–Kutta method of order 5 with adaptive step size strategy and with
high precision, see [HNW93, II.5]. The first 30 singular values of the reference solution at
final time T = 0.5 are decaying exponentially. Figure 3.2 shows that the effective rank is
about r = 10 and the remaining singular values are negligible small:

0 5 10 15 20 25 30

S
in

gu
la

r
va

lu
es

10-15

10-10

10-5

100

105

Figure 3.2: Singular values of the reference solution, which is computed with DOPRI5.

In the situation of small singular values, we compute the low-rank approximation matrix
Y for different time steps and different approximation ranks. The error of the low-rank
Lie–Trotter splitting integrator compared to the reference solution is given in Figure 3.3,
where we measure the error in the Frobenius norm.

95

3.6. Numerical examples

Step size
10-6 10-5 10-4 10-3 10-2 10-1

R
el

at
iv

e
er

ro
rs

10-6

10-5

10-4

10-3

10-2

10-1

rank 1
rank 2
rank 3
rank 4
rank 5
slope 1

Figure 3.3: Error of our proposed first-order splitting method as a function of the step size
and the approximation rank.

We observe an explicit dependence of the error on the rank and on the step size. If
the approximation rank is chosen sufficiently large (rank 4 and 5) we solely observe the
first-order error due to the splitting into the linear and the nonlinear subproblem. On the
other hand, a bad choice of the approximation rank (rank 1, 2 and 3) leads to a stagnation
of the error, independently on the refinement of the time step size, such that we can not
verify first order convergence of the proposed method. Here, the difference Enlr between
the full-rank Lie–Trotter and the low-rank Lie–Trotter is dominant. If this difference Enlr
becomes small enough, we observe that the full-rank Lie–Trotter splitting, i.e., the outer
Lie–Trotter splitting, is convergent of order one in time.

Further, the Lipschitz constant L of the right-hand side of the matrix differential equa-
tion for A(t) is proportional to αw−2, where w is the mesh width of the spatial discretiza-
tion. For our choice of parameters we have L ≈ 5 · 10+3. We observe that our integrator
gives good results not only for small, but also for large time step sizes.

3.6.2 A differential Riccati equation

We study a DRE arising in optimal control for linear quadratic regulator problems. In order
to take an interesting application into account, we use the numerical example presented in
[HS14]. Thus we consider the linear control system

.
x = Bx+ v, x(0) = x0,

where B ∈ Rm×m is the system matrix, x ∈ Rm the state variable and v ∈ Rm the control.
The functional J that has to be minimized is given by

J (v, x) =
1

2

∫ T

0

(
x(t)>C>Cx(t) + v(t)>v(t)

)
dt,

96

3. A low-rank splitting integrator for stiff matrix differential equations

where C ∈ Rq×m. Further, the optimal control is given in feedback form by vopt(t) =

−A(t)x(t), where A(t) is the solution of the following DRE
.
A(t) = B>A(t) + A(t) B + C>C−A(t)2, (3.30)

which is of the form (3.29) with Q = C>C and N = In1 being the identity matrix.
The matrix B arises from the spatial discretization of the diffusion operator

D = ∂x (α(x)∂x(·))− λ I,

defined on the spatial domain Ω = (0, 1) subject to homogeneous Dirichlet boundary
conditions. We choose α(x) = 2 + cos(2πx) and λ = 1. The finite difference discretization
of the operator D satisfies Assumption 3.1(1). Now, let q be an odd, positive number. The
matrix C ∈ Rq×m is defined by q independent vectors {1, g1, . . . , g(q−1)/2, f1, . . . , f(q−1)/2},
where

gk(x) =
√

2 cos(2πkx) and fk(x) =
√

2 sin(2πkx), k = 1, . . . , (q − 1)/2.

We implement this example by choosing A0 = 0 as initial value, T = 0.1 as final
computation time, m = 200 mesh points and q = 9 independent vectors to build up the
matrix C. We apply the DOPRI5 method, which is a Runge–Kutta method of order 5, in
order to determine a reference solution for the DRE (3.30).

Studying the effective rank of the reference solution in Figure 3.4, we observe that it
changes at the beginning in time, but settles down to around r = 30 shortly after starting
the computation. This is visualized in the left picture of Figure 3.4.

Time
0 0.02 0.04 0.06 0.08 0.1

R
an

k

0

5

10

15

20

25

30

35

0 10 20 30 40 50

Si
ng

ul
ar

 v
al

ue
s

10-20

10-15

10-10

10-5

100

105

Figure 3.4: Singular values of the reference solution. Left: Rank of the reference solution
as a function of time. Right: First 50 singular values of the reference solution at T = 0.1.

Within the same figure, but on the right-hand side, we see that the singular values
decay and starting from the 31st singular value, the remaining ones are of size ≈ 10−15

and are therefore negligible from the numerical perspective. Hence, the first 30 singular
values have to be taken into account. This is consistent with the figure on the left.

We further observe on the right-hand side in Figure 3.4 a gap between the ninth and
the tenth singular value of the reference solution at final time T = 0.1.

The effective rank of the solution stays low during the evolution in time. Nevertheless,
the low-rank Lie–Trotter splitting integrator is not affected by the small singular values.

97

3.6. Numerical examples

This favorable behavior is corroborated in Figure 3.5, which shows the error behavior of
the low-rank Lie–Trotter splitting proposed in Section 3.1.

Step size
10-6 10-5 10-4 10-3 10-2 10-1

R
el

at
iv

e
er

ro
rs

10-4

10-3

10-2

10-1

100

rank 2
rank 4
rank 6
rank 8
rank 10
rank 12
slope 1

Figure 3.5: Errors of the low-rank Lie–Trotter splitting in the Frobenius norm as a function
of step size and rank at T = 0.1 for the considered DRE for m = 200.

We further observe that the error is composed by two different contributions. The
choice of a (too) small approximation rank (rank 2, 4, 6, 8) results in stagnation of the
error, since then the difference between the full-rank splitting solution and the low-rank
splitting solution becomes larger than the error of the full-rank Lie–Trotter splitting and
therefore we do not observe convergence of order one. On the other hand, if this difference
Enlr becomes small enough, we observe that the full-rank Lie–Trotter splitting, i.e., the outer
Lie–Trotter splitting, is convergent of order one in time (rank 10, 12). This is consistent
with the convergence result given in Theorem 3.2.

Studying Figure 3.5, we would expect the curve for rank 10 to adjust to the trend of
behavior of the curves for the other depicted ranks, i.e., that it would lead to an error of
about 10−3 for the time step size 10−5 and then starting from step size about 0.5 · 10−5

adapt to the error performance of the method for rank 12. We do not observe this behavior
here. This can be explained with regard to the gap between the ninth and the tenth singular
value mentioned above and observed on the right-hand side in Figure 3.4. Due to this gap,
the error behavior of the low-rank Lie–Trotter splitting integrator passes directly to the
convergence of order one.

98

4 Time integration of
rank-constrained Tucker tensors

In this chapter, we increase the order of the object that needs to be approximated and
extend the matrix case to tensors A(t) ∈ Rn1×···×nd with t0 ≤ t ≤ T and d ≥ 3. This tensor
is either given explicitly, or it is the unknown solution to a tensor differential equation

.
A(t) = F (t, A(t)), A(t0) = A0, (4.1)

where
.
A(t) = dA/dt. As in the previous chapters, we search a low-rank approximation

to the solution of (4.1), but with the difference that the search space now is given by the
manifold

M = {Y (t) ∈ Rn1×···×nd | rankY (t) = (r1, . . . , rd)}

of tensors of low multilinear rank r := (r1, . . . , rd) ∈ Nd. Following the basic concept of
dynamical low-rank approximation presented in Chapter 1, we evolve a tensor ODE for
the approximation tensor, which is given by

.
Y (t) = P(Y)F (t, Y (t)), Y (t0) = Y 0. (4.2)

For solving this differential equation, we choose the Tucker tensor format as a low-rank
representation of the approximation tensor. We extend the matrix projector-splitting inte-
grator to Tucker tensors by proposing an efficient integrator, based on the idea of an inexact
solution of substeps within the matrix projector-splitting integrator applied to matriciza-
tions of the current (intermediate) approximation tensor in Section 4.2. This derivation
allows us to transfer the error analysis as well as the exactness property of the matrix
integrator to the tensor case, see Section 4.5 and Section 4.4, respectively. Afterwards, in
Section 4.6, we will deal with another integration method for Tucker tensors, which was
presented in [Lub15] and recalled in Section 4.6.1. We will give a new proof of exactness of
this integrator in Section 4.6.3, which is neither published nor submitted elsewhere. Sec-
tions 4.6.4 and 4.6.5 are concerned with the relation between the nested Tucker integrator
and the alternative integration method, where we first discuss what they have in common
and in which sense they differ, and second we prove their mathematical equivalence. At the
end of this chapter, we provide two numerical examples, which illustrate the error behavior
of the newly proposed nested integration method for Tucker tensors.

99

4.1. Tucker tensor format

The main source we draw the material of Sections 4.2 - 4.5 as well as of Section 4.7 from
is [LVW18], which is a published article of the author in collaboration with Ch. Lubich
and B. Vandereycken. Section 4.6 is partly taken from [Lub15] and partly new material,
which is pointed out as such. We begin with introducing the Tucker tensor format and
explain some calculus that is needed for our purposes, as well as how to compute the Tucker
representation for a given tensor in Section 4.1. Here, we lean on the fundamental survey
article [KB09] of T.G. Kolda and B.W. Bader about tensor decompositions, on the original
publication [Tuc66] by L.R. Tucker, where he proposed the tensor format which nowadays
is named after him as well as on the work [DLDMV00a] by L. De Lathauwer, B. De Moor
and J. Vandewalle that introduces the multilinear singular value decomposition and deals
with computational aspects.

4.1 Tucker tensor format

The Tucker tensor decomposition is the format of choice, which we will use as a low-rank
representation of a given tensor A ∈ Rn1×···×nd in the subsequent sections. It factorizes A
into a product of a tensor multiplied by matrices along each mode i, where i = 1, . . . , d.

The main part of this section is recalled from [KB09, Tuc66, DLDMV00a] and occa-
sionally we will follow different publications, which we then name as such.

4.1.1 Modal multiplication of a tensor by a matrix

In order to present the Tucker tensors, we need to introduce a tensor-matrix product.
In case when the tensor is of dimension two, we are back in the matrix-matrix product
explained in Section 1.3.3, which is the inner product of the rows of the first matrix with the
columns of the second. Now, suppose the tensor A ∈ Rn1×···×nd is of order d ≥ 3, then there
are several choices of modes of the tensor that can be multiplied by the rows of the matrix.
Hence, we need to specify the mode of the tensor, in which the multiplication by the matrix
is performed. Here, we follow the survey article [KB09] about tensor decompositions. Given
a tensor G ∈ Rn1×···×nd and a matrix W ∈ Rmi×ni , the i-mode product G×i W is defined
elementwise as

(G×i W)j1···ji−1µiji+1···jd =

ni∑

ji=1

gj1···jdwµiji ,

for all µi = 1, . . . ,mi and ji = 1, . . . , ni. Since the factor matrix operates on the i-th mode
of the tensor, the dimension of the corresponding mode of the resulting tensor-matrix
product has changed: the size then is n1 × · · · × ni−1 ×mi × ni+1 · · · × nd.

100

4. Time integration of rank-constrained Tucker tensors

Figure 4.1: Illustration of the i-mode product of a tensor by a matrix. Here, the number
of branches depict the number of free indices, or rather the dimension of the tensor. Since
a matrix is a two-dimensional object, it has two branches. Now, we can think of multi-
plying a tensor by a matrix in the above sense by sticking the matrix on the tensor in the
corresponding mode.

The i-mode product is invariant under the order of multiplication with respect to the
factor matrices when multiplying in different modes i 6= l, i.e.,

G×i W×lW = (G×i W)×lW = (G×lW)×i W,

for W ∈ Rmi×ni ,W ∈ Rml×nl . Analogously, since the factor matrices operate on the i-th
and l-th mode, respectively, the resulting tensor is of size n1 × · · · × ni−1 ×mi × ni+1 ×
· · · × nl−1 ×ml × nl+1 × · · · × nd. In case we multiply the matrices W and W by a tensor
in the same mode, the order of the multiplication does matter, and computing the product
is only possible if mi = nl, i.e.,

G×i W×iW = G×i (W ·W) ∈ Rn1×···×ni−1×ml×ni+1×···×nd .

The procedure of the i-mode product is easier to understand in terms of its matricized
version. In order to present the matrix form of the i-mode product, we explain how to
convert a tensor into a matrix beforehand.

4.1.2 Transforming a tensor into a matrix

In practice, the i-mode product is not computed elementwise, but makes use of the unfold-
ing of a tensor into a matrix, also known as matricization. There are several ways of how
to transform a tensor into a matrix, which all follow the principle of partitioning the modes
and reordering the entries of the tensor. Let I = {1, . . . , d} be the set of modes and let the
two disjoint subsets R = {ρ1, . . . , ρi} ⊂ I and C = {γ1, . . . , γd−i} ⊂ I be a partition of I,
such that R ∪ C = I. The set R determines the rows and the set C specifies the columns
of the resulting matrix. Unfolding a tensor A of size n1 × · · · × nd yields a matrix of size
nρ1 · · ·nρi ×nγ1 · · ·nγd−i

, where its rows are generated by the indices in R and its columns
are built from the indices in C. We make this general concept more comprehensible on two
special cases.

First, let us consider the two subsets of modes to be given as R = {1, . . . , i} and
C = {i+ 1, . . . , d}. Then, unfolding the tensor A ∈ Rn1×···×nd gives the matrix

Unf i(A) ∈ Rn1···ni×ni+1···nd ,

101

4.1. Tucker tensor format

which we call the i-th unfolding of A. It aligns all entries A(j1, . . . , jd) with fixed j1, . . . , ji
in a row of Unf i(A) and orders rows and columns of Unf i(A) in a colexicographical way.

We think about the i-th unfolding of a tensor as merging the first i indices, which
then determines the rows and concatenating the remaining indices i+ 1, . . . , d to form the
columns of the resulting matrix, see Figure 4.2.

Figure 4.2: Illustration of the i-th unfolding of a tensor into a matrix. The dashed line
depicts the partition of the indices of the tensor.

To clarify this procedure, we consider the following example. Let A ∈ R2×4×2×2. Then,
the 2-nd unfolding of A gives the matrix

(11) (21) (12) (22)






(11) a1111 a1121 a1112 a1122

(21) a2111 a2121 a2112 a2122

(12) a1211 a1221 a1212 a1222

(22) a2211 a2221 a2212 a2222

(13) a1311 a1321 a1312 a1322

(23) a2311 a2321 a2312 a2322

(14) a1411 a1421 a1412 a1422

(24) a2411 a2421 a2412 a2422

= Unf2(A) ∈ R8×4.

This type of unfolding is used in the numerical linear algebra literature for transforming
tensor trains into matrices, see [Ose11], amongst others.

Second, let us consider the special case when R = {ρ1} is a singleton and C =

{γ1, . . . , γd−1}. This partition results in another important unfolding, which we will focus
on throughout this chapter. Here, unfolding the tensor A results in the matrix

Mati(A) ∈ Rni×n1···ni−1ni+1···nd ,

which we denominate as i-mode matricization.
In terms of pictures, we think of the i-mode matricization as fixing the i-th mode of

the tensor and folding the remaining indices together, see the figure below.

102

4. Time integration of rank-constrained Tucker tensors

Figure 4.3: Illustration of the i-mode matricization of a tensor into a matrix. Here, the
dashed arrows depict the folding of all indices 6= i while the i-th index is fixed.

It arranges the entries of A that have the index k = 1, . . . , ni in the i-th mode in the
k-th row of the matrix Mati(A) in a colexicographical order. In the example above, this
means that the 2-mode matricization of A ∈ R2×4×2×2 results in the matrix

(111) (211) (121) (221) (112) (212) (122) (222)







(1) a1111 a2111 a1121 a2121 a1112 a2112 a1122 a2122

(2) a1211 a2211 a1221 a2221 a1212 a2212 a1222 a2222

(3) a1311 a2311 a1321 a2321 a1312 a2312 a1322 a2322

(4) a1411 a2411 a1421 a2421 a1412 a2412 a1422 a2422

= Mat2(A) ∈ R4×8.

We mention that it is also possible to unfold a tensor into a vector. This is the case
when C = ∅ and R = I. Vectorizing the tensor A gives vec(A) ∈ Rn1···nd×1, where again,
the entries of the vector are ordered colexicographically. An illustration of the vectorization
is given in the following figure:

Figure 4.4: Illustration of vectorizing a tensor.

103

4.1. Tucker tensor format

In the example above, vectorizing the tensor A ∈ R2×4×2×2 results in



a1111

a2111

a1211

...
a2422




= vec(A) ∈ R24×1.

Conversely, the tensor A can be reconstructed from its i-th unfolding, from its i-mode
matricization and from its vectorization by simply rearranging the entries of the ma-
trix/vector in the reverse way it was matricized/vectorized in the resulting tensor. Though
we have introduced different denominations for the transformation into a matrix or a vec-
tor, we will use the same notation for tensorization, as it is automatically specified by the
unfolding, matricization or vectorization. We write

A = Teni(Unf i(A)), A = Teni(Mati(A)) and A = Teni(vec(A)),

respectively. In Figures 4.2, 4.3 and 4.4 the tensorization is depicted by the gray arrow.
In the literature, the ordering of the columns of the matricized tensor is inconsistent.

However, this is not a difficulty within computations with matricized tensors, since once
the choice of how to organize the columns of the resulting matrix is made, it simply has
to be consistent during every computational step.

Since matricizing a tensor A into a matrix means reorganizing its elements, we can
determine the norm of the tensor A by computing the norm of its matricization Mati(A).
Now, decomposing Mati(A) = Wi Σi W̃

>
i with orthonormal matrices Wi,W̃i, the Frobe-

nius norm of A is determined by

‖A‖2 = ‖Mati(A)‖2 = ‖Σi‖2, for all i = 1, . . . , d. (4.3)

4.1.3 Tucker decomposition and its computation

With the i-mode tensor-matrix product and the concept of i-mode matricization at hand,
we are now in the situation to present the Tucker decomposition and its matrix version.

Given a tensor A ∈ Rn1×···×nd , the Tucker decomposition factorizes A into a core tensor
G ∈ Rn1×···×nd and factor matrices Wi ∈ Rni×ni , with i = 1, . . . , d, such that each entry
is determined by

ak1,...,kd =

n1∑

j1=1

· · ·
nd∑

jd=1

gj1,...,jdwk1,j1 · · ·wkd,jd .

