36,025 research outputs found

    Moment-Based Spectral Analysis of Random Graphs with Given Expected Degrees

    Get PDF
    In this paper, we analyze the limiting spectral distribution of the adjacency matrix of a random graph ensemble, proposed by Chung and Lu, in which a given expected degree sequence w‾nT=(w1(n),…,wn(n))\overline{w}_n^{^{T}} = (w^{(n)}_1,\ldots,w^{(n)}_n) is prescribed on the ensemble. Let ai,j=1\mathbf{a}_{i,j} =1 if there is an edge between the nodes {i,j}\{i,j\} and zero otherwise, and consider the normalized random adjacency matrix of the graph ensemble: An\mathbf{A}_n == [ai,j/n]i,j=1n [\mathbf{a}_{i,j}/\sqrt{n}]_{i,j=1}^{n}. The empirical spectral distribution of An\mathbf{A}_n denoted by Fn(⋅)\mathbf{F}_n(\mathord{\cdot}) is the empirical measure putting a mass 1/n1/n at each of the nn real eigenvalues of the symmetric matrix An\mathbf{A}_n. Under some technical conditions on the expected degree sequence, we show that with probability one, Fn(⋅)\mathbf{F}_n(\mathord{\cdot}) converges weakly to a deterministic distribution F(⋅)F(\mathord{\cdot}). Furthermore, we fully characterize this distribution by providing explicit expressions for the moments of F(⋅)F(\mathord{\cdot}). We apply our results to well-known degree distributions, such as power-law and exponential. The asymptotic expressions of the spectral moments in each case provide significant insights about the bulk behavior of the eigenvalue spectrum

    Resolvent of Large Random Graphs

    Full text link
    We analyze the convergence of the spectrum of large random graphs to the spectrum of a limit infinite graph. We apply these results to graphs converging locally to trees and derive a new formula for the Stieljes transform of the spectral measure of such graphs. We illustrate our results on the uniform regular graphs, Erdos-Renyi graphs and preferential attachment graphs. We sketch examples of application for weighted graphs, bipartite graphs and the uniform spanning tree of n vertices.Comment: 21 pages, 1 figur
    • …
    corecore