12 research outputs found

    Convergence of adaptive stochastic Galerkin FEM

    Get PDF
    We propose and analyze novel adaptive algorithms for the numerical solution of elliptic partial differential equations with parametric uncertainty. Four different marking strategies are employed for refinement of stochastic Galerkin finite element approximations. The algorithms are driven by the energy error reduction estimates derived from two-level a posteriori error indicators for spatial approximations and hierarchical a posteriori error indicators for parametric approximations. The focus of this work is on the mathematical foundation of the adaptive algorithms in the sense of rigorous convergence analysis. In particular, we prove that the proposed algorithms drive the underlying energy error estimates to zero

    A posteriori error estimation and adaptivity in stochastic Galerkin FEM for parametric elliptic PDEs: beyond the affine case

    Full text link
    We consider a linear elliptic partial differential equation (PDE) with a generic uniformly bounded parametric coefficient. The solution to this PDE problem is approximated in the framework of stochastic Galerkin finite element methods. We perform a posteriori error analysis of Galerkin approximations and derive a reliable and efficient estimate for the energy error in these approximations. Practical versions of this error estimate are discussed and tested numerically for a model problem with non-affine parametric representation of the coefficient. Furthermore, we use the error reduction indicators derived from spatial and parametric error estimators to guide an adaptive solution algorithm for the given parametric PDE problem. The performance of the adaptive algorithm is tested numerically for model problems with two different non-affine parametric representations of the coefficient.Comment: 32 pages, 4 figures, 6 table

    A posteriori error estimation and adaptivity in stochastic Galerkin FEM for parametric elliptic PDEs: beyond the affine case

    Get PDF
    We consider a linear elliptic partial differential equation (PDE) with a generic uniformly bounded parametric coefficient. The solution to this PDE problem is approximated in the framework of stochastic Galerkin finite element methods. We perform a posteriori error analysis of Galerkin approximations and derive a reliable and efficient estimate for the energy error in these approximations. Practical versions of this error estimate are discussed and tested numerically for a model problem with non-affine parametric representation of the coefficient. Furthermore, we use the error reduction indicators derived from spatial and parametric error estimators to guide an adaptive solution algorithm for the given parametric PDE problem. The performance of the adaptive algorithm is tested numerically for model problems with two different non-affine parametric representations of the coefficient.Comment: 32 pages, 4 figures, 6 table

    Guaranteed quasi-error reduction of adaptive Galerkin FEM for parametric PDEs with lognormal coefficients

    Full text link
    Solving high-dimensional random parametric PDEs poses a challenging computational problem. It is well-known that numerical methods can greatly benefit from adaptive refinement algorithms, in particular when functional approximations in polynomials are computed as in stochastic Galerkin and stochastic collocations methods. This work investigates a residual based adaptive algorithm used to approximate the solution of the stationary diffusion equation with lognormal coefficients. It is known that the refinement procedure is reliable, but the theoretical convergence of the scheme for this class of unbounded coefficients remains a challenging open question. This paper advances the theoretical results by providing a quasi-error reduction results for the adaptive solution of the lognormal stationary diffusion problem. A computational example supports the theoretical statement

    On the convergence of adaptive stochastic collocation for elliptic partial differential equations with affine diffusion

    Get PDF
    Convergence of an adaptive collocation method for the stationary parametric diffusion equation with finite-dimensional affine coefficient is shown. The adaptive algorithm relies on a recently introduced residual-based reliable a posteriori error estimator. For the convergence proof, a strategy recently used for a stochastic Galerkin method with an hierarchical error estimator is transferred to the collocation setting

    Truncation preconditioners for stochastic Galerkin finite element discretizations

    Get PDF
    Stochastic Galerkin finite element method (SGFEM) provides an efficient alternative to traditional sampling methods for the numerical solution of linear elliptic partial differential equations with parametric or random inputs. However, computing stochastic Galerkin approximations for a given problem requires the solution of large coupled systems of linear equations. Therefore, an effective and bespoke iterative solver is a key ingredient of any SGFEM implementation. In this paper, we analyze a class of truncation preconditioners for SGFEM. Extending the idea of the mean-based preconditioner, these preconditioners capture additional significant components of the stochastic Galerkin matrix. Focusing on the parametric diffusion equation as a model problem and assuming affine-parametric representation of the diffusion coefficient, we perform spectral analysis of the preconditioned matrices and establish optimality of truncation preconditioners with respect to SGFEM discretization parameters. Furthermore, we report the results of numerical experiments for model diffusion problems with affine and non-affine parametric representations of the coefficient. In particular, we look at the efficiency of the solver (in terms of iteration counts for solving the underlying linear systems) and compare truncation preconditioners with other existing preconditioners for stochastic Galerkin matrices, such as the mean-based and the Kronecker product ones.Comment: 27 pages, 6 table

    Convergence of adaptive stochastic collocation with finite elements

    Get PDF
    We consider an elliptic partial differential equation with a random diffusion parameter discretized by a stochastic collocation method in the parameter domain and a finite element method in the spatial domain. We prove for the first time convergence of a stochastic collocation algorithm which adaptively enriches the parameter space as well as refines the finite element meshes

    Convergence of adaptive stochastic collocation with finite elements

    Get PDF
    We consider an elliptic partial differential equation with a random diffusion parameter discretized by a stochastic collocation method in the parameter domain and a finite element method in the spatial domain. We prove convergence of an adaptive algorithm which adaptively enriches the parameter space as well as refines the finite element meshes

    On the convergence of adaptive stochastic collocation for elliptic partial differential equations with affine diffusion

    Get PDF
    Convergence of an adaptive collocation method for the stationary parametric diffusion equation with finite-dimensional affine coefficient is shown. The adaptive algorithm relies on a recently introduced residual-based reliable a posteriori error estimator. For the convergence proof, a strategy recently used for a stochastic Galerkin method with an hierarchical error estimator is transferred to the collocation setting. Extensions to other variants of adaptive collocation methods (including the classical one proposed in the paper "Dimension-adaptive tensor-product quadratuture" Computing (2003) by T. Gerstner and M. Griebel) is explored.Comment: 24 pages, 1 figur
    corecore