With ×i denoting a multilinear product of the core tensor by the matrices Wi along the
i-th mode as introduced in Section 4.1.1, the shortform of the Tucker decomposition is
given by

A = G×1 W1×2 · · · ×d Wd = G
d

X
i=1

Wi, (4.4)

104

4. Time integration of rank-constrained Tucker tensors

where Xdi=1 comprises the multilinear tensor-matrix product. Often, it is useful to work
with matrices instead of tensors. To this end, we transform a Tucker tensor into a matrix.
A matrix representation of size Rni×n1···ni−1ni+1···nd can be obtained by matricizing the core
tensor in the i-th mode and multiplying it with the factor matrices by using the Kronecker
product, such that

Mati(A) = Wi Mati(G)
(
W>

1 ⊗ · · · ⊗W>
i−1⊗W>

i+1⊗ · · · ⊗W>
d

)
(4.5)

= Wi Mati(G)
d⊗

k=1
k 6=i

W>
k , (4.6)

where
⊗d

k=1 denotes the Kronecker products in each mode. Note that Tucker [Tuc66]
did not require any specific properties for the core tensor G and neither for the factor
matrices Wi, such as diagonality or orthonormality within the decomposition he presented.
However, he gave an instruction of how to compute an exact Tucker decomposition (4.4) in
the case when the factor matrices have orthonormal columns, see [Tuc66, Method 1], but
did not specify how to compute the factor matrices exactly. De Lathauwer, De Moor and
Vandewalle enhanced Tucker’s method by making use of the SVD as a tool to decompose
a matrix into a product of orthonormal factors, more precisely see Section 1.1. They
call the method higher order singular value decomposition (HOSVD) [DLDMV00a], whose
computation is given in Algorithm 4.

Algorithm 4: Tucker decomposition, Method 1/HOSVD
Data: Tensor A ∈ Rn1×···×nd

Result: Tucker tensor G×1 W1×2 · · · ×d Wd ∈ Rn1×···×nd

1 begin
2 for i = 1 to d do

3 compute singular value decomposition Mati(A) = Wi Σi W̃
>
i

4 set G = A×1 W>
1 ×2 · · · ×d W>

d

5 return G
6 return W1, . . . ,Wd

The HOSVD of a d-th order tensor requires the SVD for determining the orthonormal
factor matrices Wi for each mode i = 1, . . . , d, and so it boils down to d matrix SVDs. For
matrices, we know from Section 1.1 that a SVD exists. Therefore, we can always compute
a SVD of each matricization of A and therefore, Algorithm 4 is a constructive proof of
the existence of the Tucker decomposition. This result was proven in an analytical way
in [DLDMV00a, Theorem 2], where it was shown that every tensor A ∈ Rn1×···×nd can be
represented in the Tucker format (4.4), where the factor matrices Wi are orthogonal ni×ni
matrices and the core tensor G, which is of size n1× · · · ×nd, can be determined as in line
4 in Algorithm 4. From now on, we make the convention that the factor matrices Wi are
orthonormal for all i = 1, . . . , d, although this is not required by the Tucker decomposition
(4.4).

105

4.1. Tucker tensor format

Not only the description of the algorithm, but also comparing the restated [DLDMV00a,
Theorem 2] for the HOSVD with the corresponding result regarding the SVD, shows a
clear analogy between the higher-dimensional and the two-dimensional case. The crucial
difference is the all-orthogonality of the core tensor G, which means that fixing the i-th
index and going through the resulting (d− 1)-th order subtensors Gia for all a = 1, . . . , ni,
it holds that

〈Gia , Gib〉 = 0, for a 6= b, and for all i = 1, . . . , d.

In case when A is a second order tensor, we can write the SVD of that matrix in terms
of the i-mode product as

A = W Σ W̃
>

= Σ×1 W×2W̃,

where Σ = G, W = W1 and W̃ = W2 regarding the notation above. Here, the matrix Σ

is diagonal, which is not required for d ≥ 3. However, the matrix case is included in the
tensor case regarding the property of being all-orthogonal, since the scalar product of two
order-1 subtensors of the diagonal matrix Σ is zero.

Further, with the i-mode matricized decomposition (4.5) of the tensor A at hand, we
can specify the norm of A given in (4.3). Since each factor matrix Wi is orthonormal, the
Frobenius norm of A = G×1 W1×2 · · · ×d Wd ∈ Rn1×···×nd is

‖A‖2 = ‖Mati(A)‖2 =
∥∥∥Wi ·Mati(G) ·

⊗

k 6=i
W>

k

∥∥∥
2

= ‖Mati(G)‖2 =

ni∑

ji=1

(
σ
(i)
ji

)2
, (4.7)

where σ(i)ji are the singular values of the matricized core Mati(G). Hence, the Frobenius
norm for a tensor in the Tucker format is related to the Frobenius norm of a matrix with
respect to the singular values.

Addressing ourselves back to the task of approximating an explicitly or implicitly given
tensor of size n1 × · · · × nd in order to make computations with higher order tensors
feasible, we observe that the Tucker decomposition as presented in (4.4) is not beneficial
in this regard. To the contrary, assuming that N = max{n1, . . . , nd}, storing the given
tensor would require saving about Nd entries and storing this tensor in the Tucker format
requires the storage of Nd + dN2 entries. This is due to the fact that the core tensor is
of the same size as the given tensor and the factor matrices are of size ni × ni. Another
difficulty is the rank of the tensor in (4.4). We are seeking a low-rank approximation to
the given tensor, which is supposed to be of multilinear low rank (r1, . . . , rd), but the rank
of the Tucker decomposition (4.4) is not guaranteed to be low.

In view of line 3 in Algorithm 4, where the matrix SVD is involved, we overcome these
difficulties by pursuing the idea of low-rank approximation for matrices, where the non-zero
entries of the diagonal matrices Σi are limited to the desired rank ri size by leaving the first
ri entries and setting the remaining ones to zero, such that Σi keeps its size. So in order
to obtain a low multilinear rank (r1, . . . , rd) approximation to A, we restrict the non-zero
entries of the core tensor G to the first ri elements, for all i = 1, . . . , d and fill it up with
zeros, such that the restricted core Ĝ remains of size n1×· · ·×nd. The orthonormal factor

106

4. Time integration of rank-constrained Tucker tensors

matrices Wi are not modified. This method is known as compact or truncated HOSVD
(THOSVD) and it results in an approximation tensor

Â = Ĝ×1 W1×2 · · · ×d Wd ≈ A. (4.8)

We recall that discarding the smallest singular values within the matrix case yields a
best rank r approximation to the considered matrix in terms of the low rank constraint,
see the theorem of Eckart and Young mentioned in Section 1.1.

Unlike for the second order case, discarding the last (ni − ri) singular values of the
core for each mode i = 1, . . . , d, does not result in the best approximation to A, see
[DLDMV00a, Property 10].

However, the THOSVD (4.8) may lead to a good rank (r1, . . . , rd) approximation, since
for a fixed mode i we have

‖A− Â‖2 =
∥∥∥G

d

X
i=1

Wi−Ĝ
d

X
i=1

Wi

∥∥∥
2

= ‖G− Ĝ‖2

=

n1∑

i1=1

· · ·
nd∑

id=1

(gi1...id − ĝi1...id)2

=

n1∑

i1=1

· · ·
nd∑

id=1

g2i1...id −
r1∑

i1=1

· · ·
rd∑

id=1

g2i1...id

≤
n1∑

i1=r1+1

n2∑

i2=1

· · ·
nd∑

id=1

g2i1...id +

n1∑

i1=1

n2∑

i2=r2+1

n3∑

i3=1

· · ·
nd∑

id=1

g2i1...id + · · ·

+

n1∑

i1=1

· · ·
nd−1∑

id−1=1

nd∑

id=rd+1

g2i1...id

= ‖G−Gr1‖2 + ‖G−Gr2‖2 + · · ·+ ‖G−Grd‖2

=

n1∑

j1=r1+1

(
σ
(1)
j1

)2
+ · · ·+

nd∑

jd=rd+1

(
σ
(d)
jd

)2
,

whereGri ∈ Rn1×···×nd is a subtensor ofG of multilinear rank (n1, . . . , ni−1, ri, ni+1, . . . , nd),
which is obtained by truncating G in the i-th mode, i.e. by keeping the first ri singular
values and setting the remaining elements to zero. Here, we have used the fact that the
entries ĝi1...id are either zero, or, since Gri is built from G, they are equal to the ones with
the same indices in G. In the last equality, we used the Frobenius norm given in (4.7).
Further, we can pull together the above error estimate for the THOSVD with the best
multilinear low-rank approximation. Let G∗ be the best rank (r1, . . . , rd) approximation
to G. From the matrix case we know that the truncated SVD yields the best low-rank
approximation of Mati(G) with rank ri in the i-th mode. Hence, retensorizing yields

‖G−Gri‖2 ≤ ‖G−G∗‖2.

Now, let A∗ be the best approximation to A with core G∗. Since the above inequality
holds for each mode i = 1, . . . , d and since the factor matrices Wi are orthonormal for

107

4.1. Tucker tensor format

each mode i = 1, . . . , d, we conclude that

‖A− Â‖ ≤
√
‖G−Gr1‖2 + · · ·+ ‖G−Grd‖2

≤
√
‖G−G∗‖2 + · · ·+ ‖G−G∗‖2

=
√
d · ‖G−G∗‖

=
√
d · ‖A−A∗‖.

Therefore, the THOSVD may not result in the best rank (r1, . . . , rd) approximation, but
it still gives a quasi optimal approximation tensor of low multilinear rank.

Substituting the appropriate elements in the core tensor with zero keeps the size of
the core tensor and so it does not provide an advantage about the computational cost.
Now, since the multilinear product of Ĝ with the factor matrices results in zero-entries
in those matrices, we do not lose information when decreasing the size of Ĝ simply by
dropping the zero-entries to become a tensor C ∈ Rr1×···×rd of full rank and restricting
the factor matrices Wi to matrices Ui ∈ Rni×ri by truncating the last (ni − ri) columns
for all i = 1, . . . , d. This basic idea leads us to an approximation tensor Y to A, which is
elementwise given as

yk1,...,kd =

r1∑

j1=1

· · ·
rd∑

jd=1

cj1,...,jduk1,j1 · · ·ukd,jd ,

or in shortform

Y = C ×1 U1×2 · · · ×d Ud, (4.9)

or in matricized form

Mati(Y) = Ui ·Mati(C) ·
(
U>1 ⊗ · · · ⊗U>i−1⊗U>i+1⊗ · · · ⊗U>d

)
, (4.10)

where Y is of the same size as A, but it is of low multilinear rank (r1, . . . , rd) and the Ui

are orthonormal ni × ri matrices for all i = 1, . . . , d.
We imagine Tucker tensors in the form of (4.9) as depicted in the following figure.

Figure 4.5: Illustration of a d-dimensional Tucker tensor.

108

4. Time integration of rank-constrained Tucker tensors

Here, the midpoint represents the core tensor of size r1 × · · · × rd and the outer points
stand for the factor matrices Ui ∈ Rni×ri with free indices n1, . . . , nd. Now, the i-mode
multiplication can be thought of as sticking the factor matrices to the core tensor, which
is illustrated by the lines linking the core with each factor matrix.

Suppose R = max{r1, . . . , rd}. Then, storing the approximate tensor Y by storing the
factors of its Tucker representation requires saving Rd entries of the core tensor C and
d · (NR) entries of the factor matrices Ui. In total, we can reduce the requirement of
storage substantially, when assuming that ri � ni for all i = 1, . . . , d.

In fact, representation (4.9) is a truncated orthogonal Tucker decomposition, but in-
stead of adding the descriptive terms “truncated” and “orthogonal”, we will keep the notion
Tucker decomposition for (4.9) for ease of notation. So from now on, we will think of this
as the low-rank representation of the approximation tensor Y .

From the computational point of view, we can obtain the Tucker format (4.9), e.g.
by Algorithm 5, which we call the economic THOSVD (eTHOSVD). This procedure is a
straightforward extension of Algorithm 4 to the low-rank case. Since the HOSVD mainly
consists of d SVDs, the natural extension for the high-dimensional case is to truncate the
appearing matrices within the SVD in each dimension-step:

Algorithm 5: Tucker decomposition, eTHOSVD
Data: Tensor A ∈ Rn1×···×nd , (r1, . . . , rd)

Result: Tucker tensor C ×1 U1×2 · · · ×d Ud ∈ Rn1×···×nd

1 begin
2 for i = 1 to d do

3 compute singular value decomposition Mati(A) = Wi Σi W̃
>
i

4 truncate Wi(:, ri) = Ui

5 set C = A×1 U>1 ×2 · · · ×d U>d
6 return C
7 return U1, . . . ,Ud

Besides the presented classic way of computing an approximation tensor of low multilinear
rank, there are several different approaches. One of them is based on the THOSVD, but
characterized by a sequential truncation strategy (sTHOSVD), see [VVM12]. It sequen-
tially truncates the modes of the core tensor and computes a sequence of approximation
tensors, whose multilinear ranks equal the desired dimension of the approximation space.
A conceptually different method, based on an alternating least squares approach, is called
higher order orthogonal iteration and was presented in [DLDMV00b].

109

4.2. The nested Tucker integrator

4.2 The nested Tucker integrator

Turning to the main part of this chapter, we will consider time-dependent tensors and
tensor differential equations. Since the factor matrices Ui are orthonormal in each mode
i, we will consider them as being orthonormal basis matrices for the corresponding mode,
i.e. Ui(t) is a basis matrix for Rni×ri for all times t0 ≤ t ≤ T .

To find a low-rank approximation for (4.1) in the case of Tucker tensors of general
dimension d, we will now extend the matrix projector-splitting integrator described in
Section 2.1 to tensors. This newly derived integrator is first published in [LVW18], but
here, we will present the integration method in much more detail. To this end, we will
transfer a Tucker tensor into a matrix by considering its matricization Mati(Y) as given in
(4.10). In a nutshell, the new Tucker integrator consists of successively applying the two-
dimensional projector-splitting integrator, but with inexact solution in the third substep,
which again is handled by a successive approximation. The first two substeps of the matrix
integrator are applied and the corresponding matrices K and S are updated directly. The
third substep is not solved directly, but by a low-rank approximation in the next mode.
This nested procedure characterizes the integration method and that is the reason why we
name it the nested Tucker integrator. The idea is not to consider the full tensor Y that in
its matricized form is partly updated after having solved the first two steps, but to drop
the already updated basis matrix U within the matricization of Y and only deal with the
remaining factors of the Tucker representation of Y that are not updated yet. Leaving the
already updated factors out leads to a beneficial side effect of the nested Tucker integrator:
it reduces the complexity of the subproblems in each mode.

We begin by matricizing the tensor differential equation (4.1), viz.
.
A(t) = F (t, A(t)), A(t0) = A0,

in mode 1, where we obtain the matrix differential equation

Mat1
(.
A(t)

)
= Mat1

(
F (t, A(t))

)
, Mat1

(
A(t0)

)
= Mat1

(
A0
)
. (4.11)

This will allow us to apply the matrix projector-splitting integrator to this matrix ODE
(4.11). The initial value Mat1

(
A0
)
is approximated by the matricization Mat1

(
Y 0
)
of

a low-rank tensor Y 0 ∈ M. Since Y 0 is assumed to have multilinear rank (r1, . . . , rd), it
satisfies a decomposition

Y 0 = C0
d

X
i=1

U0
i ,

with C0 ∈ Rr1×···×rd and U0
i ∈ Rni×ri . For clarity of notation, let us denote the initial

value as Y 0
1 := Y 0 and the corresponding core tensor as C0

1 := C0. By performing a QR
decomposition

Mat1(C
0
1)> = Q0

1 S0,>
1 ∈ Rr2···rd×r1 ,

where Q0
1 ∈ Rr2···rd×r1 and S0

1 ∈ Rr1×r1 , and denoting

V0,>
1 = Q0,>

1

d⊗

i=2

U0,>
i ∈ Rr1×n2···nd , (4.12)

110

4. Time integration of rank-constrained Tucker tensors

we obtain the necessary SVD-like representation of the initial value of (4.11) as

Mat1(Y
0
1) = U0

1 Mat1(C
0
1)

d⊗

i=2

U0,>
i = U0

1 S0
1 V0,>

1 . (4.13)

Note that the matrix S0
1, which comes from the QR decomposition of the transposed 1-

mode matricization of the core C0, is not required to be diagonal. Further, in order to get
the integrator started, a central idea is to assemble all basis matrices U0

i with i 6= 1 in the
matrix V0

1 as is done in (4.12) by using the Kronecker product. After having transformed
the tensor setting into the matrix setting, we are now in the situation to apply the matrix
projector-splitting integrator to (4.11) with initial value (4.13):

1. K-step: Update U0
1 → U1

1, S0
1 → Ŝ1

1 by solving directly

.
K1(t) = Mat1

(
F (t,Ten1(K1(t) V0,>

1))
)
V0

1,

K1(t0) = U0
1 S0

1

and performing a QR decomposition K1(t1) = U1
1 Ŝ1

1

2. S-step: Update Ŝ1
1 → S̃0

1 by solving directly

.
S1(t) = −U1,>

1 Mat1
(
F (t,Ten1(U

1
1 S1(t) V0,>

1))
)
V0

1,

S1(t0) = Ŝ1
1

3. L-step: Update V0
1 → V1

1, S̃0
1 → S1

1 by solving approximately

.
L1(t)

> = U1,>
1 Mat1

(
F (t,Ten1(U

1
1 L1(t)

>))
)
,

L1(t0)
> = S̃0

1 V0,>
1

(4.14)

and performing a QR decomposition L1(t1) = V1
1 S1,>

1 .

Note that computing the first two substeps directly means that we can directly apply an
integration method in order to solve the differential equations for K1 and S1 without any
further modifications of the ODEs. It is meant as the opposite to solving a differential
equation approximately, e.g. by a low-rank approximation.

The K- and S-steps can be calculated as in the matrix case, but applied to (4.11).
However, we do not solve the matrix differential equation in the L-step directly since it
is defined for a prohibitively large L1. More importantly, it would also not lead to an
approximation for Y (t1) of multilinear rank (r1, . . . , rd) since the exact L-step above only
reduces the rank of the first mode. Instead, we perform a low-rank approximation for
(4.14) by applying the matrix projector-splitting integrator again to a reshaped version of
it.

Defining

Y2(t) = Ten1(L1(t)
>) ∈ Rr1×n2×···×nd ,

111

4.2. The nested Tucker integrator

we first retensorize (4.14) as
.
Y2(t) = F (t, Y2(t)×1 U1

1)×1 U1,>
1 , Y2(t0) = Ten1(L

0,>
1). (4.15)

Observe that Y2(t) is the tensorized matrix L1(t)
>, i.e. Y2(t) does not represent the partly

updated full tensor Y (t) ∈ Rn1×···×nd , since it does not contain the basis matrix U1.
Therefore, Y2(t) is usually of significantly smaller size than Y (t) since typically r1 � n1
and so the complexity of the problem is reduced, i.e. the differential equations that need
to be solved are of smaller size, which is beneficial with regard to computational time and
memory. Next, we unfold (4.15) in the second mode. For simplicity of notation, we denote
this 2-mode unfolding of Y2 by Y[2] := Mat2(Y2) ∈ Rn2×r1n3···nd . This gives the matrix
differential equation

.
Y[2](t) = Mat2

(
F
(
t,Ten2(Y[2](t))×1 U1

1

)
×1 U1,>

1

)
(4.16)

and, using (4.14) and (4.12), the initial value

Y[2](t0) = Mat2

(
Ten1(L

0,>
1)

)
= Mat2

(
Ten1

(
S̃0
1 Q0,>

1

d⊗

i=2

U0,>
i

))
.

