40,612 research outputs found

    Sum-of-Squares approach to feedback control of laminar wake flows

    Get PDF
    A novel nonlinear feedback control design methodology for incompressible fluid flows aiming at the optimisation of long-time averages of flow quantities is presented. It applies to reduced-order finite-dimensional models of fluid flows, expressed as a set of first-order nonlinear ordinary differential equations with the right-hand side being a polynomial function in the state variables and in the controls. The key idea, first discussed in Chernyshenko et al. 2014, Philos. T. Roy. Soc. 372(2020), is that the difficulties of treating and optimising long-time averages of a cost are relaxed by using the upper/lower bounds of such averages as the objective function. In this setting, control design reduces to finding a feedback controller that optimises the bound, subject to a polynomial inequality constraint involving the cost function, the nonlinear system, the controller itself and a tunable polynomial function. A numerically tractable approach to the solution of such optimisation problems, based on Sum-of-Squares techniques and semidefinite programming, is proposed. To showcase the methodology, the mitigation of the fluctuation kinetic energy in the unsteady wake behind a circular cylinder in the laminar regime at Re=100, via controlled angular motions of the surface, is numerically investigated. A compact reduced-order model that resolves the long-term behaviour of the fluid flow and the effects of actuation, is derived using Proper Orthogonal Decomposition and Galerkin projection. In a full-information setting, feedback controllers are then designed to reduce the long-time average of the kinetic energy associated with the limit cycle. These controllers are then implemented in direct numerical simulations of the actuated flow. Control performance, energy efficiency, and physical control mechanisms identified are analysed. Key elements, implications and future work are discussed

    Linear iterative solvers for implicit ODE methods

    Get PDF
    The numerical solution of stiff initial value problems, which lead to the problem of solving large systems of mildly nonlinear equations are considered. For many problems derived from engineering and science, a solution is possible only with methods derived from iterative linear equation solvers. A common approach to solving the nonlinear equations is to employ an approximate solution obtained from an explicit method. The error is examined to determine how it is distributed among the stiff and non-stiff components, which bears on the choice of an iterative method. The conclusion is that error is (roughly) uniformly distributed, a fact that suggests the Chebyshev method (and the accompanying Manteuffel adaptive parameter algorithm). This method is described, also commenting on Richardson's method and its advantages for large problems. Richardson's method and the Chebyshev method with the Mantueffel algorithm are applied to the solution of the nonlinear equations by Newton's method

    A block Krylov subspace time-exact solution method for linear ODE systems

    Get PDF
    We propose a time-exact Krylov-subspace-based method for solving linear ODE (ordinary differential equation) systems of the form yā€²=āˆ’Ay+g(t)y'=-Ay + g(t) and yā€²ā€²=āˆ’Ay+g(t)y''=-Ay + g(t), where y(t)y(t) is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of the source term g(t)g(t), constructed with the help of the truncated SVD (singular value decomposition). The second stage is a special residual-based block Krylov subspace method. The accuracy of the method is only restricted by the accuracy of the piecewise polynomial approximation and by the error of the block Krylov process. Since both errors can, in principle, be made arbitrarily small, this yields, at some costs, a time-exact method. Numerical experiments are presented to demonstrate efficiency of the new method, as compared to an exponential time integrator with Krylov subspace matrix function evaluations

    Parallel eigensolvers in plane-wave Density Functional Theory

    Full text link
    We consider the problem of parallelizing electronic structure computations in plane-wave Density Functional Theory. Because of the limited scalability of Fourier transforms, parallelism has to be found at the eigensolver level. We show how a recently proposed algorithm based on Chebyshev polynomials can scale into the tens of thousands of processors, outperforming block conjugate gradient algorithms for large computations
    • ā€¦
    corecore