5,004 research outputs found

    Robust Adaptive LCMV Beamformer Based On An Iterative Suboptimal Solution

    Get PDF
    The main drawback of closed-form solution of linearly constrained minimum variance (CF-LCMV) beamformer is the dilemma of acquiring long observation time for stable covariance matrix estimates and short observation time to track dynamic behavior of targets, leading to poor performance including low signal-noise-ratio (SNR), low jammer-to-noise ratios (JNRs) and small number of snapshots. Additionally, CF-LCMV suffers from heavy computational burden which mainly comes from two matrix inverse operations for computing the optimal weight vector. In this paper, we derive a low-complexity Robust Adaptive LCMV beamformer based on an Iterative Suboptimal solution (RAIS-LCMV) using conjugate gradient (CG) optimization method. The merit of our proposed method is threefold. Firstly, RAIS-LCMV beamformer can reduce the complexity of CF-LCMV remarkably. Secondly, RAIS-LCMV beamformer can adjust output adaptively based on measurement and its convergence speed is comparable. Finally, RAIS-LCMV algorithm has robust performance against low SNR, JNRs, and small number of snapshots. Simulation results demonstrate the superiority of our proposed algorithms

    Robust Reduced-Rank Adaptive Processing Based on Parallel Subgradient Projection and Krylov Subspace Techniques

    Full text link
    In this paper, we propose a novel reduced-rank adaptive filtering algorithm by blending the idea of the Krylov subspace methods with the set-theoretic adaptive filtering framework. Unlike the existing Krylov-subspace-based reduced-rank methods, the proposed algorithm tracks the optimal point in the sense of minimizing the \sinq{true} mean square error (MSE) in the Krylov subspace, even when the estimated statistics become erroneous (e.g., due to sudden changes of environments). Therefore, compared with those existing methods, the proposed algorithm is more suited to adaptive filtering applications. The algorithm is analyzed based on a modified version of the adaptive projected subgradient method (APSM). Numerical examples demonstrate that the proposed algorithm enjoys better tracking performance than the existing methods for the interference suppression problem in code-division multiple-access (CDMA) systems as well as for simple system identification problems.Comment: 10 figures. In IEEE Transactions on Signal Processing, 201

    Non-convex Optimization for Machine Learning

    Full text link
    A vast majority of machine learning algorithms train their models and perform inference by solving optimization problems. In order to capture the learning and prediction problems accurately, structural constraints such as sparsity or low rank are frequently imposed or else the objective itself is designed to be a non-convex function. This is especially true of algorithms that operate in high-dimensional spaces or that train non-linear models such as tensor models and deep networks. The freedom to express the learning problem as a non-convex optimization problem gives immense modeling power to the algorithm designer, but often such problems are NP-hard to solve. A popular workaround to this has been to relax non-convex problems to convex ones and use traditional methods to solve the (convex) relaxed optimization problems. However this approach may be lossy and nevertheless presents significant challenges for large scale optimization. On the other hand, direct approaches to non-convex optimization have met with resounding success in several domains and remain the methods of choice for the practitioner, as they frequently outperform relaxation-based techniques - popular heuristics include projected gradient descent and alternating minimization. However, these are often poorly understood in terms of their convergence and other properties. This monograph presents a selection of recent advances that bridge a long-standing gap in our understanding of these heuristics. The monograph will lead the reader through several widely used non-convex optimization techniques, as well as applications thereof. The goal of this monograph is to both, introduce the rich literature in this area, as well as equip the reader with the tools and techniques needed to analyze these simple procedures for non-convex problems.Comment: The official publication is available from now publishers via http://dx.doi.org/10.1561/220000005

    Fast ADMM Algorithm for Distributed Optimization with Adaptive Penalty

    Full text link
    We propose new methods to speed up convergence of the Alternating Direction Method of Multipliers (ADMM), a common optimization tool in the context of large scale and distributed learning. The proposed method accelerates the speed of convergence by automatically deciding the constraint penalty needed for parameter consensus in each iteration. In addition, we also propose an extension of the method that adaptively determines the maximum number of iterations to update the penalty. We show that this approach effectively leads to an adaptive, dynamic network topology underlying the distributed optimization. The utility of the new penalty update schemes is demonstrated on both synthetic and real data, including a computer vision application of distributed structure from motion.Comment: 8 pages manuscript, 2 pages appendix, 5 figure
    • …
    corecore