Defining C0
2 = Ten1

(
S̃0
1 Q0,>

1

)
∈ Rr1×···×rd and C0

[2] = Mat2(C
0
2), we also have

Y[2](t0) = Mat2

(
C0
2

d

X
i=2

U0
i

)
= Mat2

(
C0
2 ×1 Ir1

d

X
i=2

U0
i

)
= U0

2 C0
[2]

(
Ir1 ⊗

(d⊗

i=3

U0,>
i

))
.

In order to be able to again apply the matrix projector-splitting integrator, we have to
determine the SVD-like representation of Y[2](t0) as before. To this end, we compute the
QR factorization C0,>

[2] = Q0
2 S0,>

2 . We then obtain the desired result as

Y[2](t0) = U0
2 S0

2 Q0,>
2

(
Ir1 ⊗

(d⊗

i=3

U0,>
i

))
= U0

2 S0
2 V0,>

2 ,

with V0,>
2 = Q0,>

2

(
Ir1 ⊗

(⊗d
i=3 U0,>

i

))
∈ Rr2×r1n3···nd .

Now that we have set up the matrix problem again, we can apply the matrix projector-
splitting integrator to (4.16):

1. K-step: Update U0
2 → U1

2, S0
2 → Ŝ1

2 by solving directly

.
K2(t) = Mat2

(
F
(
t,Ten2(K2(t) V0,>

2)×1 U1
1

)
×1 U1,>

1

)
V0

2,

K2(t0) = U0
2 S0

2

and performing a QR decomposition K2(t1) = U1
2 Ŝ1

2

2. S-step: Update Ŝ1
2 → S̃0

2 by solving directly

.
S2(t) = −U1,>

2 Mat2

(
F
(
t,Ten2(U

1
2 S2(t) V0,>

2)×1 U1
1

)
×1 U1,>

1

)
V0

2,

S2(t0) = Ŝ1
2

112

4. Time integration of rank-constrained Tucker tensors

3. L-step: Update V0
2 → V1

2, S̃0
2 → S1

2 by solving approximately

.
L2(t)

> = U1,>
2 Mat2

(
F
(
t,Ten2(U

1
2 L2(t)

>)×1 U1
1

)
×1 U1,>

1

)
,

L2(t0)
> = S̃0

2 V0,>
2

and performing a QR decomposition L2(t1) = V1
2 S1,>

2 .

We continue recursively with solving the K- and the S-step as in the matrix case and
solving the L-step approximately in each iteration step of the integrator. Generalizing
the pattern for modes 1 and 2 from above to a general mode i requires us to find Yi(t) ∈
Rr1×···×ri−1×ni×···×nd that satisfies the ODE

.
Yi(t) = F

(
t, Yi(t)

i−1
X
k=1

U1
k

) i−1
X
k=1

U1,>
k , Yi(t0) = Teni−1

(
L0,>
i−1
)
. (4.17)

The K- and S-steps for mode (i−1) calculate, in particular, the matrix S̃0
i−1. The orthog-

onal matrix Q0
i−1 is obtained from the updated core tensor C0

i−1 in the sense that

Mati−1(C
0
i−1)

> = Q0
i−1 S0,>

i−1 ∈ Rr1···ri−2ri···rd×ri−1 .

This implies that the initial value in the above ODE is available in the matricized (i− 1)

mode as

L0,>
i−1 = S̃0

i−1 Q0,>
i−1

((i−2⊗
k=1

Irk
)
⊗
(d⊗

k=i

U0,>
k

))
∈ Rri−1×r1···ri−2ni···nd .

To obtain a suitable matrix version of (4.17), we matricize it in mode i and define Y[i] =

Mati(Yi) ∈ Rni×r1···ri−1ni+1···nd . This gives

.
Y[i](t) = Mati

(
F
(
t,Teni

(
Y[i](t)

) i−1
X
k=1

U1
k

) i−1
X
k=1

U1,>
k

)
,

Y[i](t0) = Mati

(
Teni−1

(
S̃0
i−1 Q0,>

i−1

((i−2⊗
k=1

Irk
)
⊗
(d⊗

k=i

U0,>
k

))))

= Mati

(
C0
i

i−1
X
k=1

Irk
d

X
k=i

U0
k

)
,

(4.18)

with C0
i = Teni−1

(
S̃0
i−1 Q0,>

i−1
)
∈ Rr1×···×rd . In order to obtain a SVD-like decomposition

of the initial value Y[i](t0), we perform a QR decomposition

Mati(C
0
i)> = Q0

i S0,>
i ∈ Rr1···ri−1ri+1···rd×ri

and set

V0,>
i = Q0,>

i

((i−1⊗
k=1

Irk
)
⊗
(d⊗

k=i+1

U0,>
k

))
∈ Rri×r1···ri−1ni+1···nd . (4.19)

In this way, we indeed obtain

Y[i](t0) = Mati

(
C0
i

i−1
X
k=1

Irk
d

X
k=i

U0
k

)
= U0

i S0
i V0,>

i

113

4.2. The nested Tucker integrator

and therefore we can apply the K- and S-steps of the matrix projector-splitting integrator
to (4.18). The L-step consists of recursively solving

.
Li(t)

> = U1,>
i Mati

(
F
(
t,Teni

(
U1
i Li(t)

>) i−1X
k=1

U1
k

) i−1
X
k=1

U1,>
k

)
,

Li(t0)
> = L0,>

i = S̃0
i V0,>

i ,

(4.20)

with the scheme we just explained. We continue this procedure until mode (d−1). Having
reached mode d, the recursion changes its line of action in the third substep. In the last
mode, we have to determine an approximation tensor Yd(t) of size r1×· · ·× rd−1×nd that
solves the tensor ODE

.
Yd(t) = F

(
t, Yd(t)

d−1
X
k=1

U1
k

)d−1
X
k=1

U1,>
k , Yd(t0) = Tend−1

(
L0,>
d−1
)
. (4.21)

Now, since the initial value in the (d− 1)-mode matricization is given by

L0,>
d−1 = S̃0

d−1 V0,>
d−1 = S̃0

d−1 Q0,>
d−1

(d−2⊗

k=1

Irk ⊗U0,>
d

)
,

we pass it to the d-mode matricized form by first retensorizing and then matricizing, i.e.,

Y0,>
[d] = Matd

(
Tend−1

(
S̃0
d−1 Q0,>

d−1

(d−2⊗

k=1

Irk ⊗U0,>
d

)))

= Matd

(
C0
d

d−1
X
k=1

Irk ×d U0
d

)

= U0
d S0

d Q0,>
d

(d−1⊗

k=1

Irk

)

= U0
d S0

d V0,>
d ,

where C0
d = Tend−1(S̃

0
d−1 Q0,>

d−1), Matd(C
0
d)> = Q0

d S0,>
d and setting

V0,>
d = Q0,>

d

(d−1⊗

k=1

Irk

)
. (4.22)

Compared to the previous mode-steps, an important difference can already be seen at this
stage. We observe that the matrix V0,>

d does not contain a basis matrix at time t0 in the
Kronecker product. This is an essential observation, which involves a direct computation
of the third substep within the matrix projector-splitting integrator, as will be seen in the
following:

1. K-step: Update U0
d → U1

d, S0
d → Ŝ1

d by solving directly
.
Kd(t) = Matd

(
F (t,Tend(Kd(t) Vd(t)

>))
)
V0
d,

Kd(t0) = U0
d S0

d

and performing a QR decomposition Kd(t1) = U1
d Ŝ1

d

114

4. Time integration of rank-constrained Tucker tensors

2. S-step: Update Ŝ1
d → S̃0

d by solving directly

.
Sd(t) = −U1,>

d Matd
(
F (t,Tend(U

1
d Sd(t) V0,>

d))
)
V0
d,

Sd(t0) = Ŝ1
d

3. L-step: Update V0
d → V1

d, S̃0
d → S1

d by solving directly

.
Ld(t)

> = U1,>
d Matd

(
F
(
t,Tend

(
U1
d L>d

)d−1
X
i=1

U1
i

)d−1
X
i=1

U1,>
i

)
,

Ld(t0)
> = L0,>

d = S̃0
d V0,>

d

(4.23)

and performing a QR decomposition Ld(t1) = V1
d S1,>

d .

In (4.22) we observe that the matrix V0
d solely consists of the orthogonal part Q0

d of the
core tensor. Therefore, we have

L0,>
d =

(
S̃0
d Q0,>

d

)
⊗
(d−1⊗

i=1

Iri

)
= Matd(C

0
d) ∈ Rrd×r1···rd−1 ,

which means that Ld(t) actually corresponds to the core C(t) itself. Hence, solving (4.23)
yields Tend(L

1,>
d) = C1

d =: C1, which is an approximation to C(t) after one time step. We
illustrate the scheme of the nested Tucker integrator in Figure 4.6.

The nested Tucker integrator presented above operates on tensors Yi(t) that consecu-
tively get smaller for i = 1, 2, . . . , d. However, we can also interpret it as computing an
approximation Y 1 for the Tucker tensor Y (t1) ∈ Rn1×···×nd in (4.2). In particular, we have

Y 1 = Ten1

(
U1

1 L1(t1)
>) = Ten1

(
U1

1 Mat1(Y2(t1))
)

= Y2(t1)×1 U1
1,

with L1(t1) the approximate solution of (4.14) obtained using Y2(t1) in (4.15). In turn,
Y2(t1) is solved similarly using Y3(t1):

Y2(t1) = Ten2

(
U1

2 L2(t1)
>) = Y3(t1)×2 U1

2 .

Hence, continuing recursively for all modes, we obtain the desired approximation tensor
after one time step at t1 = t0 + h in Tucker format, which is determined as

Y 1 = Ten1(U
1
1 L1,>

1) = Ten1

(
U1

1 Mat1(Y
1
2)
)

= Y 1
2 ×1 U1

1

= Ten2(U
1
2 L1,>

2)×1 U1
1 = Ten2

(
U1

2 Mat2(Y
1
3)
)
×1 U1

1 = Y 1
3 ×2 U1

2×1 U1
1

...

= Teni(U
1
i L1,>

i)
i−1
X
k=1

U1
k = Teni

(
U1
i Mati(Y

1
i+1)

) i−1
X
k=1

= Y 1
i+1

i

X
k=1

U1
k

...

= C1
d

X
k=1

U1
k ≈ Y (t1) ≈ A(t1).

115

4.3. Algorithmic description of the nested Tucker integrator

If we now want to continue in time to approximate Y (t2) for t2 ≥ t1, we apply the in-
tegration scheme again using Y 1 as initial value and analogously for the subsequent time
steps.

Figure 4.6: Illustration of the nested Tucker integrator.

4.3 Algorithmic description of the nested Tucker integrator

As we have seen, the nested Tucker integrator follows the scheme of recursively applying
the matrix projector-splitting integrator described in Section 2.1 with solving the first

116

4. Time integration of rank-constrained Tucker tensors

two steps directly, but performing a low-rank approximation for the third substep in each
mode. So it simply updates the basis matrices Ui in the K-step and the auxiliary matrix
Si in the S-step for each mode. Then, quite remarkably, to start the computation for the
approximate L-step, i.e. transfering the integration from one mode to the subsequent one,
it suffices to only update the (intermediate) core tensor. Since

L>i = S̃i V
>
i ,

where V>i contains all basis matrices Ui, . . . ,Ud that are not updated yet, we imagine to
simply drop the already updated basis matrix Ui−1, which is depicted in Figure 4.6 by
the red dashed line. Leaving out the basis matrix in the current mode leads to reducing
the size of the matrix differential equation that has to be solved for the next mode. The
nestedness comes from the fact that the L-step is not calculated directly, but by applying
the matrix projector-splitting integrator to the matricized situation in the subsequent mode
for all modes i = 1, . . . , d− 1. Hence this integration scheme is a nested matrix projector-
splitting integrator for Tucker tensors, or in short, the nested Tucker integrator.
Algorithm 6: One time step of the nested Tucker integrator

Data: Tucker tensor Y 0 = C0 Xdi=1 U0
i , F (t, Y), t0, t1

Result: Tucker tensor Y 1 = C1 Xdi=1 U1
i

1 begin
2 for i = 1 to d do
3 compute QR factorization Mati(C

0)> = Q0
i S0,>

i

4 set V0,>
i = Mati

(
Teni(Q

0,>
i)

d

X
l=i+1

U0
l

)

5 set K0
i = U0

i S0
i

6 set Y+
[i](t) = Ki(t) V0,>

i

7 solve
.
Ki(t) = Mati

(
F
(
t,Teni(Y

+
[i])

i−1
X
k=1

U1
k

) i−1
X
k=1

U1,>
k

)
V0
i ,

with initial value Ki(t0) = K0
i and return K1

i = Ki(t1)

8 compute QR factorization K1
i = U1

i Ŝ1
i

9 set Y−[i](t) = U1
i Si(t) V0,>

i

10 solve
.
Si(t) = −U1,>

i Mati

(
F
(
t,Teni(Y

−
[i])

i−1
X
k=1

U1
k

) i−1
X
k=1

U1,>
k

)
V0
i ,

with initial value Si(t0) = Ŝ1
i and return S̃0

i = Si(t1)

11 set C0 = Teni(S̃
0
i Q0,>

i)

12 set L0,> = Matd(C
0)

13 solve
.
L(t)> = U1,>

d Matd

(
F
(
t,Tend(U

1
d L(t)>)

d−1
X
k=1

U1
k

)d−1
X
k=1

U1,>
k

)
,

with initial value L(t0)
> = L0,> and return L1,> = L(t1)

>

14 set C1 = Tend(L
1,>)

15 set Y 1 = C1
d

X
i=1

U1
i

For computational efficiency, we have written the operations using multilinear products.
For example, line 4 is equivalent to (4.19).

117

4.4. An exactness property of the nested Tucker integrator

From the implementational point of view, the differential equations for K,S and L that
need to be solved during the integration scheme, can be solved approximately, e.g., by a
classical 4th-order Runge–Kutta method without substeps. On the other hand, if F (t, Y)

is solution-independent and solely given by a tensor A(t) ∈ Rn1×···×nd , we can determine
a closed-form solution for those differential equations.

4.4 An exactness property of the nested Tucker integrator

In this section, we give a proof of the exactness of the nested Tucker integrator, which is
first performed in [LVW18, Theorem 4.1].

Suppose that A(t) ∈ Rn1×···×nd is given explicitly, hence, we formally have F (t, Y) =.
A(t) in (4.1) and (4.2). In addition, we assume that A(t) ∈ M for t0 ≤ t ≤ T . Our aim
in this section is to prove that Algorithm 6, the nested Tucker integrator, is exact in that
case. In other words, Algorithm 6 solves the initial value problem (4.2) exactly even though
it is a discrete time stepping method. As stated in Theorem 2.1, the projector-splitting
integrator for matrices already has this property.

Since A(t) is of multilinear rank (r1, . . . , rd) for all t, we can write its i-mode matri-
cization as

Mati(A(t)) = Ui(t)Si(t)V̂i(t)
>, (4.24)

where Ui(t) ∈ Rni×ri and V̂i(t) ∈ Rn1···ni−1ni+1···nd×ri have orthonormal columns and
Si(t) ∈ Rri×ri for all i = 1, . . . , d. With this SVD-like representation we can state and
prove the following exactness result.

Theorem 4.1 (Exactness of the nested Tucker integrator).
Let A(t) be of multilinear rank (r1, . . . , rd) for all t ∈ (t0, t1) and let Y (t0) = A(t0).
Further, let Vi(t1)

>Vi(t0), where Vi(t) is defined in the course of the algorithm, see
(4.28), be invertible for all i = 2, . . . , d. Then, Algorithm 6 for F (t, Y) =

.
A(t) reproduces

the exact solution: Y 1 = A(t1).

Proof. Recall that the nested Tucker integrator in Algorithm 6 is designed to approximately
solve the initial value subproblems

.
Y[i](t) = Mati

(.
A(t)

i−1
X
k=1

U1,>
k

)
, Y[i](t0) = Y0

[i] = U0
i S0

i V0,>
i , (4.25)

where Teni(V
0,>
i) = Teni(Q

0,>
i) Xdl=i+1 U0

l ∈ Rr1×···×ri×ni+1×···×nd for each mode i =

1, . . . , d. In addition, the tensorized result Y 1
i = Teni(Y[i](t1)) after one time step is

in the low-rank manifoldMi := {Yi ∈ Rr1×···×ri−1×ni×···×nd : rank Mati(Yi) = ri ∈ N}.
Since the nested Tucker integrator is based on the matrix projector-splitting integrator,

which exhibits the favorable exactness result, we want to make use of this property for the
two-dimensional case. There, an essential assumption is made on the matrix that needs to
be approximated: it has to be of low rank. Hence, in order to benefit from this result, we
have to show that the initial values in each modal step within the integrator satisfy this

118

4. Time integration of rank-constrained Tucker tensors

property. So first we show by induction that the initial value for (4.25) can be written in
terms of A(t0):

Y[i](t0) = Mati

(
A(t0)

i−1
X
k=1

U1,>
k

)
. (4.26)

This ensures that Y0
[i] has rank ri. Suppose that this has been shown for Y0

[1], . . . ,Y
0
[i−1].

Now, due to the nestedness of the integrator, we have Yi(t0) = Teni−1(L
0,>
i−1). So in order

to assure that Yi(t0) is of low rank, we have to take a closer look on L0,>
i−1. With the

abbreviation ∆A = A(t1)−A(t0), it is

U1
i−1 L0,>

i−1 = U1
i−1 Ŝ1

i−1 V0,>
i−1 − U1

i−1 U1,>
i−1 Mati−1

(
∆A

i−2
X
k=1

U1,>
k

)
V0
i−1 V0,>

i−1

= U0
i−1 S0

i−1 V0,>
i−1 + Mati−1

(
∆A

i−2
X
k=1

U1,>
k

)
V0
i−1 V0,>

i−1

−U1
i−1 U1,>

i−1 Mati−1

(
∆A

i−2
X
k=1

U1,>
k

)
V0
i−1 V0,>

i−1

= Y0
[i−1] +

(
I−U1

i−1 U1,>
i−1
)(

Mati−1

(
∆A

i−2
X
k=1

U1,>
k

)
V0
i−1 V0,>

i−1

)

= Mati−1
(
Teni−2(L

0,>
i−2)

)

+
(
I−U1

i−1 U1,>
i−1
)(

Mati−1

(
∆A

i−2
X
k=1

U1,>
k

)
V0
i−1 V0,>

i−1

)

= Mati−1

(
A(t0)

i−2
X
k=1

U1,>
k

)

+
(
I−U1

i−1 U1,>
i−1
)(

Mati−1

(
∆A

i−2
X
k=1

U1,>
k

)
V0
i−1 V0,>

i−1

)
,

where the last equality holds by induction hypothesis. Multiplying both sides by U1,>
i−1

from the left yields

L0,>
i−1 = U1,>

i−1 Mati−1

(
A(t0)

i−2
X
k=1

U1,>
k

)
= Mati−1

(
A(t0)

i−1
X
k=1

U1,>
k

)
. (4.27)

By retensorizing and matricizing in the i-th mode, we obtain

Y[i](t0) = Mati
(
Teni−1(L

0,>
i−1)

)
= Mati

(
A(t0)

i−1
X
k=1

U1,>
k

)
.

