30,789 research outputs found

    Convergence of summation-by-parts finite difference methods for the wave equation

    Full text link
    In this paper, we consider finite difference approximations of the second order wave equation. We use finite difference operators satisfying the summation-by-parts property to discretize the equation in space. Boundary conditions and grid interface conditions are imposed by the simultaneous-approximation-term technique. Typically, the truncation error is larger at the grid points near a boundary or grid interface than that in the interior. Normal mode analysis can be used to analyze how the large truncation error affects the convergence rate of the underlying stable numerical scheme. If the semi-discretized equation satisfies a determinant condition, two orders are gained from the large truncation error. However, many interesting second order equations do not satisfy the determinant condition. We then carefully analyze the solution of the boundary system to derive a sharp estimate for the error in the solution and acquire the gain in convergence rate. The result shows that stability does not automatically yield a gain of two orders in convergence rate. The accuracy analysis is verified by numerical experiments.Comment: In version 2, we have added a new section on the convergence analysis of the Neumann problem, and have improved formulations in many place

    Review of Summation-by-parts schemes for initial-boundary-value problems

    Full text link
    High-order finite difference methods are efficient, easy to program, scales well in multiple dimensions and can be modified locally for various reasons (such as shock treatment for example). The main drawback have been the complicated and sometimes even mysterious stability treatment at boundaries and interfaces required for a stable scheme. The research on summation-by-parts operators and weak boundary conditions during the last 20 years have removed this drawback and now reached a mature state. It is now possible to construct stable and high order accurate multi-block finite difference schemes in a systematic building-block-like manner. In this paper we will review this development, point out the main contributions and speculate about the next lines of research in this area

    High-order numerical methods for 2D parabolic problems in single and composite domains

    Get PDF
    In this work, we discuss and compare three methods for the numerical approximation of constant- and variable-coefficient diffusion equations in both single and composite domains with possible discontinuity in the solution/flux at interfaces, considering (i) the Cut Finite Element Method; (ii) the Difference Potentials Method; and (iii) the summation-by-parts Finite Difference Method. First we give a brief introduction for each of the three methods. Next, we propose benchmark problems, and consider numerical tests-with respect to accuracy and convergence-for linear parabolic problems on a single domain, and continue with similar tests for linear parabolic problems on a composite domain (with the interface defined either explicitly or implicitly). Lastly, a comparative discussion of the methods and numerical results will be given.Comment: 45 pages, 12 figures, in revision for Journal of Scientific Computin
    corecore