17 research outputs found

    Convergence analysis of a Lasserre hierarchy of upper bounds for polynomial minimization on the sphere

    Get PDF
    We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre [SIAM J. Optim. 21(3) (2011), pp. 864-885], for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level r of the hierarchy is defined as the minimal expected value of the polynomial over all probability distributions on the sphere, when the probability density function is a sum-of-squares polynomial of degree at most 2r with respect to the surface measure. We show that the exact rate of convergence is Theta(1/r^2), and explore the implications for the related rate of convergence for the generalized problem of moments on the sphere.Comment: 14 pages, 2 figure

    Approximation methods for complex polynomial optimization

    Get PDF

    Convergence analysis for Lasserre's measure-based hierarchy of upper bounds for polynomial optimization

    Get PDF
    We consider the problem of minimizing a continuous function f over a compact set K. We analyze a hierarchy of upper bounds proposed by Lasserre in [SIAM J. Optim. 21(3) (2011), pp. 864 − 885], obtained by searching for an optimal pr

    Improved convergence analysis of Lasserre's measure-based upper bounds for polynomial minimization on compact sets

    Get PDF
    We consider the problem of computing the minimum value fmin,Kf_{\min,K} of a polynomial ff over a compact set KRnK \subseteq \mathbb{R}^n, which can be reformulated as finding a probability measure ν\nu on KK minimizing Kfdν\int_K f d\nu. Lasserre showed that it suffices to consider such measures of the form ν=qμ\nu = q\mu, where qq is a sum-of-squares polynomial and μ\mu is a given Borel measure supported on KK. By bounding the degree of qq by 2r2r one gets a converging hierarchy of upper bounds f(r)f^{(r)} for fmin,Kf_{\min,K}. When KK is the hypercube [1,1]n[-1, 1]^n, equipped with the Chebyshev measure, the parameters f(r)f^{(r)} are known to converge to fmin,Kf_{\min,K} at a rate in O(1/r2)O(1/r^2). We extend this error estimate to a wider class of convex bodies, while also allowing for a broader class of reference measures, including the Lebesgue measure. Our analysis applies to simplices, balls and convex bodies that locally look like a ball. In addition, we show an error estimate in O(logr/r)O(\log r / r) when KK satisfies a minor geometrical condition, and in O(log2r/r2)O(\log^2 r / r^2) when KK is a convex body, equipped with the Lebesgue measure. This improves upon the currently best known error estimates in O(1/r)O(1 / \sqrt{r}) and O(1/r)O(1/r) for these two respective cases.Comment: 30 pages with 10 figures. Update notes for second version: Added a new section containing numerical examples that illustrate the theoretical results -- Fixed minor mistakes/typos -- Improved some notation -- Clarified certain explanations in the tex

    Sum-of-squares proofs and the quest toward optimal algorithms

    Full text link
    In order to obtain the best-known guarantees, algorithms are traditionally tailored to the particular problem we want to solve. Two recent developments, the Unique Games Conjecture (UGC) and the Sum-of-Squares (SOS) method, surprisingly suggest that this tailoring is not necessary and that a single efficient algorithm could achieve best possible guarantees for a wide range of different problems. The Unique Games Conjecture (UGC) is a tantalizing conjecture in computational complexity, which, if true, will shed light on the complexity of a great many problems. In particular this conjecture predicts that a single concrete algorithm provides optimal guarantees among all efficient algorithms for a large class of computational problems. The Sum-of-Squares (SOS) method is a general approach for solving systems of polynomial constraints. This approach is studied in several scientific disciplines, including real algebraic geometry, proof complexity, control theory, and mathematical programming, and has found applications in fields as diverse as quantum information theory, formal verification, game theory and many others. We survey some connections that were recently uncovered between the Unique Games Conjecture and the Sum-of-Squares method. In particular, we discuss new tools to rigorously bound the running time of the SOS method for obtaining approximate solutions to hard optimization problems, and how these tools give the potential for the sum-of-squares method to provide new guarantees for many problems of interest, and possibly to even refute the UGC.Comment: Survey. To appear in proceedings of ICM 201

    A fermionic de Finetti theorem

    Get PDF
    Quantum versions of de Finetti’s theorem are powerful tools, yielding conceptually important insights into the security of key distribution protocols or tomography schemes and allowing one to bound the error made by mean-field approaches. Such theorems link the symmetry of a quantum state under the exchange of subsystems to negligible quantum correlations and are well understood and established in the context of distinguishable particles. In this work, we derive a de Finetti theorem for finite sized Majorana fermionic systems. It is shown, much reflecting the spirit of other quantum de Finetti theorems, that a state which is invariant under certain permutations of modes loses most of its anti-symmetric character and is locally well described by a mode separable state. We discuss the structure of the resulting mode separable states and establish in specific instances a quantitative link to the quality of the Hartree-Fock approximation of quantum systems. We hint at a link to generalized Pauli principles for one-body reduced density operators. Finally, building upon the obtained de Finetti theorem, we generalize and extend the applicability of Hudson’s fermionic central limit theore

    Quantum de Finetti Theorems under Local Measurements with Applications

    Get PDF
    Quantum de Finetti theorems are a useful tool in the study of correlations in quantum multipartite states. In this paper we prove two new quantum de Finetti theorems, both showing that under tests formed by local measurements one can get a much improved error dependence on the dimension of the subsystems. We also obtain similar results for non-signaling probability distributions. We give the following applications of the results: We prove the optimality of the Chen-Drucker protocol for 3-SAT, under the exponential time hypothesis. We show that the maximum winning probability of free games can be estimated in polynomial time by linear programming. We also show that 3-SAT with m variables can be reduced to obtaining a constant error approximation of the maximum winning probability under entangled strategies of O(m^{1/2})-player one-round non-local games, in which the players communicate O(m^{1/2}) bits all together. We show that the optimization of certain polynomials over the hypersphere can be performed in quasipolynomial time in the number of variables n by considering O(log(n)) rounds of the Sum-of-Squares (Parrilo/Lasserre) hierarchy of semidefinite programs. As an application to entanglement theory, we find a quasipolynomial-time algorithm for deciding multipartite separability. We consider a result due to Aaronson -- showing that given an unknown n qubit state one can perform tomography that works well for most observables by measuring only O(n) independent and identically distributed (i.i.d.) copies of the state -- and relax the assumption of having i.i.d copies of the state to merely the ability to select subsystems at random from a quantum multipartite state. The proofs of the new quantum de Finetti theorems are based on information theory, in particular on the chain rule of mutual information.Comment: 39 pages, no figure. v2: changes to references and other minor improvements. v3: added some explanations, mostly about Theorem 1 and Conjecture 5. STOC version. v4, v5. small improvements and fixe
    corecore