With this initial value, the exact solution of (4.25) has rank ri as well, since A(t) is assumed
to have multilinear rank (r1, . . . , rd) for all t ∈ (t0, t1):

Y[i](t) = Y[i](t0) +

t∫

t0

.
Y[i](s)ds

= Mati

(
A(t0)

i−1
X
k=1

U1,>
k

)
+ Mati

((
A(t)−A(t0)

) i−1
X
k=1

U1,>
k

)

= Mati

(
A(t)

i−1
X
k=1

U1,>
k

)

= Ui(t)Si(t) Vi(t)
>,

119

4.4. An exactness property of the nested Tucker integrator

where we use the decomposition (4.24) and set

Vi(t) = (U1,>
1 ⊗ · · · ⊗U1,>

i−1⊗ Iri+1 ⊗ · · · ⊗ Ird) V̂i(t). (4.28)

To show the exactness of Algorithm 6, we first consider the d-mode unfolded subprob-
lem. Here, the last substep of the nested Tucker integrator is the same as applying the
matrix projector-splitting integrator to (4.25) with initial value (4.26) for i = d. Since
the updated basis matrices U1

k for k = 1, . . . i − 1 are not time-dependent from the i-th
integration step onwards, we observe by means of (4.28) that

Vi(t1)
>Vi(t0) = V̂i(t1)

> (U1
1 U1,>

1 ⊗ · · · ⊗U1
i−1 U1,>

i−1⊗ Iri+1 ⊗ · · · ⊗ Ird) V̂i(t0)

for all i = 1, . . . , d. Additionally, by assumption, Vi(t1)
>Vi(t0) is non-singular and so we

conclude by Theorem 2.1 that the integrator is exact for the d-mode setting after one time
step from t0 to t1:

Y1
[d] = Matd

(
A(t1)

d−1
X
k=1

U1,>
k

)
.

We now show by induction for i = d, . . . , 1 that

Y1
[i] = Mati

(
A(t1)

i−1
X
k=1

U1,>
k

)
. (4.29)

Suppose this has been shown for Y1
[d], . . . ,Y

1
[i+1]. Since the initial value for the mode i

subproblem is given by (4.26), the corresponding initial values for the three subproblems
in this mode can be written in terms of Y0

[i] due to (4.27) as

Ki(t0) = U0
i S0

i = Y0
[i] V

0
i ,

Si(t0) = L0,>
i V0

i = Mati

(
A(t0)

i

X
k=1

U1,>
k

)
V0
i = U1,>

i Mati

(
A(t0)

i−1
X
k=1

U1,>
k

)
V0
i

= U1,>
i Y0

[i] V
0
i ,

Li(t0)
> = Mati

(
A(t0)

i

X
k=1

U1,>
k

)
= U1,>

i Mati

(
A(t0)

i−1
X
k=1

U1,>
k

)
= U1,>

i Y0
[i] .

Now, the substep of Algorithm 6 in the i-mode unfolding solves exactly the differential
equations

.
Ki(t) = Mati

(.
A(t)

i−1
X
k=1

U1,>
k

)
V0
i , Ki(t0) = Y0

[i] V
0
i

.
Si(t) = −U1,>

i Mati

(.
A(t)

i−1
X
k=1

U1,>
k

)
V0
i , Si(t0) = U1,>

i Y0
[i] V

0
i ,

and approximately the differential equation

.
Li(t)

> = U1,>
i Mati

(.
A(t)

i−1
X
k=1

U1,>
k

)
, Li(t0)

> = U1,>
i Y0

[i] .

120

4. Time integration of rank-constrained Tucker tensors

Since Y1
[i+1] is the exact solution for the (i + 1)-mode setting, we conclude by induction

hypothesis

L1,>
i = Mati

(
Teni+1(Y

1
[i+1])

)
= Mati

(
A(t1)

i

X
k=1

U1,>
k

)

= U1,>
i Mati

(
A(t1)

i−1
X
k=1

U1,>
k

)
= Li(t1)

>.

Hence also the differential equation in the third substep of the i-mode unfolded subproblem
is solved exactly. It follows by the exactness result for the matrix projector-splitting
integrator that the nested Tucker integrator solves (4.25) with initial value (4.26) exactly, so
that (4.29) is satisfied. Now, within the integrator, we transform the considered differential
equations from mode (i− 1) to mode i by setting

Y[i] = Mati
(
Teni−1(L

>
i−1)

)
,

which is equivalent to

Teni(Y[i]) = Teni−1(L
>
i−1). (4.30)

Hence, with (4.29) and (4.30), we finally obtain

Y 1 = Ten1(U
1
1 L1,>

1) = Ten1(L
1,>
1)×1 U1

1 = Ten2(Y
1
[2])×1 U1

1

= Ten2(U
1
2 L1,>

2)×1 U1
1 = Ten2(L

1,>
2)×2 U1

2×1 U1
1 = Ten3(Y

1
[3])×2 U1

2×1 U1
1

...

= Teni(U
1
i L1,>

i)
i−1
X
k=1

U1
k

...

= Tend(U
1
d L1,>

d)
d−1
X
k=1

U1
k

= Tend(Y
1
[d])

d−1
X
k=1

U1
k = Tend−1(L

1,>
d−1)

d−1
X
k=1

U1
k = Tend−1(U

1
d−1 L1,>

d−1)
d−2
X
k=1

U1
k

= Tend−1(Y
1
[d−1])

d−2
X
k=1

U1
k

...

= Teni(Y
1
[i])

i−1
X
k=1

U1
k

...

= Ten1(Y
1
[1]) = Ten1

(
Mat1(A(t1)

)

= A(t1),

which shows the exactness of the nested Tucker integrator.

121

4.5. Error bounds for the nested Tucker integrator

4.5 Error bounds for the nested Tucker integrator

We now show that the nested Tucker integrator is robust in the presence of small singular
values, see [LVW18, Theorem 5.1]. Since the integrator is based on recursively applying
the matrix projector-splitting integrator, the plan is to analyze these recursive steps from
the matrix perspective so that we can apply Theorem 2.4. To this end, we first need to
generalize the assumptions of Theorem 2.4.

Let A(t) be the solution of (4.1), viz.,

.
A(t) = F (t, A(t)), A(t0) = A0

on [t0, T]. Recall thatM is the manifold of tensors of multilinear rank (r1, . . . , rd). Let

Mi = {Y ∈ Rn1×···×nd : rank(Mati(Y)) = ri},

so thatM =M1 ∩ · · · ∩Md.

Assumption 4.2. We assume that for each i = 1, . . . , d, the i-mode unfolding of (4.1)
satisfies the following conditions:

(1) F (t, Y) is Lipschitz continuous:

‖F (t, Y)− F (t, Ỹ)‖ ≤ L‖Y − Ỹ ‖, for all Y, Ỹ ∈ Rn1×···×nd

(2) F (t, Y) is bounded:

‖F (t, Y)‖ ≤ B for all Y ∈ Rn1×···×nd (4.31)

(3) F (t, Y) can be decomposed into a tangential part and a small perturbation:

F (t, Y) = Mi(t, Y) +Ri(t, Y),

Mi(t, Y) ∈ TYMi, ‖Ri(t, Y)‖ ≤ ε,
(4.32)

for all Y ∈Mi in a neighborhood of A(t) and for all t ∈ [t0, T],

(4) the initial value A(t0) for (4.1) has multilinear rank (r1, . . . , rd).

The condition (4.32) is formulated in terms of Mi that are essentially fixed matrix
manifolds. Since we are solving (4.2) on a fixed rank Tucker manifold M, it seems more
natural to impose that F (t, Y) is close to the tangent space ofM that is,

‖F (t, Y)− P(Y)F (t, Y)‖ ≤ ε. (4.33)

However, since M = M1 ∩ · · · ∩ Md, by definition of a tangent space we get TYM ⊆
TYM1 ∩ · · · ∩ TYMd for Y ∈ M. Hence, P(Y)F (t, Y) ∈ TYMi for all i = 1, . . . , d and so
(4.33) actually implies (4.32) for all Y ∈M.

122

4. Time integration of rank-constrained Tucker tensors

Theorem 4.3. Under assumption 4.2, the error of the nested Tucker integrator after n
steps with step size h > 0 satisfies for all tn = t0 + nh ≤ T :

‖Yn −A(tn)‖ ≤ c1h+ c2ε,

where the constants c1 and c2 only depend on L,B, T and the dimension d. In partic-
ular, the constants are independent of singular values of matricizations of the exact or
approximate solution tensor.

Proof. Recall from (4.18) and (4.20) for the derivation of the nested Tucker integrator
that Algorithm 6 solves approximately the following subproblems for each mode i on
Rr1×···×ri−1×ni×···×nd :

.
Yi(t) = F

(
t, Yi(t)

i−1
X
k=1

U1
k

) i−1
X
k=1

U1,>
k , Yi(t0) = Teni−1(L

0,>
i−1)

with L0,>
i−1 = S̃0

i−1 V0,>
i−1. Introducing

Zi(t) = Yi(t)
i−1
X
k=1

U1
k ∈M1 ∩ · · · ∩Mi−1 ⊂ Rn1×···×nd ,

we obtain the equivalent initial value problem

.
Zi(t) = F

(
t, Zi(t)

) i−1
X
k=1

(U1
k U1,>

k), Zi(t0) = Teni−1(L
0,>
i−1)

i−1
X
k=1

U1
k (4.34)

on Rn1×···×nd . We note that since L0,>
i−1 has full rank, we have Zi(t0) ∈ Mi. The nested

Tucker integrator solves the i-mode unfolded subproblems

.
Z[i](t) = Mati

(
F (t, Zi(t))

i−1
X
k=1

(U1
k U1,>

k)
)
,

Z[i](t0) = Mati

(
Teni−1(L

0,>
i−1)

i−1
X
k=1

U1,>
k

)
,

(4.35)

by applying the matrix projector-splitting integrator onto

.
Ki(t) = Mati

(
F (t, Zi(t))

i−1
X
k=1

(U1
k U1,>

k)
)

V0
i , K0

i = Y0
i V0

i ,

.
Si(t) = −U1,>

i Mati

(
F (t, Zi(t))

i−1
X
k=1

(U1
k U1,>

k)
)

V0
i , S0

i = U0,>
i Y0

i V0
i ,

.
Li(t)

> = U1,>
i Mati

(
F (t, Zi(t))

i−1
X
k=1

(U1
k U1,>

k)
)
, L0,>

i = U0,>
i Y0

i ,

(4.36)

where the K- and the S-step are solved exactly, but the L-step is solved inexactly for all
i = 1, . . . , d− 1. Instead, for i = d, all three substeps (4.36) are solved exactly. Hence, this
results in the approximation Z1

i ∈Mi to Zi(t1).
The solution to the KSL-ODE system (4.36) is determined by the integration method

for matrices, where a rigorous error analysis already exists, see Section 2.3. Now, in order
to make use of it, we have to make sure that (4.34) and the above conditions (1)-(4) follow
the Assumption 2.3 for the proof of the matrix case.

123

4.5. Error bounds for the nested Tucker integrator

(1) Lipschitz continuity of the right-hand side of (4.34):
Let Zi(t), Z̃i(t) ∈ Rn1×···×nd , then, since U1

k U1,>
k is an orthogonal projection, we find

∥∥∥F (t, Zi(t))
i−1
X
k=1

(U1
k U1,>

k)− F (t, Z̃i(t))
i−1
X
k=1

(U1
k U1,>

k)
∥∥∥

=
∥∥∥Mati

(
F (t, Zi(t))− F (t, Z̃i(t))

)((i−1⊗
k=1

U1
k U1,>

k

)
⊗
(d⊗

k=i

Irk
))∥∥∥

= ‖F (t, Zi(t))− F (t, Z̃i(t))‖
≤ L‖Zi(t)− Z̃i(t)‖,

since by assumption F (t, Y) is Lipschitz continuous for all Y ∈ Rn1×···×nd .

(2) Boundedness of the right-hand side of (4.34):
Again, since U1

k U1,>
k is an orthogonal projection for each mode k = 1, . . . , i− 1 and

for all i = 1, . . . , d, the boundedness follows trivially from the assumption (4.31): for
Zi(t) ∈ Rn1×···×nd , we have

∥∥∥F (t, Zi(t))
i−1
X
k=1

(U1
k U1,>

k)
∥∥∥ =

∥∥∥Mati
(
F (t, Zi(t))

)((i−1⊗
k=1

U1
k U1,>

k

)
⊗
(d⊗

k=i

Irk
))∥∥∥

≤ ‖F (t, Zi(t))‖
≤ B.

(3) For each mode i, the right-hand side of (4.34) lies in the tangent space up to a small
remainder:
By assumption (4.32), the i-mode unfolding of the right-hand side of (4.34) can be
decomposed, for any Y ∈Mi, as

Mati

(
F (t, Y)

i−1
X
k=1

(U1
k U1,>

k)
)

= Mati

(
Mi(t, Y)

i−1
X
k=1

(U1
k U1,>

k)
)

+ Mati

(
Ri(t, Y)

i−1
X
k=1

(U1
k U1,>

k)
)
,

where by assumption (4.32)Mi(t, Y) ∈ TYMi and ‖Ri(t, Y)‖ ≤ ε, for all i = 1, . . . , d.

In order to be able to follow the pattern of the proof of the error results from the ma-
trix case shown in Section 2.3, we have to assure that Mati

(
Mi(t, Y) Xi−1k=1(U

1
k U1,>

k)
)

is in the tangent space of the matricized manifoldM. First, we show that

Mi(t, Y)
i−1
X
k=1

(U1
k U1,>

k) ∈ TYMi,

afterwards we analyze the corresponding matrix setting. Now, suppose Mi(t, Y) ∈
TYMi and

Y = Y
i−1
X
k=1

(U1
k U1,>

k), (4.37)

124

4. Time integration of rank-constrained Tucker tensors

i.e. the orthogonal projections U1
k U1,>

k consisting of the already updated basis ma-
trices for the modes 1, . . . , i−1 are not influential regarding the approximation tensor.
This holds true for Y = Zi(t) in (4.34). Considering the SVD of Mati(Y) and due
to (4.37) we obtain

Ui Si V
>
i = Mati(Y) = Mati

(
Y
i−1
X
k=1

(U1
k U1,>

k)
)

= Mati(Y)
i−1⊗

k=1

(U1
k U1,>

k)

= Ui Si V
>
i

i−1⊗

k=1

(U1
k U1,>

k),

and so

V>i = V>i

i−1⊗

k=1

(U1
k U1,>

k). (4.38)

Now, similarly as in Section 1.2, we know that Mi(t, Y) ∈ TYMi implies

Mati(Mi(t, Y)) = δUi Si V
>
i + Ui δSi V

>
i + Ui SiδV>i ,

and so with (4.38) it follows that

Mati

(
Mi(t, Y)

i−1
X
k=1

(U1
k U1,>

k)
)

= Mati
(
Mi(t, Y)

) i−1⊗

k=1

(U1
k U1,>

k)

= δUi Si V
>
i

i−1⊗

k=1

(U1
k U1,>

k)

+ Ui δSi V
>
i

i−1⊗

k=1

(U1
k U1,>

k)

+ Ui SiδV>i

i−1⊗

k=1

(U1
k U1,>

k)

= δUi Si V
>
i + Ui δSi V

>
i + Ui SiδV>i ,

with some modified δVi. Therefore, Mati

(
Mi(t, Y) Xi−1k=1(U

1
k U1,>

k)
)
is of the same

form as Mati(Mi(t, Y)), which implies Mi(t, Y) Xi−1k=1(U
1
k U1,>

k) ∈ TYMi. Further,
the manifold of matrices of rank ri of dimension ni × n1 · · ·ni−1 · ni+1 · · ·nd is given
as

Mati(Mi) = {Mati(Y) | Y ∈Mi}.

Moreover, Y ∈Mi and denote Y := Mati(Y) ∈Mati(Mi). Then we have

TY Mati(Mi) = Mati(TYMi)

and so we conclude that

Mati

(
Mi(t, Y)

i−1
X
k=1

(U1
k U1,>

k)
)
∈ TY Mati(Mi).

125

4.5. Error bounds for the nested Tucker integrator

Thanks to assumption (4.32) and since U1
k U1,>

k are orthogonal projections for each
k = 1, . . . , i− 1, the perturbation term is controlled by

∥∥∥Mati

(
Ri(t, Y)

i−1
X
k=1

(U1
k U1,>

k)
)∥∥∥ =

∥∥∥Ri(t, Y)
i−1
X
k=1

(U1
k U1,>

k)
∥∥∥

≤ ‖Ri(t, Y)‖
≤ ε.

(4) Verifying the rank of the initial value:
We know that Zi(t0) ∈Mi. This implies rank Mati(Zi(t0)) = ri, for all i = 1, . . . , d.

To show the error bound, let us first consider the case of mode d. Here, the nested Tucker
integrator applies the matrix projector-splitting integrator, which in turn solves all three
steps exactly. After having verified the assumptions, the error analysis of the matrix case
given in Section 2.3 applied to the problem (4.35) for i = d, which is equivalent to the
subproblems within the nested Tucker integrator, can be applied and yields the error bound

‖Z1
d − Zd(t1)‖ = O(h(ε+ h)),

where the constants symbolized by the O notation depend only on L,B and d.
In the modal step d−1, the integrator applies the matrix integrator with exact solution

of the first two, but, due to the low-rank approximation, inexact solution in the third step
of the problems (4.36) to be solved. The error of this inexact solution is given by O(hη),
where η = ε + h, because by construction of the integration scheme, the approximate
solution of the third step in the (d − 1)-modal step is given by the solution of the full
mode-d step. From Section 2.4.2, we know the local error of the matrix projector-splitting
integrator with inexact solution in the substeps and so the error in mode (d− 1) is given
by

‖Z1
d−1 − Zd−1(t1)‖ = O(h(ε+ h+ η)) = O(h(ε+ h)). (4.39)

Using these error bounds for d and (d− 1), we show by induction for d− 2, . . . , 1 the local
error bound

‖Z1
i − Zi(t1)‖ = O(h(ε+ h)). (4.40)

Suppose, this has been shown for modes d − 2, . . . , i + 1. Then, we apply the matrix
projector-splitting algorithm to the i-th unfolding with an inexact solution of the third
substep. The error of this inexact solution is given by (4.40) for (i+ 1). We conclude that
the error bound for the i-th step is of the form (4.40). With the induction hypothesis that
(4.40) holds for i+ 1, . . . , d, we conclude from the error bound (4.39) that (4.40) also holds
for mode i.

