192 research outputs found

    Sliding Mode Control for Fuzzy Singularly Perturbed Systems with Improved Protocol

    Get PDF

    Transition Between TS Fuzzy Models and the Associated Convex Hulls by TS Fuzzy Model Transformation

    Get PDF
    One of the primary objectives underlying the extensive 20-year development of the TS Fuzzy model transformation (originally known as TP model transformation) is to establish a framework capable of generating alternative Fuzzy rules for a given TS Fuzzy model, thereby manipulating the associated convex hull to enhance further design outcomes. The existing methods integrated into the TS Fuzzy model transformation offer limited capabilities in deriving only a few types of loose and tight convex hulls. In this article, we propose a radically new approach that enables the derivation of an infinite number of alternative Fuzzy rules and, hence, convex hulls in a systematic and tractable manner. The article encompasses the following key novelties. Firstly, we develop a Fuzzy rule interpolation method, based on the pseudo TS Fuzzy model transformation and the antecedent Fuzzy set rescheduling technique, that leads to a smooth transition between the Fuzzy rules and the corresponding convex hulls. Then, we extend the proposed concept with the antecedent Fuzzy set refinement and reinforcement technique to tackle large-scale problems characterized by a high number of inputs and Fuzzy rules. The paper also includes demonstrative examples to illustrate the theoretical key steps, and concludes with an examination of a real complex engineering problem to showcase the effectiveness and straightforward execution of the proposed convex hull manipulation approach

    Adaptive Distributed Attitude Consensus of a Heterogeneous Multi-Agent Quadrotor System: Singular Perturbation Approach

    Get PDF

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems

    New results of global Mittag-Leffler synchronization on Caputo fuzzy delayed inertial neural networks

    Get PDF
    This article is devoted to discussing the problem of global Mittag-Leffler synchronization (GMLS) for the Caputo-type fractional-order fuzzy delayed inertial neural networks (FOFINNs). First of all, both inertial and fuzzy terms are taken into account in the system. For the sake of reducing the influence caused by the inertia term, the order reduction is achieved by the measure of variable substitution. The introduction of fuzzy terms can evade fuzziness or uncertainty as much as possible. Subsequently, a nonlinear delayed controller is designed to achieve GMLS. Utilizing the inequality techniques, Lyapunov’s direct method for functions and Razumikhin theorem, the criteria for interpreting the GMLS of FOFINNs are established. Particularly, two inferences are presented in two special cases. Additionally, the availability of the acquired results are further confirmed by simulations

    Protocol-based SMC for interval type-2 fuzzy semi-Markovian jumping systems with channel fading

    Get PDF

    Brain-Computer Interface

    Get PDF
    Brain-computer interfacing (BCI) with the use of advanced artificial intelligence identification is a rapidly growing new technology that allows a silently commanding brain to manipulate devices ranging from smartphones to advanced articulated robotic arms when physical control is not possible. BCI can be viewed as a collaboration between the brain and a device via the direct passage of electrical signals from neurons to an external system. The book provides a comprehensive summary of conventional and novel methods for processing brain signals. The chapters cover a range of topics including noninvasive and invasive signal acquisition, signal processing methods, deep learning approaches, and implementation of BCI in experimental problems
    • …
    corecore