14,841 research outputs found

    Design and Implementation of Deep Learning Based Model Predictive Controller to Automatically Adjust Nutrient of Solution for Hydroponic Crop

    Get PDF
    Smart farming is the future of agriculture sector and brings a new era in agriculture; it enables farmers to increase the production and quality of crops with minimal use of resources. In current scenario land availability decreases enormously, hence soilless hydroponic cultivation is considered as the fastest growing sector of agriculture. However, in hydroponic system it is a very challenging task to manage nutrient for crop. To solve these issues this study was conducted which could control robustly EC and pH of hydroponic solution with the help of deep learning model long short-term memory (LSTM). A model predictive controller (MPC) using LSTM was designed and simulated to control EC and pH in hydroponic farm. The predicted outcome of LSTM was operating time of pH buffer solution pump (Ton_pH) and nutrient solution pump (Ton_EC).  The proposed MPC adjust these operating times to control EC and pH with an RMSE of 0.24 and 0.27s, respectively. Furthermore, proposed system improves the predicting accuracy of Ton_pH and Ton_EC of 77% and 61%, respectively, as compared to fuzzy logic controller. This study provides a smart and efficient way to predict and estimate the optimum value for robustly manage the nutrient as per crop requirements

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    Learning-based Image Enhancement for Visual Odometry in Challenging HDR Environments

    Full text link
    One of the main open challenges in visual odometry (VO) is the robustness to difficult illumination conditions or high dynamic range (HDR) environments. The main difficulties in these situations come from both the limitations of the sensors and the inability to perform a successful tracking of interest points because of the bold assumptions in VO, such as brightness constancy. We address this problem from a deep learning perspective, for which we first fine-tune a Deep Neural Network (DNN) with the purpose of obtaining enhanced representations of the sequences for VO. Then, we demonstrate how the insertion of Long Short Term Memory (LSTM) allows us to obtain temporally consistent sequences, as the estimation depends on previous states. However, the use of very deep networks does not allow the insertion into a real-time VO framework; therefore, we also propose a Convolutional Neural Network (CNN) of reduced size capable of performing faster. Finally, we validate the enhanced representations by evaluating the sequences produced by the two architectures in several state-of-art VO algorithms, such as ORB-SLAM and DSO

    Monitoring Computer Systems: An Intelligent Approach

    Get PDF
    Monitoring modern computer systems is increasingly difficult due to their peculiar characteristics. To cope with this situation, the dissertation develops an approach to intelligent monitoring. The resulting model consists of three major designs: representing targets, controlling data collection, and autonomously refining monitoring performance. The model explores a more declarative object-oriented model by introducing virtual objects to dynamically compose abstract representations, while it treats conventional hard-wired hierarchies and predefined object classes as primitive structures. Taking the representational framework as a reasoning bed, the design for controlling mechanisms adopts default reasoning backed up with ordered constraints, so that the amount of data collected, levels of details, semantics, and resolution of observation can be appropriately controlled. The refining mechanisms classify invoked knowledge and update the classified knowledge in terms of the feedback from monitoring. The approach is designed first and then formally specified. Applications of the resulting model are examined and an operational prototype is implemented. Thus the dissertation establishes a basis for an approach to intelligent monitoring, one which would be equipped to deal effectively with the difficulties that arise in monitoring modern computer systems
    • …
    corecore