Finally, for i = 1, we have Z1(t) = Y1(t), such that the local error of the nested Tucker
integrator is given by

‖Y 1 − Y1(t1)‖ = O(h(ε+ h)).

Following the pattern of propagating the error until final time step tn = nh and adding the
transported errors up, see [HNW93, Lady Windermere’s fan], we obtain the stated error
bound.

126

4. Time integration of rank-constrained Tucker tensors

4.6 A projector-splitting integrator for Tucker tensors

In this section, we discuss an integration method proposed by Lubich in [Lub15] and
compare it with the nested Tucker integrator. To give an insight behind the scene, the
evolutionary history of the nested Tucker integrator started with the difficulty of proving
an exactness result for the integrator presented in [Lub15], such as given for the matrix
case and in Section 4.4. Now, by having proven the exactness property of the nested
Tucker integrator in Section 4.4 and showing mathematical equivalence of those integrators
in Section 4.6.5, we can conclude exactness also for the integration method in [Lub15].
However, after having thought about the integrator [Lub15] again, but with the focus on
the projections that appear within the substeps, we found a direct proof for its exactness,
which we present in Section 4.6.3. This proof is not published nor submitted elsewhere.

We first recall the integration scheme of [Lub15] in Section 4.6.1, give the new proof
about the exactness afterwards in Section 4.6.3 and discuss the differences between the two
integrators. Finally, we prove the equivalence of the two integration methods for Tucker
tensors in Section 4.6.5.

4.6.1 Deriving the integration method

Here, we recall the integration method proposed in [Lub15]. We aim to compute a low-rank
approximation to the tensor differential equation

.
A(t) = F (t, A(t)), A(t0) = A0,

where A(t) ∈ Rn1×···×nd , in the Tucker tensor format Y (t) = C(t)
d

X
i=1

Ui(t) ∈ Rn1×···×nd

with rankY = (r1, . . . , rd). As in the derivation of the nested Tucker integrator, we first
transform the tensor differential equation by matricizing in the first mode, which yields a
matrix differential equation

Mat1
(.
A(t)

)
= Mat1

(
F (t, A(t))

)
, Mat1(A(t0)) = Mat1(A

0). (4.41)

Suppose that Mat1(Y
0) ∈M is a an approximation matrix to the initial value Mat1(A

0),
which is given by

Mat1(Y
0) = U0

1 Mat1(C
0)

d⊗

k=2

U0,>
k = U0

1 S0
1 Q0,>

1

d⊗

k=2

U0,>
k , (4.42)

where with

V0,>
1 = Q0,>

1

d⊗

k=2

U0,>
k ,

we obtain the necessary SVD-like decomposition

Mat1(Y
0) = U0

1 S0
1 V0,>

1 .

After having transformed the tensor into a matrix setting, the integrator applies the first
two steps of the matrix projector-splitting integrator introduced in Section 2.1 for each
modal step i = 1, . . . , d by solving

127

4.6. A projector-splitting integrator for Tucker tensors

1. K-step: Update U0
i → U1

i , S0
i → Ŝ1

i by solving

.
Ki(t) = Mati

(
F (t,Teni(Ki(t) V0,>

i))
)
V0
i ,

Ki(t0) = U0
i S0

i

2. S-step: Update Ŝ1
i → S̃0

i by solving

.
Si(t) = −U1,>

i Mati
(
F (t,Teni(U

1
i Si(t) V0,>

i))
)
V0
i ,

Si(t0) = Ŝ1
i .

Hence, in order to update the first basis matrix, the integrator applies the above KS-
scheme onto (4.41) with initial value (4.42) for i = 1. We point out that contrary to the
Tucker integrator, this integrator does not solve the L-step within the matrix projector-
splitting integrator (neither directly nor approximately). This arises from the idea that
the basis matrix that needs to be updated is taken “in front” by matricizing the current
approximation tensor Y , see (4.42), then the first two steps of the matrix integrator are
applied and afterwards, the resulting updated basis matrix is shifted “in the back” again by
retensorizing, see (4.43). So after each KS-step, an intermediate tensor Y i, for i = 2, . . . , d

of size n1 × · · · × nd is constructed.
Now, updating K1 and S1 results in an intermediate approximation tensor

Y 2(t) := C2(t)×1 U1
1

d

X
k=2

Uk(t) ∈ Rn1×···×nd , (4.43)

which satisfies the tensor differential equation

.
Y 2(t) = F (t, Y 2(t)), Y 2(t0) = C0

2 ×1 U1
1

d

X
k=2

U0
k,

where C0
2 = Ten1(S̃

0
1 Q0,>

1). We continue with updating the basis matrix in the second
mode first by preparing the factors through a QR decomposition

Mat2(C
0
2)> = Q0

2 S0,>
2

and setting

V0,>
2 = Q0,>

2

(
U1,>

1

(d⊗

k=3

U0,>
k

))
.

For simplicity and analogy of notation we denote Y[2] := Mat2(Y 2), and obtain the matrix
differential equation

.
Y[2](t) = Mat2

(
F
(
t,Ten2(Y[2](t))

))
, Y[2](t0) = U0

2 Mat2(C
0
2)
(
U1,>

1

(d⊗

k=3

U0,>
k

))

= U0
2 S0

2 V0,>
2 ,

128

4. Time integration of rank-constrained Tucker tensors

whose initial value again is of the required SVD-like factorization. Now that we have set
up the matrix setting again, we solve the K- and the S-step from above for i = 2. This
results in another approximation tensor

Y 3(t) := C3(t)
2

X
l=1

U1
l

d

X
k=3

Ui(t),

which solves

.
Y 3(t) = F (t, Y 3(t)), Y 3(t0) = C0

3

2

X
l=1

U1
l

d

X
k=3

U0
k,

where C0
3 = Ten2(S̃

0
2 Q0,>

2).
Proceeding analogously for i = 3, . . . , d yields updates U0

i → U1
i as well as Ŝ1

i → S̃0
i

and finally the intermediate approximation tensor Y d+1(t) := Cd+1(t)
d

X
l=1

U1
l with updated

basis matrices but not yet updated core. So we are left with approximating the core tensor.
To this end, we actually solve the tensor differential equation

.
C(t) = F

(
t, C(t)

d

X
l=1

U1
l

) d

X
l=1

U1,>
l , C(t0) = C0

d+1,

where as before C0
d+1 = Tend(S̃

0
d Q0,>

d).
Finally, this integration scheme results in the approximation tensor

C1
d

X
l=1

U1
l = Y 1 ≈ Y (t1) ≈ A(t1).

Algorithm 7 demonstrates how this integrator can be implemented.

129

4.6. A projector-splitting integrator for Tucker tensors

Algorithm 7: One time step of the Tucker integrator of [Lub15]

Data: Tucker tensor Y 0 = C0 Xdi=1 U0
i , F (t, Y), t0, t1

Result: Tucker tensor Y 1 = C1 Xdi=1 U1
i

1 begin
2 for i = 1 to d do
3 compute QR factorization Mati(C

0)> = Q0
i S0,>

i

4 set V0,>
i = Mati

(
Teni(Q

0,>
i)

i−1
X
l=1

U1
l

d

X
k=i+1

U0
k

)

5 set K0
i = U0

i S0
i

6 set Y+
[i](t) = Ki(t) V0,>

i

7 solve
.
Ki(t) = Mati

(
F (t,Teni(Y

+
[i]))
)
V0
i ,

with initial value Ki(t0) = K0
i and return K1

i = Ki(t1)

8 compute QR factorization K1
i = U1

i Ŝ1
i

9 set Y−[i](t) = U1
i Si(t) V0,>

i

10 solve
.
Si(t) = −U1,>

i Mati
(
F (t,Teni(Y

−
[i]))
)
V0
i ,

with initial value Si(t0) = Ŝ1
i and return S̃0

i = Si(t1)

11 set C0 = Teni(S̃
0
i Q0,>

i)

12 solve
.
C(t) = F

(
t, C(t)

d

X
l=1

U1
l

) d

X
l=1

U1,>
l ,

with initial value C(t0) = C0 and return C1 = C(t1)

13 set Y 1 = C1
d

X
l=1

U1
l

4.6.2 Interpretation as a projector-splitting integrator

In this section, we will analyze the orthogonal projection within the differential equation
.
Y (t) = P(Y (t))F (t, Y (t)), Y (t0) = Y 0,

where we lean on the result [Lub15, Sect. 6]. In [KL10, Lemma 3.1], O. Koch and
Ch. Lubich state that the projector P(Y (t)) can be written by a sum of subprojections.
Assuming that the tensor Y (t) ∈M is in Tucker format with Mati(Y) = Ui Si V

>
i for all

i = 1, . . . , d, the explicit formula for the tangent space projection P(Y), leaving out the
time dependence, is given as

P(Y) =

d∑

i=1

Teni

(
(Ini −Ui U

>
i) Mati(F (t, Y))

⊗

k 6=i
Uk Mati(C

†
i+1) Mati(Ci+1)

⊗

k 6=i
U>k

)

+ F (t, Y)
d

X
i=1

Ui U
>
i ,

(4.44)

where

C†i+1 = Mati(Ci+1)
>(Mati(Ci+1) Mati(Ci+1)

>)−1

130

4. Time integration of rank-constrained Tucker tensors

is the pseudo-inverse of the matricized core tensors Ci+1 for all i = 1, . . . , d. From the
description of the integrator in Section 4.6.1, we have Mati(Ci+1) = S̃i Q

>
i , where Qi is

an orthonormal matrix for each mode i = 1, . . . , d. Therefore, we find

Mati(C
†
i+1) Mati(Ci+1) = Qi S̃

>
i

(
S̃i Q

>
i (S̃i Q

>
i)>

)−1
S̃i Q

>
i

= Qi S̃
>
i

(
S̃iS̃

>
i

)−1
S̃i Q

>
i

= Qi Q
>
i .

Inserting this into (4.44), we can simplify this equation to

P(Y) =

d∑

i=1

Teni

(
(Ini −Ui U

>
i) Mati(F (t, Y))

⊗

k 6=i
Uk Mati(C

†
i+1) Mati(Ci+1)

⊗

k 6=i
U>k

)

+ F (t, Y)
d

X
i=1

Ui U
>
i

=

d∑

i=1

Teni

(
(Ini −Ui U

>
i) Mati(F (t, Y))

⊗

k 6=i
Uk Qi Q

>
i

⊗

k 6=i
U>k

)

+ F (t, Y)
d

X
i=1

Ui U
>
i

=
d∑

i=1

Teni

(
(Ini −Ui U

>
i) Mati(F (t, Y)) Vi V

>
i

)

+ F (t, Y)
d

X
i=1

Ui U
>
i ,

where we have used that

Vi =
⊗

k 6=i
Uk Qi,

which comes from the matricization of the approximation tensor after having performed a
QR decomposition of the matricized core, see (4.10). By denoting the appearing orthogonal
projections as

P+
i (Y)F (t, Y) = Teni

(
Mati(F (t, Y)) Vi V

>
i

)
,

P−i (Y)F (t, Y) = Teni
(
Ui U

>
i Mati(F (t, Y)) Vi V

>
i

)
,

PC(Y)F (t, Y) = F (t, Y)
d

X
i=1

Ui U
>
i ,

we conclude that the orthogonal projection P(Y) onto TYM is given as

P(Y) =
d∑

i=1

(
P+
i (Y)− P−i (Y)

)
+ PC(Y). (4.45)

Therefore, we interpret the Tucker integrator presented in Section 4.6 as a projector-
splitting integrator. We follow the Lie–Trotter projector-splitting integrator and solve the

131

4.6. A projector-splitting integrator for Tucker tensors

following differential equations consecutively for i = 1, . . . , d:
.
Y +
i (t) = P+

i (Y +
i (t))F (t, Y +

i (t)), Y +
i (t0) = Y −i−1(t1),.

Y −i (t) = −P−i (Y −i (t))F (t, Y −i (t)), Y −i (t0) = Y +
i (t1), (4.46)

.
YC(t) = PC(YC(t))F (t, YC(t)), YC(t0) = Y −d (t1),

where for notational convenience Y −0 (t1) = Y (t0). Similarly as for the matrix case discussed
in Section 2.1.1, we can determine closed-form solutions in the explicit case, i.e., when
choosing F (t, Y ±i (t)) and F (t, YC(t)) to be

.
A(t), which will be given in the subsequent

lemma. In this situation, the method just uses the increment ∆A instead of
.
A(t).

For ease of presentation, we introduce the notation

PV∆A = Teni
(
Mati(∆A) Vi(t0) Vi(t0)

>),
PUPV∆A = Teni

(
Ui(t1) Ui(t1)

>Mati(∆A) Vi(t0) Vi(t0)
>),

PW∆A = Teni
(
Mati(∆A) Wi(t0) Wi(t0)

>),

where the factor matrices Ui,Vi,Wi come from the decomposition Mati(Y) = Ui Si V
>
i =

Ui W
>
i for all i = 1, . . . , d.

Lemma 4.4. Let ∆A = A(t1)−A(t0) and suppose Ui is orthogonal, for each i = 1, . . . , d.
Then the subproblems (4.46) for the explicit case satisfy the following:

Y +
i (t0) = Teni(U

+
i (t0) W+

i (t0)
>) yields Y +

i (t1) = Y +
i (t0) + P+

i ∆A,

Y −i (t0) = Teni(U
−
i (t0) W−

i (t0)
>) yields Y −i (t1) = Y −i (t0)− P−i ∆A,

where P+
i ∆A = PW∆A and P−i ∆A = PUPW∆A.

Proof. Before showing the first statement, we perform a QR decomposition V(t)S(t)> =

W(t) and obtain for the initial value the SVD-like factorization Y ±i = Teni(U
±
i S±i V±,>i)

with orthogonal matrices U±i and V±i , respectively. For notational convenience, we will
drop the indices and the superscripts of the factor matrices, but remember that they differ
according to the substep. Since Y ±i (t) ∈ M for all i = 1, . . . , d and from the differential
equation

.
Y +
i = P+

i (Y +
i)

.
A(t) we then find

.
Y +
i (t) = Teni(

.
US V>+ U

.
S V>+ U S

.
V>),

P+
i (Y +

i (t))
.
A(t) = Teni(Mati(

.
A(t)) V(t0) V(t0)

>).

Hence
.

(U S) V>+ U S
.
V> = Mati(

.
A(t)) V(t0) V(t0)

>,

which holds true for
.

(U S) = Mati(
.
A(t)) V(t0) and

.
V = 0.

Solving this differential equation gives after one time step t0 → t1

U(t1)S(t1) = Mati(∆A) V(t0)

132

4. Time integration of rank-constrained Tucker tensors

and so

Y +
i (t1) = Yi(t0) + Teni(Mati(∆A) V(t0) V>(t0)) = Yi(t0) + PV∆A.

Further, since span(V(t)) = span(W(t)) we conclude PV = PW = P+
i , which yields the

stated result.
For the i−-substeps, we proceed in an analogous way. The differential equation for Y −i (t)

gives

.
Y −i (t) = Teni

(.
US V>+ U

.
S V>+ U S

.
V>
)
,

P−i (Y −i (t))
.
A(t) = Teni

(
U(t1) U(t1)

>Mati(
.
A(t)) V(t0) V(t0)

>)

and hence

.
US V>+ U

.
S V>+ U S

.
V> = U(t1) U(t1)

>Mati(
.
A(t)) V(t0) V(t0)

>,

which holds true if

.
S = U(t1)

>Mati(
.
A(t)) V(t0) and

.
U =

.
V = 0.

Its solution after one time step t0 → t1 is given by

S(t1) = U(t1)
>Mati(∆A) V(t0)

and therefore the solutions of the subproblems for Y −i for each i = 1, . . . , d are

Y −i (t1) = Y −i (t0)− Teni
(
U(t1) U(t1)

>Mati(∆A) V(t0) V(t0)
>)

= Y −i (t0)− PUPV∆A

= Y −i (t0)− PUPW∆A

= Y −i (t0)− P−i (Y −i)∆A.

4.6.3 A direct exactness proof of the projector-splitting Tucker integra-
tor

Though we can conclude by the equivalence result of the nested and the projector-splitting
Tucker integrator, which will be shown in Section 4.6.5 that due to the exactness property
of the nested Tucker integrator, the Tucker integrator from [Lub15] is also exact, we will
give here a direct proof of the exactness property of the alternative Tucker integrator.

Theorem 4.5. Suppose A(t) ∈ M is a low-rank tensor for all times t0 ≤ t ≤ T and
A(t0) = Y (t0). Then, the Tucker integrator of [Lub15] presented in Section 4.6.1 is exact,
i.e. Y 1 = A(t1).

A substantial ingredient for proving this theorem is the following key lemma.

133

4.6. A projector-splitting integrator for Tucker tensors

Lemma 4.6. Under the assumptions of Theorem 4.5, the solutions for i = 1, . . . , d for the
first 2d subproblems determined by the projector-splitting Tucker integrator are given as

Y +
i (t1) = PWiA(t1), with Wi =

(
PU<i(t1) ⊗ In>i

)
U6=i(t0) Mati(Ci(t0))

>

Y −i (t1) = PU≤i(t1)A(t0),

where

PU<i(t1) =

i−1⊗

k=1

PUk(t1), In>i =

d⊗

k=i+1

Ink
, U6=i(t0) =

d⊗

l=1
l 6=i

Ul(t0).

Proof. The proof follows an induction over the modes i = 1, . . . , d. First, we show the
result for both subproblems within mode 1.
For 1+: Following Lemma 4.4, the solution of the first subproblem is given by

Y +
1 (t1) = Y +

1 (t0) + P+
1 (Y +

1 (t0))A(t1)− P+
1 (Y +

1 (t0))A(t0).

Since Y (t0) ∈M, the initial value Y +
1 (t0) = Y (t0) in matricized form is

Mat1(Y
+
1 (t0)) = Mat1(Y (t0)) = U1(t0)S1(t0) V1(t0)

>.

Then, by definition of the orthogonal projection P+
1 , we find

P+
1 (Y +

1 (t0))A(t1) = P+
1 (Y (t0))A(t1) = PV1(t0)A(t1).

We observe that S1(t0) V1(t0)
> = Mat1(C1(t0)) U 6=1(t0) = W>

1 and it follows that

span(V1(t0)) = span(W1), (4.47)

which is why

P+
1 (Y +

1 (t0))A(t1) = PW1A(t1).

Further, due to A(t0) = Y (t0), we obtain

P+
1 (Y +

1 (t0))A(t0) = PV1(t0)A(t0) = PV1(t0)Y (t0) = Y (t0) = Y +
1 (t0)

and therefore Y +
1 (t1) = PW1A(t1).

For 1−, the solution in closed form is given by

Y −1 (t1) = Y −1 (t0)− P−1 (Y −1 (t0))A(t1) + P−1 (Y −1 (t0))A(t0).

