6 research outputs found

    Convergence of linear barycentric rational interpolation for analytic functions

    Get PDF
    Polynomial interpolation to analytic functions can be very accurate, depending on the distribution of the interpolation nodes. However, in equispaced nodes and the like, besides being badly conditioned, these interpolants fail to converge even in exact arithmetic in some cases. Linear barycentric rational interpolation with the weights presented by Floater and Hormann can be viewed as blended polynomial interpolation and often yields better approximation in such cases. This has been proven for differentiable functions and indicated in several experiments for analytic functions. So far, these rational interpolants have been used mainly with a constant parameter usually denoted by d, the degree of the blended polynomials, which leads to small condition numbers but to merely algebraic convergence. With the help of logarithmic potential theory we derive asymptotic convergence results for analytic functions when this parameter varies with the number of nodes. Moreover, we present suggestions on how to choose d in order to observe fast and stable convergence, even in equispaced nodes where stable geometric convergence is provably impossible. We demonstrate our results with several numerical examples

    Improved conditioning of the Floater--Hormann interpolants

    Full text link
    The Floater--Hormann family of rational interpolants do not have spurious poles or unattainable points, are efficient to calculate, and have arbitrarily high approximation orders. One concern when using them is that the amplification of rounding errors increases with approximation order, and can make balancing the interpolation error and rounding error difficult. This article proposes to modify the Floater--Hormann interpolants by including additional local polynomial interpolants at the ends of the interval. This appears to improve the conditioning of the interpolants and allow higher approximation orders to be used in practice.Comment: 13 pages, 4 figures, 1 tabl

    A rational deferred correction approach to parabolic optimal control problems

    Get PDF
    The accurate and efficient solution of time-dependent PDE-constrained optimization problems is a challenging task, in large part due to the very high dimension of the matrix systems that need to be solved. We devise a new deferred correction method for coupled systems of time-dependent PDEs, allowing one to iteratively improve the accuracy of low-order time stepping schemes. We consider two variants of our method, a splitting and a coupling version, and analyze their convergence properties. We then test our approach on a number of PDE-constrained optimization problems. We obtain solution accuracies far superior to that achieved when solving a single discretized problem, in particular in cases where the accuracy is limited by the time discretization. Our approach allows for the direct reuse of existing solvers for the resulting matrix systems, as well as state-of-the-art preconditioning strategies

    Convergence of linear barycentric rational interpolation for analytic functions

    No full text
    Polynomial interpolation to analytic functions can be very accurate, depending on the distribution of the interpolation nodes. However, in equispaced nodes and the like, besides being badly conditioned, these interpolants fail to converge even in exact arithmetic in some cases. Linear barycentric rational interpolation with the weights presented by Floater and Hormann can be viewed as blended polynomial interpolation and often yields better approximation in such cases. This has been proven for differentiable functions and indicated in several experiments for analytic functions. So far, these rational interpolants have been used mainly with a constant parameter usually denoted by d, the degree of the blended polynomials, which leads to small condition numbers but to merely algebraic convergence. With the help of logarithmic potential theory we derive asymptotic convergence results for analytic functions when this parameter varies with the number of nodes. Moreover, we present suggestions on how to choose d in order to observe fast and stable convergence, even in equispaced nodes where stable geometric convergence is provably impossible. We demonstrate our results with several numerical examples

    Convergence of linear barycentric rational interpolation for analytic functions

    No full text
    Polynomial interpolation to analytic functions can be very accurate, depending on the distribution of the interpolation nodes. However, in equispaced nodes and the like, besides being badly conditioned, these interpolants fail to converge even in exact arithmetic in some cases. Linear barycentric rational interpolation with the weights presented by Floater and Hormann can be viewed as blended polynomial interpolation and often yields better approximation in such cases. This has been proven for differentiable functions and indicated in several experiments for analytic functions. So far, these rational interpolants have been used mainly with a constant parameter usually denoted by d, the degree of the blended polynomials, which leads to small condition numbers but to merely algebraic convergence. With the help of logarithmic potential theory we derive asymptotic convergence results for analytic functions when this parameter varies with the number of nodes. Moreover, we present suggestions on how to choose d in order to observe fast and stable convergence, even in equispaced nodes where stable geometric convergence is provably impossible. We demonstrate our results with several numerical examples
    corecore