44,246 research outputs found

    New challenges in lake and river monitoring

    Get PDF
    Freshwater ecosystems are highly dynamic and change on time-scales that range from a few hours to several months. The development of models that simulate these processes is often hampered by the lack of sufficient data to parameterize the processes and validate the models. In this article, I review some of the challenges posed by this lack of information and suggest ways in which they can be met by using automatic monitoring systems. One of these studies is the project tempQsim (EVK1-CT2002-00112) funded by the European Commission. In this project, detailed field and model analyses have been performed at eight catchment study sites in south and south-east Europe. A number of perceptual models for the study sites have been established, and results are being used to improve selected catchment models and provide a more adequate description of pollution dynamics. Results from the extensive field studies and model tests are now being used to derive recommendations for more tailored monitoring concepts in highly dynamic, but ‘data scarce’ environments, such as are frequently found in Mediterranean river basins. The author includes implications of the EU Water Framework Directive on monitoring methods

    Isothermal heat flux sensing unit Final report, Jun. 21, 1967 - Jan. 2, 1968

    Get PDF
    Thermal analysis, theory of operation, and operating instructions for isothermal heat flux sensing uni

    Controlling evaporation loss from water storages

    Get PDF
    [Executive Summary]: Evaporation losses from on-farm storage can potentially be large, particularly in irrigation areas in northern New South Wales and Queensland where up to 40% of storage volume can be lost each year to evaporation. Reducing evaporation from a water storage would allow additional crop production, water trading or water for the environment. While theoretical research into evaporation from storages has previously been undertaken there has been little evaluation of current evaporation mitigation technologies (EMTs) on commercial sized water storages. This project was initiated by the Queensland Government Department of Natural Resources and Mines (NRM) with the express aim of addressing this gap in our knowledge. The report addressed i) assessment of the effectiveness of different EMT’s in reducing evaporation from commercial storages across a range of climate regions, ii) assessment of the practical and technical limitations of different evaporation control products, and iii) comparison of the economics of different EMT’s on water storages used for irrigation

    Automated Netlist Generation for 3D Electrothermal and Electromagnetic Field Problems

    Full text link
    We present a method for the automatic generation of netlists describing general three-dimensional electrothermal and electromagnetic field problems. Using a pair of structured orthogonal grids as spatial discretisation, a one-to-one correspondence between grid objects and circuit elements is obtained by employing the finite integration technique. The resulting circuit can then be solved with any standard available circuit simulator, alleviating the need for the implementation of a custom time integrator. Additionally, the approach straightforwardly allows for field-circuit coupling simulations by appropriately stamping the circuit description of lumped devices. As the computational domain in wave propagation problems must be finite, stamps representing absorbing boundary conditions are developed as well. Representative numerical examples are used to validate the approach. The results obtained by circuit simulation on the generated netlists are compared with appropriate reference solutions.Comment: This is a pre-print of an article published in the Journal of Computational Electronics. The final authenticated version is available online at: https://dx.doi.org/10.1007/s10825-019-01368-6. All numerical results can be reproduced by the Matlab code openly available at https://github.com/tc88/ANTHE
    corecore