Now, since A(t) ∈M for all t0 ≤ t ≤ T , we can factorize its 1-mode matricization in SVD-
like form, i.e., Mat1(A(t)) = UA,1(t) Mat1(CA,1(t))

(
UA,2(t)

> ⊗ · · · ⊗ UA,d(t)
>). From

the 1+-step before we can write the initial value as

Y −1 (t0) = Y +
1 (t1) = PW1A(t1) = Ten1(Mat1(A(t1)) W1 W>

1).

134

4. Time integration of rank-constrained Tucker tensors

Then, by the definition of the projection P−1 , using (4.47) and since A(t0) = Y (t0), we find

P−1 (Y −1 (t0))A(t0) = P−1 (Y +
1 (t1))A(t0) = PUA,1(t1)PW1A(t0)

= PUA,1(t1)PV1(t0)Y (t0) = PUA,1(t1)Y (t0)

= PUA,1(t1)A(t0),

(4.48)

where PV1(t0) and PUA,1(t1) are defined analogously as PV and PU in (4.46). The solution
of the first substep for 1+ of the alternative integrator yields an intermediate approx-
imation tensor with updated basis matrix U1 in the first mode and a new matrix S1,
i.e., we can also write the initial value of the current substep as Y −1 (t0) = Y +

1 (t1) =

Ten1(U1(t1)S1(t1) V1(t0)
>). Hence, with (4.47), we also find

P−1 (Y −1 (t0))A(t0) = PU1(t1)PW1A(t0) = PU1(t1)A(t0). (4.49)

Comparing this with (4.48), it follows that

PUA,1(t1) = PU1(t1) (4.50)

and so P−1 (Y −1 (t0))A(t0) = PU1(t1)A(t0). Further, by using the result of the 1+-step, we
have

P−1 (Y −1 (t0))A(t1) = P−1 (Y +
1 (t1))A(t1) = PUA,1(t1)PW1A(t1) = PW1A(t1) = Y +

1 (t1)

= Y −1 (t0)

and therefore Y −1 (t1) = PU1(t1)A(t0).
The results for the next substeps are shown by an inductive argument. Suppose, this

has been shown for all substeps 2±, . . . , (i− 1)±. Then, following Lemma 4.4, the solution
for i+ is given as

Y +
i (t1) = Y +

i (t0) + P+
i (Y +

i (t0))A(t1)− P+
i (Y +

i (t0))A(t0).

Using the result from the previous (i − 1)−-step and since by assumption A(t0) = Y (t0),
we can write the initial value of the current subproblem as

Y +
i (t0) = Y −i−1(t1) + PU≤i−1(t1)A(t0) = PU≤i−1(t1)Y (t0)

= Teni

(
Ui(t0) Mati(Ci(t0))

(
U 6=i(t0)

>(PU<i(t1) ⊗ In>i)
))

= Teni
(
Ui(t0) W>

i

)
.

(4.51)

Hence, by the definition of the projection P+
i , we conclude by Lemma 4.4 that this projec-

tion is given as

P+
i (Y +

i (t0))A(t) = PWiA(t), for all t, (4.52)

i.e. in particular for t = t1 and so P+
i (Y +

i (t0))A(t1) = PWiA(t1). Taking a closer look on
the definition of Wi, we observe that

span(Wi) ⊂ span(PU≤i−1(t1))

135

4.6. A projector-splitting integrator for Tucker tensors

and hence PWi = PWiPU≤i−1(t1). Using this property of the projection, applying (4.52)
and the form (4.51) of the initial value, we obtain for the projected initial value

P+
i (Y +

i (t0))A(t0) = PWiA(t0) = PWiY (t0) = PWiPU≤i−1(t1)Y (t0)

= PWi Teni
(
Ui(t0) W>

i

)
= Teni

(
Ui(t0) W>

i

)

= Y +
i (t0).

Therefore, Y +
i (t1) = PWiA(t1).

For the second substep of the integrator within this mode, we now consider the solution
to the i−-subproblem, which is given by

Y −i (t1) = Y −i (t0)− P−i (Y −i (t0))A(t1) + P−i (Y −i (t0))A(t0).

By assumption, A(t) ∈ M for all times t0 ≤ t ≤ T , and so we can determine an SVD-like
factorization of its i-mode matricization, i.e.,

Mati(A(t)) = UA,i(t) Mati(CA,i(t))
(d⊗

l=1
l 6=i

UA,l(t)
>
)
.

With this factorization at hand, we can rewrite the initial value of the current subproblem
as

Y −i (t0) = Y +
i−1(t1) = PWiA(t1) = Teni

(
UA,i(t1) Mati(CA,i(t1))

(d⊗

l=1
l 6=i

UA,l(t1)
>
)

Wi W
>
i

)
.

(4.53)

Now, after having computed the previous substep within the integration scheme, we can
also write the initial value in terms of its matricized solution as

Y −i (t0) = Y +
i (t1) = Teni(Ui(t1)Si(t1) V0,>

i),

with Vi as defined within the integrator, see, e.g., line 4 in Algorithm 7 in Section 4.6.1. A
comparison of those two forms of the initial value of the current subproblem implies that
the columns of UA,i(t1) and the columns of Ui(t1) span the same subspace of M, since
both constitute the range of the initial value Y −i (t0), i.e.,

PUA,i(t1) = PUi(t1). (4.54)

From the previous i+-step, we know that PWiA(t0) = Y +
i (t0) and Y +

i (t0) = Y −i−1(t1),
which again by the result in the (i− 1)−-step equals PU≤i−1(t1)A(t0). Hence

P−i (Y −i (t0))A(t0) = PUi(t1)PU≤i−1(t1)A(t0) = PU≤i(t1)A(t0).

Futher, due to the result in the previous step, and the key observation (4.54), we obtain

P−i (Y −i (t0))A(t1) = P−i (Y +
i (t1)) = PUi(t1)PWiA(t1) = PUA,i(t1)PWiA(t1)

= PWiA(t1) = Y +
i (t1)

= Y −i (t0).

Therefore, we conclude Y −i (t1) = PU≤i(t1)A(t0).

136

4. Time integration of rank-constrained Tucker tensors

With this essential lemma at hand, we are now in the position to prove the theorem
about the exactness of the projector-splitting Tucker integrator provided in [Lub15] and
recalled in Section 4.6.1.

Proof of Theorem 4.5. In the previous lemma we have seen the form of the solutions to
the subproblems of the integration scheme and in particular how to update the basis
matrices Ui for all i = 1, . . . , d. In order to show exactness of the projector-splitting
Tucker integrator, we are left with showing the update of the core tensor. To this end, we
consider its differential equation, which is given as

.
YC(t) =

.
A(t)

d

X
i=1

Ui(t1)Ui(t1)
>.

Following the idea of a splitting integrator, we take the last updated substep as initial
value for solving the above differential equation, such that Lemma 4.6 gives

Y 1 = Tend(Y
−
d (t1)) + ∆A

d

X
i=1

Ui(t1)Ui(t1)
>

= PU≤d(t1)A(t0) +A(t1)
d

X
i=1

Ui(t1)Ui(t1)
> −A(t0)

d

X
i=1

Ui(t1)Ui(t1)
>

= A(t0)
d

X
i=1

Ui(t1)Ui(t1)
> +A(t1)

d

X
i=1

Ui(t1)Ui(t1)
> −A(t0)

d

X
i=1

Ui(t1)Ui(t1)
>

= A(t1)
d

X
i=1

Ui(t1)Ui(t1)
>

= PU≤d(t1)A(t1)

= A(t1),

where in the last equality we have used the key observation (4.54) that the projection
onto the space spanned by the columns of UA,i(t1) is the same as the projection onto the
column space of Ui(t1) for all i = 1, . . . , d.

4.6.4 Discussion and comparison

The derivation of the nested Tucker integrator presented in Section 4.2 is based on the
idea of solving the differential equations for Ki and Si directly, but computing a low-rank
approximation of the ODE for Li, where i = 1, . . . , d− 1. This is a conceptually different
derivation from the time integrator described in Section 4.6.1.

In this approach we do not consider a differential equation for the matrix L(t) in each
modal step, but compute an update of the core tensor C(t) by solving the corresponding
tensor differential equation at the end of the integration steps after having updated the
matrices Ki and Si for each mode i = 1, . . . , d. A schematic illustration is given in
Figure 4.7.

Comparing Algorithm 7 with Algorithm 6 for the nested Tucker integrator, we see
that the two algorithms solve different matrix differential equations for Ki(t) and Si(t).
The reason is the positioning of the updated basis matrices U1

i : in Algorithm 7, the
corange V0,>

i of the current unfolded approximation tensor takes those basis matrices after

137

4.6. A projector-splitting integrator for Tucker tensors

performing one time step, whereas in Algorithm 6, they are provided on the right-hand
side of the differential equation for Yi(t). Therefore, we observe that the time integrator
described in [Lub15] does not reduce the dimension in each mode, contrary to the nested
Tucker integrator, which diminishes the dimension of the current mode due to the inexact
solution in the third substeps for each mode i = 1, . . . , d− 1.

In addition, the nested Tucker integrator solves a matrix differential equation for L(t)

and the Tucker integrator proposed in [Lub15] deals with solving a tensor differential
equation for updating the core tensor C(t). So from the computational point of view, the
latter is more expensive.

We illustrate the integration method of [Lub15] in Figure 4.7 for ease of comparison
with Figure 4.6.

138

4. Time integration of rank-constrained Tucker tensors

Figure 4.7: Illustration of the Tucker integrator proposed in [Lub15].

139

4.6. A projector-splitting integrator for Tucker tensors

4.6.5 Mathematical equivalence

Going through the lines of Algorithms 6 and 7, we clearly see that the main differences
are the matrix differential equations that have to be solved. Hence, it is sufficient to show
equivalence of the matrix differential equations that appear in Algorithms 6 and 7. In
order to distinguish between the factors computed by those two methods, we will follow
the notation used in the description of the integrator in Section 4.6.1 and denote those
for Algorithm 7 using · , e.g., Vi, Ki(t), and Si(t). The notation for Algorithm 6 is left
unchanged.

Theorem 4.7. The nested Tucker integrator presented in Section 4.2 (Algorithm 6) and
the Tucker integrator described in [Lub15] (Algorithm 7) applied on the tensor differential
equation (4.1) are equivalent in the sense that they yield the same low-rank approximation
after each time step.

We will show the proof for the first time step from t0 → t1. The same arguments hold
for the subsequent time steps, where we take the result from the previous one as initial
value, such that the following proof holds for each time step.

Proof. We start with Algorithm 7. Writing line 4 as

V
0,>
i = Q0,>

i

(i−1⊗
k=1

U1,>
k ⊗

d⊗

k=i+1

U0,>
k

)
,

the equation of motion of Ki becomes
.
Ki(t) = Mati

(
F
(
t,Teni(Ki(t)V

0,>
i)

))
V

0
i

= Mati

(
F
(
t,Teni

(
Ki(t) Q0,>

i

(i−1⊗
k=1

U1,>
k ⊗

d⊗

k=i+1

U0,>
k

))))
V

0
i .

For Algorithm 6, on the other hand that equation reads

.
Ki(t) = Mati

(
F
(
t,Teni(Ki(t) V0,>

i)
i−1
X
k=1

U1
k

) i−1
X
k=1

U1,>
k

)
V0
i .

We first expand the argument of F in this ODE. Writing line 4 in Algorithm 6 as

V0,>
i = Q0,>

i

(i−1⊗
k=1

Irk ⊗
d⊗

k=i+1

U0,>
k

)
(4.55)

and substituting, we obtain

Teni(Ki(t) V0,>
i)

i−1
X
k=1

U1
k = Teni(Ki(t) Q0,>

i)
d

X
k=i+1

U0
k

i−1
X
k=1

U1
k

= Teni

(
Ki(t) Q0,>

i

(d⊗

k=i+1

U0,>
k ⊗

i−1⊗

k=1

U1,>
k

))
.

140

4. Time integration of rank-constrained Tucker tensors

Hence, we see that F has the same arguments in both algorithms for the K-step. For ease
of clarity, we omit the argument and continue with

.
Ki(t) = Mati

(
F (t, ·)

i−1
X
k=1

U1,>
k

)
V0
i

= Mati

(
F (t, ·)

)(i−1⊗
k=1

U1
k⊗

d⊗

k=i+1

Irk

)(i−1⊗
k=1

Irk ⊗
d⊗

k=i+1

U0
k

)
Q0
i

= Mati

(
F (t, ·)

)(i−1⊗
k=1

U1
k⊗

d⊗

k=i+1

U0
k

)
Q0
i .

Comparing with V
0
i above, we see that the differential equations for Ki(t) and Ki(t) are

indeed equivalent.
Hence, applying the same numerical method to both of them would give the same result

K1
i = K

1
i .

The equivalence of the evolution equations for
.
Si(t) and

.
Si(t) can be shown in a similar

way as above. With V
0,>
i from line 4, line 10 in Algorithm 7 reads

.
Si(t) = −U1,>

i Mati

(
F
(
t,Teni(U

1
i Si(t)V

0,>
i)

))
V

0
i

= −U1,>
i Mati

(
F
(
t,Teni

(
U1
i Si(t) Q0,>

i

(i−1⊗
k=1

U1,>
k ⊗

d⊗

k=i+1

U0,>
k

)))
V

0
i

= −U1,>
i Mati

(
F
(
t,Teni

(
Si(t) Q0,>

i

(i⊗

k=1

U1,>
k ⊗

d⊗

k=i+1

U0,>
k

)))
V

0
i . (4.56)

In Algorithm 6 this line is

.
Si(t) = −U1,>

i Mati

(
F
(
t,Teni(U

1
i Si(t) V0,>

i)
i−1
X
k=1

U1
k

) i−1
X
k=1

U1,>
k

)
V0
i .

With the same V
0,>
i as given in (4.55), we have for the argument of F within Algorithm 6:

Teni(U
1
i Si(t) V0,>

i)
i−1
X
k=1

U1
k = Teni

(
U1
i Si(t) Q0,>

i

(i−1⊗
k=1

Irk ⊗
d⊗

k=i+1

U0,>
k

)) i−1
X
k=1

U1
k

= Teni(Si(t) Q0,>
i)

d

X
k=i+1

U0
k

i

X
k=1

U1
k

= Teni

(
Si(t) Q0,>

i

(d⊗

k=i+1

U0,>
k ⊗

i⊗

k=1

U1,>
k

))
.

Comparing this argument with the one in line 10 of Algorithm 7 or rather in (4.56), we
observe that F has the same argument.

Since U1
i as the first factor in both differential equations, the one for S(t) and the one

for S(t), is the same, and we have already seen equivalence regarding the multiplication
by V

0
i or V0

i in the ODEs for K(t) and K(t), respectively, we conclude the equivalence of
S(t) and S(t). This gives the same numerical solutions after one time step, i.e., S1

i = S
1
i .

141

4.7. Numerical experiments

Finally, for the core tensor, we compare the differential equation for C(t) in Algorithm 7,

.
C(t) = F

(
t, C(t)

d

X
i=1

U1
i

) d

X
i=1

U1,>
i , C(t0) = C0,

with that of L(t) from Algorithm 6. Retensorizing the latter in the dth mode yields

Tend(
.
L(t)>) = Tend

(
U1,>
d Matd

(
F
(
t,Tend(U

1
d L(t)>)

d−1
X
i=1

U1
i

)d−1
X
i=1

U1,>
i

))

= Tend

(
U1,>
d Matd

(
F
(
t,Tend(L(t)>)

d

X
i=1

U1
i

)d−1
X
i=1

U1,>
i

))

= F
(
t,Tend(L(t)>)

d

X
i=1

U1
i

) d

X
i=1

U1,>
i .

Identifying now C(t) as Tend(L(t)>), we see that the differential equations are the same.
Since this also holds true for the initial values,

Tend(L
0,>
d) = Tend(Matd(C

0)) = C0,

both algorithms deliver the same low-rank approximation Y 1.

4.7 Numerical experiments

We present two numerical examples to illustrate our theoretical results of the proposed
nested Tucker integrator. We consider examples that are tensor variants of the examples
in [KLW16, Section 4] for the matrix case and are taken from [LVW18], in particular,
approximately adding tensors and an example of a discrete nonlinear Schrödinger equation.

4.7.1 Approximate addition of tensors

Let A ∈ Rn1×···×nd be a tensor of multilinear rank r = (r1, . . . , rd) and let B ∈ Rn1×···×nd .
We consider the addition of the two given tensors, which results in

C = A+B, (4.57)

where C typically is not of low rank. We aim to find an approximation tensor of multilinear
rank (r1, . . . , rd). Such a computation is for example required in optimization problems
on low-rank manifolds, under the name of retractions, and need to be computed in each
iterative step, see [AO15]. There, the increment is typically a tangential tensor B ∈ TAM,
which after adding directly as in (4.57) yields a tensor C of multilinear rank (2r1, . . . , 2rd).
Afterwards, the result is projected onto M by an SVD-based rank r approximation in
order to obtain an approximation tensor Ỹ 1 ∈M. With this procedure, we first leave the
low-rank manifold and then project back ontoM.

Instead, we propose to apply one time step of the nested Tucker integrator starting
with t0 = 0 and with time step size h = 1 in order to solve

.
Y (t) = P(Y)B, Y (t0) = A. (4.58)

142

4. Time integration of rank-constrained Tucker tensors

This gives an approximate solution Y 1 ∈ M for the result of the direct addition (4.57).
Contrary to the standard approach, we never leave the low-rank manifold when applying
the nested Tucker integrator.

Note that in case when P(Y) is the identity map, the differential equation (4.58) sim-
plifies to

.
Y (t) = B, Y (t0) = A. Solving this ODE for one time step t0 → t0 + h with

h = 1, we obtain Y (1) = A + B. Hence solving this ODE yields the same result as the
direct addition (4.57). The approximation tensor Y (1) is not of low rank, since we have
not projected the tensor B onto the tangent space of the low-rank manifold. Due to this
drawback, this is not our method of choice.

For our numerical example, we initialize A as a random Tucker tensor of size 100 ×
100 × 100 and multilinear rank r = (10, 10, 10). The increment B is constructed to be a
random tensor in the tangent space TAM. We compare the full rank addition (4.57) with
the low-rank approximation Y 1 ∈ M obtained by the nested Tucker integrator. We also
compare those results with the retracted rank 2r approximation Ỹ 1, for which we perform
a best rank r approximation. The figure below illustrates those comparisons:

10 -210 -110 0

||B||

10 -8

10 -6

10 -4

10 -2

er
ro

r

Figure 4.8: Errors for tensor addition for tangential increments B of decreasing norm.

We observe that the errors decrease with decreasing norm of the increment tensor
B. We also see that the difference between the errors of the splitting integrator and the
projected direct addition is marginal.

4.7.2 A discrete nonlinear Schrödinger equation for tensors

We choose an example, where the differential equation consists of a linear and a nonlinear
part, where the nonlinearity is controlled by ε, such that we can see the error behavior of
the nested Tucker integrator.

To this end, we model a dilute Bose–Einstein condensate, trapped in a periodic po-

143

4.7. Numerical experiments

tential, see [TS01], on a regular lattice of width γ. The dynamics of its phase diagram is
governed by the discrete nonlinear Schrödinger equation

i
.
A(t) = −1

2
L[A(t)] + ε|A(t)|2 �A(t)

Ajkl(t0) = exp
(
−1/γ2((j − j1)2 − (k − k1)2 − (l − l1)2)

)

+ exp
(
−1/γ2((j − j2)2 − (k − k2)2 − (l − l2)2)

)
,

(4.59)

where A(t) ∈ Rn1×n2×n3 with ni = 100 for all i ∈ {1, 2, 3} and � denotes the entrywise
(Hadamard) product. The bounded linear operator L : Rn1×n2×n3 → Rn1×n2×n3 describes
the interaction between the grid points centered at (j, k, l) for all j, k, l = 1, . . . , 100. It is
defined componentwise as

L[A](j, k, l) = A(j − 1, k, l) +A(j + 1, k, l) +A(j, k − 1, l) +A(j, k + 1, l)

+A(j, k, l − 1) +A(j, k, l + 1),

where terms with indices outside the range from 1 to 100 are interpreted as 0. Compared to
the more standard seven-point stencil for the discrete Laplace operator in three dimensions,
the operator L does not take the centered grid point into account. The entries of the tensor
|A|2 are the squares of the absolute values of the corresponding entries of A. The parameter
ε determines the degree of nonlinearity.

We consider two excitations of the system, which are located at grid-points (j1, k1, l1) =

(75, 25, 1) and (j2, k2, l2) = (25, 75, 100). We take γ = 10.
To compute a low-rank approximation Y (t) ∈M with multilinear rank r = (10, 10, 10)

to the solution of the nonlinear differential equation (4.59), we apply the nested Tucker
integrator (Algorithm 6) to (4.59). The differential equations appearing in the substeps of
each mode are solved by the classical 4th-order Runge–Kutta method with sub time step
size h = 10−3. This approximate solution is compared to a full rank reference solution,
which is also computed by a 4th-order Runge–Kutta method, but with h = 0.5 · 10−3. In
Table 4.1 we show the error behavior for different parameters ε and time step sizes h:

ε \ h 1 10−1 10−2 10−3

1 4.59e-1 4.01e-2 3.88e-2 3.88e-2

10−1 9.39e-2 9.68e-4 1.61e-4 1.47e-4

10−2 9.27e-3 3.20e-5 2.19e-6 1.30e-6

10−3 5.36e-4 3.18e-6 8.93e-8 3.54e-8

10−4 5.12e-5 2.73e-7 3.23e-9 1.91e-9

Table 4.1: Error in Frobenius norm at t = 1 of the rank (10,10,10) nested Tucker integrator
applied to (4.59).

For each time step size h, we see the error decaying with ε. This observation is due to
the fact that the linear term L[A(t)] in (4.59) maps onto the tangent space TYM of the

144

4. Time integration of rank-constrained Tucker tensors

manifoldM of multilinear rank. The nonlinear term is of full rank, but it is controlled by
the factor ε. This makes the dependence of the error behavior on ε explicit. We also see in
the first row that the error stagnates from time step size h = 10−2 on and this shows the
dominance of the perturbation factor ε. We would observe the same behavior for smaller
ε, but for smaller time step sizes.

Finally, in the last row, where the influence of ε is small, we observe convergence of the
error in terms of the time step size h of the order given in Theorem 4.3.

145

146

5 Further result and future research

Based on the nested Tucker integrator, we discuss two other tensor formats, whose nu-
merical analysis and the integration method itself are related to the ideas in the Tucker
case.

We are given the tensor differential equation

.
A(t) = F (t, A(t)), A(t0) = A0, (5.1)

where A(t) ∈ Rn1×···×nd is the unknown solution, which we aim to approximate by a tensor
of the same size, but of low rank. To this end, we follow the ansatz of the dynamical low-
rank approximation described in Section 1.2 and evolve a differential equation for the
approximation tensor Y (t) of low rank.

In this chapter, we are concerned with an integration method in case when Y (t) is
in the tensor train format and we discuss its error behavior. In fact, the time integrator
for tensor trains extends the matrix projector-splitting integrator. The link between the
approaches for tensor trains and for Tucker tensors is that the derivation of the Tucker
integrator presented in Section 4.2 can be traced back to the ideas used in the error analysis
of the time integrator for tensor trains. The time integration of tensor trains described in
this chapter is taken from [LOV15] and the error analysis is first proposed in [KLW16].

We also give a perspective for future research about tensor tree networks and their time
integration. The ideas from the design and analysis of the nested Tucker integrator can
be extended to the tensor tree network representation as a generalized low-rank format,
which includes Tucker tensors and tensor trains.

5.1 Time integration of rank-constrained tensor trains

We start with recalling the tensor train decomposition (TT) introduced in [OT09, Ose11].
A tensor Y (t) ∈ Rn1×···×nd is in the tensor train format if there exist core tensors Ci(t) ∈
Rri−1×ni×ri of full multilinear rank, such that every element of Y (t) is of the form

Y (k1, . . . , kd)(t) =

r1∑

j1=1

· · ·
rd−1∑

jd−1=1

C1(1, k1, j1)(t) · C2(j1, k2, j2)(t) · · ·Cd(jd−1, kd, 1)(t),

where ki = 1, . . . , ni and i = 1, . . . , d. The rank of the tensor train Y (t) is defined to be
r = (1, r1, . . . , rd−1, 1) ∈ Nd+1. We aim to approximate the unknown solution of the tensor

147

5.1. Time integration of rank-constrained tensor trains

differential equation (5.1) for A(t) by a tensor Y (t) that is in the low-rank manifold

M := {Y (t) ∈ Rn1×···×nd | rankY (t) = (1, r1, . . . , rd−1, 1)},

which in fact is shown to be a manifold, see [HRS12, UV13]. To this end, we follow the
ansatz of the dynamical low-rank approximation, see Section 1.2 for tensors instead for
matrices (simply by exchanging the matrix Y(t) by the tensor Y (t)), and consider the
reduced model equation

.
Y (t) = P(Y (t))F (t, Y (t)), Y (t0) = Y 0 ∈M, (5.2)

where P(Y (t)) is the orthogonal projection onto the tangent space TY (t)M of the low-rank
manifoldM at Y (t).

The integration procedure proposed in [LOV15] is an extension of the matrix projector-
splitting integrator described in Section 2.1. It is based on singular value decompositions
of unfoldings of the approximation tensor, which are of the form (omitting the time de-
pendence)

Unf i(Y) = Ui Si V
>
i+1 .

We refer to Section 4.1.2 for a recapitulation of how to unfold a tensor into a matrix.
The singular value decomposition of the unfoldings of Y can be obtained recursively in
both directions, i.e., starting from the SVD of Unf i(Y), we can determine the SVD of
Unf i−1(Y) as well as of Unf i+1(Y), respectively.

Using this factorization, the orthogonal projection in (5.2) can be decomposed as

P(Y (t))F (t, Y (t)) =
d−1∑

i=1

Teni

[(
Ini ⊗Ui−1 U>i−1

)
Unf i

(
F (t, Y (t))

)
Vi+1 V>i+1

− Ui U
>
i Unf i

(
F (t, Y (t))

)
Vi+1 V>i+1

]

+ Tend

[(
Ind
⊗Ud−1 U>d−1

)
Unfd

(
F (t, Y (t))

)]
,

see [LOV15, Theorem 3.1]. The orthogonal projections PUi = Ui U
>
i and PVi = Vi V

>
i

operate on the core tensors Ck with k = 1, . . . , i and on the core tensors Cl with l = i, . . . , d,
respectively. Denoting

P+
i (Y +

i (t))F (t, Y +
i (t)) = Teni

[(
Ini ⊗PUi−1

)
Unf i

(
F (t, Y +

i (t))
)
PVi+1

]

and P−i (Y −i (t))F (t, Y −i (t)) = Teni
[
PUi Unf i

(
F (t, Y −i (t))

)
PVi+1

]
,

where for notational simplicity we left out the time dependence of the orthogonal projec-
tions PUi and PVi , respectively, we rewrite the differential equation for Y (t) as
.
Y (t) = P+

1 (Y +
1 (t))F (t, Y +

1 (t))− P−1 (Y −1 (t))F (t, Y −1 (t)) + · · ·+ P+
d (Y +

d (t))F (t, Y +
d (t)).

(5.3)

This decomposed right-hand side of the differential equation is similar to the form (2.6) in
the matrix case. In fact, for d = 2, this is the actual decomposed differential equation for
the matrix Y(t).

148

5. Further result and future research

We do not solve this evolution equation directly, but we follow the Lie–Trotter splitting
method, where we solve the (2d− 1) subproblems

.
Y +
1 (t) = P+

1 (Y +
1 (t))F (t, Y +

1 (t)), Y +
1 (t0) = Y0,

.
Y −i (t) = −P−i (Y −i (t))F (t, Y −i (t)), Y −i (t0) = Y +

i (t0 + h) for i = 1, . . . , d− 1,
.
Y +
i (t) = P+

i (Y +
i (t))F (t, Y +

i (t)), Y +
i (t0) = Y −i−1(t0 + h) for i = 2, . . . , d

sequentially. An efficient implementation and a graphical description of the integrator
using tensor networks are given in [LOV15].

Now, let us exemplify an important observation about the projections within those
subproblems by considering the solutions of the i−-subproblems that are given in [LOV15,
Theorem 4.1]. Starting from

Y −i (t0) = Teni

[
Ui(t0)Si(t0) V>i+1(t0)

]
,

the solution after one time step is given by

Y −i (t1) = Y −i (t0)−
∫ t1

t0

P−i (Y −i (t0))F (t, Y −i (t)) dt

= Teni

[
Ui(t0)Si(t0) V>i+1(t0)−

∫ t1

t0

PUi Unf i
[
F (t, Y −i (t))

]
PVi+1 dt

]

= Teni

[
Ui(t0)

(
Si(t0)−

∫ t1

t0

U>i (t0) Unf i
[
F (t, Y −i (t))

]
Vi+1(t0) dt

)
V>i+1(t0)

]
.

Comparing the initial value with the solution, we observe that the factor matrices Ui(t0)

and Vi+1(t0) stay constant and that in fact, we have updated the matrix Si(t). Since the
orthogonal projections consist of those two matrices, we conlude that, as in the matrix case,
the projections P±i are preserved during the solution of the corresponding subproblem. The
same observation is made for the closed-form solution of the i+-subproblems, see [LOV15,
Theorem 4.1].

Another essential property of the tensor train integrator is its exactness, which holds
true for matrices and Tucker tensors, see Section 2.2.1, Section 4.4 and Section 4.6.3. It
is also valid, under the same assumptions, for tensor trains [LOV15, Theorem 5.1]: if the
explicitly given tensor A(t) is in the manifold of low rank TT tensors and A(t0) = Y 0,
then, for sufficiently small time steps h > 0, the tensor train projector-splitting integrator
is exact, i.e., Y +

d (t1) = A(t1) after one time step.
Just as in the matrix case, the preservation of Ui and Vi in the integration steps for

all i = 1, . . . , d as well as the exactness property are the two essential ingredients to prove
robustness also for the tensor train projector-splitting integrator with respect to small
singular values.

Assumption 5.1. We assume that

(1) F is Lipschitz continuous:

‖F (t, Y)− F (t, Ỹ)‖ ≤ L‖Y − Ỹ ‖ ∀ Y, Ỹ ∈ Rn1×···×nd ,

149

5.1. Time integration of rank-constrained tensor trains

(2) F is bounded:

‖F (t, Y)‖ ≤ B ∀ Y ∈ Rn1×···×nd ,

(3) F is in the tangent space TYM up to a small perturbation term:

F (t, Y) = M(t, Y) +R(t, Y),

where M maps to the tangent bundle of the low-rank manifoldM and the remainder
R is small onM,

M(t, Y) ∈ TYM and ‖R(t, Y)‖ ≤ ε ∀ Y ∈M, ∀ t0 ≤ t ≤ T,

(4) the initial value A0 ∈ Rn1×···×nd and the starting value Y 0 ∈ M of the numerical
method are δ-close:

‖A0 − Y 0‖ ≤ δ.

With these assumptions at hand, we are now in the position to state the error bound
drawn from [KLW16, Theorem 3.1] of the dynamical low-rank approximation of tensor
trains when applying the projector-splitting integrator.

Theorem 5.2. Under Assumption 5.1, the error of the Lie–Trotter and of the Strang
splitting method at tn = t0 + nh, with step size h > 0, is bounded by

‖A(tn)− Y n‖ ≤ c0δ + c1ε+ c2h for tn ≤ T,

where the constants ci only depend on L,B, T and the dimension d.

A proof of this error estimate is given in [KLW16]. We give a concise overview of the
strategy of the proof.

In order to solve the differential equation (5.3) for Y (t), we apply the d-dimensional
projector-splitting integrator and solve the subproblems for Y ±i (t) one after the other.
Starting with i = 1, the trick is to compress the remaining projections for i = 2, . . . , d and
identify it as one projection in merged form, such that we have to solve three subpoblems,
just as in the matrix case. The first two steps of this integrator are the same as in the matrix
case, they yield Y +

1 (t1) and Y −1 (t1), respectively. Now, since the arising third subproblem
with the compressed projection is prohibitively large, we do not solve it directly, but we
perform a low-rank approximation by applying the (d− 1)-dimensional projector-splitting
integrator for updating the remaining core tensors. Due to the exactness result and the
preservation of the subprojections mentioned above, the substeps of the (d−1)-dimensional
tensor-train projector-splitting integrator are the same as those from the full d-dimensional
integrator but starting from the third substep onwards. This observation is the key to the
main idea of recursively using the error bound of the matrix case with inexact solution of
the third step, see Section 2.4.2. Since we solve the third step by a low-rank approximation,
we obtain an error of size O(δ+ε+h+η), where η represents the additional error obtained

150

5. Further result and future research

from the approximate solution of the third step. This third step consists of applying the
(d− 1)-dimensional TT projector-splitting integrator and so in fact the application of the
matrix integrator for updating the core in the next mode. Therefore, η is of the form
η = O(ε + h). Continuing this argument until the last step i = d, an error bound of size
O(δ + ε+ h) follows.

The numerical example in [KLW16, Section 4.2] corroborates this convergence result.

5.2 Outlook: Time integration of tensor tree networks

Tensor trains can be interpreted as a special case to the recently proposed hierarchical
Tucker (HT) tensors, independently presented in [HK09] and [Gra10]. For a subspace based
treatment of representations of higher-order tensors, we refer to [BSU16]. Hierarchical
Tucker tensors employ a recursive hierarchical construction of Tucker tensor type. Their
decomposition is introduced based on a binary dimension tree, which we exemplify for a
three-dimensional case in the following figure:

Figure 5.1: Exemplary three-dimensional binary tree for HT.

Analogous to the Tucker format, the manifold of hierarchical Tucker tensors can be
shown to be an embedded manifold [UV13]. Applying the dynamical low-rank approxima-
tion ansatz to the tensor differential equation (5.1) with the underlying HT manifold again
yields a tensor differential equation for the approximate HT tensor Y (t). A numerical
integration procedure for integrating HT tensors in time is proposed in [LRSV13]. Simi-
larly as in the numerical analysis of the integration method in [KL07], this integrator for
HT tensors is shown to have curvature bounds and error estimates which depend on the
inverse of the smallest singular value of matricizations of the hierarchical Tucker tensor,
see [LRSV13, AJ14].

It would thus be interesting to extend the HT integrator in [LRSV13] to a method that
is robust with respect to small singular values.

Even more general than the HT tensors are tensor tree networks (TTN), whose dimen-

151

5.2. Outlook: Time integration of tensor tree networks

sion tree is not based on two, but on several branches at each node. We exemplify this by
extending the binary tree for HT tensors in Figure 5.1 to a general tree for TTN in the
following figure:

Figure 5.2: Exemplary six-dimensional general tree for TTN.

In this thesis, we have proposed the nested Tucker integrator for integrating Tucker
tensors in time. It is based on the idea of recursively solving the first two steps of the
matrix projector-splitting integrator directly and the third step by performing a low-rank
approximation for each mode i = 1, . . . , d. Now, rewriting tensor tree networks in a
beneficial way as Tucker tensors allows us to transfer the idea of applying the matrix
projector-splitting integrator with inexact solutions of substeps to the TTN case. Since
this low-rank tensor format is a generalization of many underlying tensor formats, such as
Tucker tensors or tensor trains, and due to its promising reduction of computational cost,
its development is of large interest. A robust and efficient time integrator for TTN is a
topic of current research that will be reported elsewhere.

152

Bibliography

[AG15] P. Axelsson and F. Gustafsson: Discrete-time solutions to the
continuous-time differential Lyapunov equation with applications to Kalman
filtering. IEEE Transactions on Automatic Control, 60:632–643, 2015.

[AJ14] A. Arnold and T. Jahnke: On the approximation of high-dimensional
differential equations in the hierarchical Tucker format. BIT Numerical
Mathematics, 54:305–341, 2014.

[Ale61] V.M. Alekseev: An estimate for the perturbations of the solutions of
ordinary differential equations. Westnik Moskov Univ. Ser. I Mat. Meh. 2,
1:28–36, 1961.

[AMH11] A.H. Al-Mohy and N.J. Higham: Computing the action of the matrix
exponential, with an application to exponential integrators. SIAM Journal
on Scientific Computing, 33:488–511, 2011.

[AO15] P.-A. Absil and I.V. Oseledets: Low-rank retractions: a survey and
new results. Computational Optimization and Applications, 62:5–29, 2015.

[Arn51] W.E. Arnoldi: The principle of minimized iterations in the solution of
the matrix eigenvalue problem. Quarterly of Applied Mathematics, 9:17–29,
1951.

[Baş91] T. Başar: Generalized Riccati equations in dynamic games. In: S. Bit-
tanti, A.J. Laub and J.C. Willems (editors), The Riccati Equation.
Springer, Berlin Heidelberg, 293–333, 1991.

[Bel73] E. Beltrami: Sulle funzioni bilineari. Giornale di Matematiche ad Uso
degli Studenti Delle Università, 11:98–106, 1873.

[Bel61] R.E. Bellman: Adaptive control processes: a guided tour. Princeton
University Press, Princeton, NJ, 1961.

[BJWM00] M.H. Beck, A. Jäckle, G.A. Worth and H.-D. Meyer: The multi-
configuration time-dependent Hartree (MCTDH) method: a highly efficient
algorithm for propagating wavepackets. Elsevier Physics reports, 324:1–105,
2000.

153

BIBLIOGRAPHY

[BL18] P. Benner and N. Lang: Peer methods for the solution of large-
scale differential matrix equations. arXiv preprint arXiv:1807.08524v1
[math.NA], 2018.

[BM97] M.H. Beck and H.-D. Meyer: An efficient and robust integration
scheme for the equations of motion of the multiconfiguration time-dependent
Hartree (MCTDH) method. Zeitschrift für Physik D Atoms, Molecules and
Clusters, 42:113–129, 1997.

[BM17] T. Başar and J. Moon: Riccati equations in Nash and Stackelberg dif-
ferential and dynamic games. In: D. Dochain, D. Henrion and D.
Peaucelle (editors), IFAC-PapersOnLine. Elsevier, Amsterdam, 2017,
9547–9554.

[Boy01] J.P. Boyd: Chebyshev and Fourier spectral methods. Dover, Mineola, NY,
2nd edition, 2001.

[BSU16] M. Bachmayr, R. Schneider and A. Uschmajew: Tensor networks and
hierarchical tensors for the solution of high-dimensional partial differential
equations. Foundations of Computational Mathematics, 16:1423–1472, 2016.

[CC70] J.D. Carroll and J.-J. Chang: Analysis of individual differences in
multidimensional scaling via an N-way generalization of “Eckart-Young” de-
composition. Psychometrika, 35:283–319, 1970.

[CC08] K. Choi and A. Cichocki: Control of a wheelchair by motor imagery in
real time. In: C. Fyfe, D. Kim, S.-Y. Lee and H. Yin (editors), Intel-
ligent Data Engineering and Automated Learning – IDEAL 2008. IDEAL
2008, Lecture Notes in Computer Science vol. 5326. Springer, Berlin Hei-
delberg, 2008, 330–337.

[Cic13] A. Cichocki: Tensor decompositions: a new concept in brain data analy-
sis?. arXiv preprint arXiv:1305.0395v1 [cs.NA], 2013.

[CKOR16] M. Caliari, P. Kandolf, A. Ostermann and S. Rainer: The Leja
method revisited: backward error analysis for the matrix exponential. SIAM
Journal on Scientific Computing, 38:A1639–A1661, 2016.

[CLK+15] F. Cong, Q.-H. Lin, L.-D. Kuang, X.-F. Gong, P. Astikainen and T.
Ristaniemi: Tensor decomposition of EEG signals: a brief review. Journal
of Neuroscience Methods, 248:59–69, 2015.

[CWR+08] A. Cichocki, Y. Washizawa, T. Rutkowski, H. Bakardjian, A.-H.
Phan, S. Choi, H. Lee, Q. Zhao, L. Zhang and Y. Li: Noninvasive
BCIs: Multiway signal-processing array decompositions. Computer, 41:34–
42, 2008.

154

BIBLIOGRAPHY

[CZPA09] A. Cichocki, R. Zdunek, A.-H. Phan and S.-i. Amari: Nonnegative
matrix and tensor factorizations: applications to exploratory multi-way data
analysis and blind source separation. John Wiley & Sons, West Sussex, 2009.

[DE99] L. Dieci and T. Eirola: On smooth decompositions of matrices. SIAM
Journal on Matrix Analysis and Applications, 20:800–819, 1999.

[Dir30a] P.A.M. Dirac: Note on exchange phenomena in the Thomas atom. Math-
ematical Proceedings of the Cambridge Philosophical Society, 26:376–385,
1930.

[Dir30b] P.A.M. Dirac: The principles of quantum mechanics. Clarendon press,
Oxford, 1930.

[DK90] J. Demmel and W. Kahan: Accurate singular values of bidiagonal ma-
trices. SIAM Journal on Scientific and Statistical Computing, 11:873–912,
1990.

[DLDMV00a] L. De Lathauwer, B. De Moor and J. Vandewalle: A multilinear
singular value decomposition. SIAM Journal on Matrix Analysis and Ap-
plications, 21:1253–1278, 2000.

[DLDMV00b] L. De Lathauwer, B. De Moor and J. Vandewalle: On the best rank-
1 and rank-(R1,R2, ...,Rn) approximation of higher-order tensors. SIAM
Journal on Matrix Analysis and Applications, 21:1324–1342, 2000.

[DS87] C.E. De Souza: Riccati differential equation in optimal filtering of periodic
non-stabilizable systems. International Journal of Control, 46:1235–1250,
1987.

[EN99] K.-J. Engel and R. Nagel: One-parameter semigroups for linear evolu-
tion equations. Springer Science & Business Media, New York, 1999.

[EN06] K.-J. Engel and R. Nagel: A short course on operator semigroups.
Springer Science & Business Media, New York, 2006.

[EO13] L. Einkemmer and A. Ostermann: Exponential integrators on graphic
processing units. In: High performance computing and simulation (HPCS),
2013 International Conference on High Performance Computing & Simula-
tion. IEEE, New York, 490–496, 2013.

[EO15] L. Einkemmer and A. Ostermann: Overcoming order reduction in
diffusion-reaction splitting. Part 1: Dirichlet boundary conditions. SIAM
Journal on Scientific Computing, 37:A1577–A1592, 2015.

[EY36] C. Eckart and G. Young: The approximation of one matrix by another
of lower rank. Psychometrika, 1:211–218, 1936.

155

BIBLIOGRAPHY

[Fre34] J.I. Frenkel: Wave mechanics: advanced general theory. Clarendon Press,
Oxford, 1934.

[Gau09] C.F. Gauss: Theoria motus corporum coelestium in sectionibus conicis
solem ambientium. Perthes and Besser, Hamburg, 1809.

[Gau23] C.F. Gauss: Theoria combinationis observationum erroribus minimis ob-
noxiae, pars prior. Königliche Gesellschaft der Wissenschaften zu Göttingen,
Göttingen, 1823.

[GK65] G. Golub and W. Kahan: Calculating the singular values and pseudo-
inverse of a matrix. Journal of the Society for Industrial and Applied Math-
ematics, Series B: Numerical Analysis, 2:205–224, 1965.

[GKT13] L. Grasedyck, D. Kressner and Ch. Tobler: A literature survey of
low rank tensor approximation techniques. GAMM-Mitteilungen, 36:53–78,
2013.

[Gra10] L. Grasedyck: Hierarchical singular value decomposition of tensors.
SIAM Journal on Matrix Analysis and Applications, 31:2029–2054, 2010.

[Grö67] W. Gröbner: Die Lie-Reihen und ihre Anwendungen. Deutscher Verlag
der Wissenschaften, Berlin, 1967.

[GVL96] G.H. Golub and C.F. Van Loan: Matrix computations. The Johns
Hopkins University Press, Baltimore, MD, 1996.

[Hac12] W. Hackbusch: Tensor spaces and numerical tensor calculus. Springer,
Berlin Heidelberg, 2012.

[Har70] R.A. Harshman: Foundations of the PARAFAC procedure: models and
conditions for an “explanatory” multimodal factor analysis. UCLA Working
Papers in Phonetics, 16:1–84, 1970.

[Hit27] F.L. Hitchcock: The expression of a tensor or a polyadic as a sum of
products. Journal of Mathematics and Physics, 6:164–189, 1927.

[Hit28] F.L. Hitchcock: Multiple invariants and generalized rank of a p-way
matrix or tensor. Journal of Mathematics and Physics, 7:39–79, 1928.

[HK09] W. Hackbusch and S. Kühn: A new scheme for the tensor representation.
Journal of Fourier Analysis and Applications, 15:706–722, 2009.

[HL97] M. Hochbruck and Ch. Lubich: On Krylov subspace approximations
to the matrix exponential operator. SIAM Journal on Numerical Analysis,
34:1911–1925, 1997.

[HLO+16] J. Haegeman, Ch. Lubich, I.V. Oseledets, B. Vandereycken and
F. Verstraete: Unifying time evolution and optimization with matrix
product states. Physical Review B, 94:165116, 2016.

156

BIBLIOGRAPHY

[HLW06] E. Hairer, Ch. Lubich and G. Wanner: Geometric numerical inte-
gration: structure-preserving algorithms for ordinary differential equations.
Springer, Berlin Heidelberg, 2006.

[HM12] U. Helmke and J.B. Moore: Optimization and dynamical systems.
Springer, London, 2012.

[HNW93] E. Hairer, S.P. Nørsett and G. Wanner: Solving ordinary differential
equations I. Nonstiff problems. Springer, Berlin Heidelberg, 1993.

[HO10] M. Hochbruck and A. Ostermann: Exponential integrators. Acta Nu-
merica, 19:209–286, 2010.

[HOV13] J. Haegeman, T.J. Osborne and F. Verstraete: Post-matrix product
state methods: to tangent space and beyond. Physical Review B, 88:075133,
2013.

[HRS12] S. Holtz, T. Rohwedder and R. Schneider: On manifolds of tensors
of fixed TT-rank. Numerische Mathematik, 120:701–731, 2012.

[HS14] E. Hansen and T. Stillfjord: Convergence analysis for splitting of the
abstract differential Riccati equation. SIAM Journal on Numerical Analysis,
52:3128–3139, 2014.

[JL00] T. Jahnke and Ch. Lubich: Error bounds for exponential operator split-
tings. BIT Numerical Mathematics, 40:735–744, 2000.

[Jor74] C. Jordan: Mémoire sur les formes bilinéaires. Journal de mathématiques
pures et appliquées, 19:35–54, 1874.

[Kal60] R.E. Kalman: A new approach to linear filtering and prediction problems.
Journal of Basic Engineering, 82:35–45, 1960.

[KB61] R.E. Kalman and R.S. Bucy: New results in linear filtering and predic-
tion theory. Journal of Basic Engineering, 83:95–108, 1961.

[KB09] T.G. Kolda and B.W. Bader: Tensor decompositions and applications.
SIAM review, 51:455–500, 2009.

[KBL17] B. Kloss, I. Burghardt and Ch. Lubich: Implementation of a novel
projector-splitting integrator for the multi-configurational time-dependent
Hartree approach. Journal of Chemical Physics, 146:174107, 2017.

[KK18] V. Khoromskaia and B.N. Khoromskij: Tensor numerical methods in
quantum chemistry. Walter de Gruyter GmbH & Co KG, Berlin, 2018.

[KL07] O. Koch and Ch. Lubich: Dynamical low-rank approximation. SIAM
Journal on Matrix Analysis and Applications, 29:434–454, 2007.

157

BIBLIOGRAPHY

[KL10] O. Koch and Ch. Lubich: Dynamical tensor approximation. SIAM Jour-
nal on Matrix Analysis and Applications, 31:2360–2375, 2010.

[KLW16] E. Kieri, Ch. Lubich and H. Walach: Discretized dynamical low-rank
approximation in the presence of small singular values. SIAM Journal on
Numerical Analysis, 54:1020–1038, 2016.

[Kön03] K. Königsberger: Analysis 2. Springer, Berlin Heidelberg, 2003.

[LO14] Ch. Lubich and I.V. Oseledets: A projector-splitting integrator for
dynamical low-rank approximation. BIT Numerical Mathematics, 54:171–
188, 2014.

[LOV15] Ch. Lubich, I.V. Oseledets and B. Vandereycken: Time integration
of tensor trains. SIAM Journal on Numerical Analysis, 53:917–941, 2015.

[LRSV13] Ch. Lubich, T. Rohwedder, R. Schneider and B. Vandereycken:
Dynamical approximation by hierarchical Tucker and tensor-train tensors.
SIAM Journal on Matrix Analysis and Applications, 34:470–494, 2013.

[LSS16] N. Lang, J. Saak and T. Stykel: Balanced truncation model reduction
for linear time-varying systems. Mathematical and Computer Modelling of
Dynamical Systems, 22:267–281, 2016.

[Lub04] Ch. Lubich: A variational splitting integrator for quantum molecular
dynamics. Applied Numerical Mathematics, 48:355–368, 2004.

[Lub05] Ch. Lubich: On variational approximations in quantum molecular dy-
namics. Mathematics of Computation, 74:765–779, 2005.

[Lub08] Ch. Lubich: From quantum to classical molecular dynamics: reduced mod-
els and numerical analysis. European Mathematical Society, Zürich, 2008.

[Lub14] Ch. Lubich: Low-rank dynamics. In: S. Dahlke, W. Dahmen, M.
Griebel, W. Hackbusch, K. Ritter, R. Schneider, Ch. Schwab
and H. Yserentant (editors), Extraction of Quantifiable Information from
Complex Systems. Springer, Switzerland, 381–396, 2014.

[Lub15] Ch. Lubich: Time integration in the multiconfiguration time-dependent
Hartree method of molecular quantum dynamics. Applied Mathematics Re-
search eXpress, 2015:311–328, 2015.

[LVW18] Ch. Lubich, B. Vandereycken and H. Walach: Time integration of
rank-constrained Tucker tensors. SIAM Journal on Numerical Analysis,
56:1273–1290, 2018.

[Men07] H. Mena: Numerical solution of differential riccati equations arising in
optimal control problems for parabolic partial differential equations. PhD
thesis, Escuela Politecnica Nacional, Quito, 2007.

158

BIBLIOGRAPHY

[Mir60] L. Mirsky: Symmetric gauge functions and unitarily invariant norms. The
Quarterly Journal of Mathematics, 11:50–59, 1960.

[MQ02] R.I. McLachlan and G.R.W. Quispel: Splitting methods. Acta Nu-
merica, 11:341–434, 2002.

[NL08] A. Nonnenmacher and Ch. Lubich: Dynamical low-rank approximation:
applications and numerical experiments. Mathematics and Computers in
Simulation, 79:1346–1357, 2008.

[OPW18] A. Ostermann, C. Piazzola and H. Walach: Convergence of a low-
rank Lie–Trotter splitting for stiff matrix differential equations. Preprint
2018. Available at https://na.uni-tuebingen.de/∼walach/.

[Ose11] I.V. Oseledets: Tensor-train decomposition. SIAM Journal on Scientific
Computing, 33:2295–2317, 2011.

[OT09] I.V. Oseledets and E.E. Tyrtyshnikov: Breaking the curse of di-
mensionality, or how to use SVD in many dimensions. SIAM Journal on
Scientific Computing, 31:3744–3759, 2009.

[Paz83] A. Pazy: Semigroups of Linear Operators and Applications to Partial
Differential Operators. Springer, New York, 1983.

[PGVWC06] D. Perez-Garcia, F. Verstraete, M.M. Wolf and J.I.
Cirac: Matrix product state representations. arXiv preprint
arXiv:quant-ph/0608197v2, 2006.

[Rei72] W.T. Reid: Riccati differential equations. Academic Press, New York,
1972.

[Saa92] Y. Saad: Analysis of some Krylov subspace approximations to the matrix
exponential operator. SIAM Journal on Numerical Analysis: 29:209–228,
1992.

[San04] H. Sandberg: Model reduction for linear time-varying systems, PhD the-
sis, Lund University, Lund, 2004.

[Sch07] E. Schmidt: Zur Theorie der linearen und nichtlinearen Integralgle-
ichungen. I. Teil: Entwicklung willkürlicher Funktionen nach Systemen
vorgeschriebener. Mathematische Annalen, 63:433–476, 1907.

[Sch26] E. Schrödinger: An undulatory theory of the mechanics of atoms and
molecules. Physical review, 28:1049–1070, 1926.

[Sch11] U. Schollwöck: The density-matrix renormalization group in the age of
matrix product states. Annals of Physics, 326:96–192, 2011.

159

BIBLIOGRAPHY

[Ste93] G.W. Stewart: On the early history of the singular value decomposition.
SIAM review, 35:551–566, 1993.

[Sti35] E. Stiefel: Richtungsfelder und Fernparallelismus in n-dimensionalen
Mannigfaltigkeiten. Commentarii Mathematici Helvetici, 8:305–353, 1935.

[Sti15] T. Stillfjord: Low-rank second-order splitting of large-scale differential
Riccati equations. IEEE Transactions on Automatic Control, 60:2791–2796,
2015.

[Str68] G. Strang: On the construction and comparison of difference schemes.
SIAM Journal on Numerical Analysis, 5:506–517, 1968.

[Tay17] B. Taylor: Methodus incrementorum directa & inversa. Inny, London,
1717.

[TB97] L.N. Trefethen and D. Bau III: Numerical linear algebra. SIAM,
Philadelphia, PA, 1997.

[TS01] A. Trombettoni and A. Smerzi: Discrete solitons and breathers with
dilute Bose–Einstein condensates. Physical Review Letters, 86:2353–2356,
2001.

[Tuc66] L.R. Tucker: Some mathematical notes on three-mode factor analysis.
Psychometrika, 31:279–311, 1966.

[UV13] A. Uschmajew and B. Vandereycken: The geometry of algorithms
using hierarchical tensors. Linear Algebra and its Applications, 439:133–
166, 2013.

[VMC08] F. Verstraete, V. Murg and J.I. Cirac: Matrix product states, pro-
jected entangled pair states, and variational renormalization group methods
for quantum spin systems. Advances in Physics, 57:143–224, 2008.

[VVM12] N. Vannieuwenhoven, R. Vandebril and K. Meerbergen: A new
truncation strategy for the higher-order singular value decomposition. SIAM
Journal on Scientific Computing, 34:A1027–A1052, 2012.

160

	Introduction
	The dynamical low-rank approximation
	The singular value decomposition
	The SVD as a best approximation
	Reduction of computational cost

	Ansatz of the dynamical low-rank approximation
	An integration method
	Unique representation of the tangent factor matrices
	Differential equations for the factor matrices
	Schematic illustration of the integrator

	Discussion about the discretized dynamical low-rank approximation in the presence of small singular values
	Computational aspect
	Curvature of the low-rank manifold
	Error bound

	Error analysis of the matrix projector-splitting integrator
	The matrix projector-splitting integrator
	Deriving the integrator
	Practical integration scheme

	Two substantial properties of the integrator
	Exactness
	Constant projections

	Robustness of the projector-splitting integrator with respect to small singular values
	Error bounds for specific situations
	The explicit case
	Inexact solution within the integration steps
	A one-sided Lipschitz condition

	Numerical experiments
	The effect of small singular values
	Matrix addition
	A discrete nonlinear Schrödinger equation for matrices
	A stiff differential equation

	A low-rank splitting integrator for stiff matrix differential equations
	The low-rank Lie–Trotter splitting integrator
	Splitting into two subproblems
	The low-rank integrator
	Algorithmic description of the integrator

	Error analysis of the low-rank Lie–Trotter splitting integrator
	Discussion about the low-rank Strang splitting
	Differential Lyapunov equation
	Differential Riccati equation
	Numerical examples
	A reaction-diffusion equation
	A differential Riccati equation

	Time integration of rank-constrained Tucker tensors
	Tucker tensor format
	Modal multiplication of a tensor by a matrix
	Transforming a tensor into a matrix
	Tucker decomposition and its computation

	The nested Tucker integrator
	Algorithmic description of the nested Tucker integrator
	An exactness property of the nested Tucker integrator
	Error bounds for the nested Tucker integrator
	A projector-splitting integrator for Tucker tensors
	Deriving the integration method
	Interpretation as a projector-splitting integrator
	A direct exactness proof of the projector-splitting Tucker integrator
	Discussion and comparison
	Mathematical equivalence

	Numerical experiments
	Approximate addition of tensors
	A discrete nonlinear Schrödinger equation for tensors

	Further result and future research
	Time integration of rank-constrained tensor trains
	Outlook: Time integration of tensor tree networks

