619 research outputs found

    Controllability of spin-boson systems

    Get PDF
    In this paper we study the so-called spin-boson system, namely {a two-level system} in interaction with a distinguished mode of a quantized bosonic field. We give a brief description of the controlled Rabi and Jaynes--Cummings models and we discuss their appearance in the mathematics and physics literature. We then study the controllability of the Rabi model when the control is an external field acting on the bosonic part. Applying geometric control techniques to the Galerkin approximation and using perturbation theory to guarantee non-resonance of the spectrum of the drift operator, we prove approximate controllability of the system, for almost every value of the interaction parameter

    Mesoscopic mean-field theory for spin-boson chains in quantum optical systems

    Get PDF
    We present a theoretical description of a system of many spins strongly coupled to a bosonic chain. We rely on the use of a spin-wave theory describing the Gaussian fluctuations around the mean-field solution, and focus on spin-boson chains arising as a generalization of the Dicke Hamiltonian. Our model is motivated by experimental setups such as trapped ions, or atoms/qubits coupled to cavity arrays. This situation corresponds to the cooperative (E⊗β) Jahn-Teller distortion studied in solid-state physics. However, the ability to tune the parameters of the model in quantum optical setups opens up a variety of novel intriguing situations. The main focus of this paper is to review the spin-wave theoretical description of this problem as well as to test the validity of mean-field theory. Our main result is that deviations from mean-field effects are determined by the interplay between magnetic order and mesoscopic cooperativity effects, being the latter strongly size-dependent

    Nonlinear thermal control in an N-terminal junction

    Full text link
    We demonstrate control over heat flow in an N-terminal molecular junction. Using simple model Hamiltonians we show that the heat current through two terminals can be tuned, switched, and amplified, by the temperature and coupling parameters of external gating reservoirs. We discuss two models: A fully harmonic system, and a model incorporating anharmonic interactions. For both models the control reservoirs induce thermal fluctuations of the transition elements between molecular vibrational states. We find that a fully harmonic model does not show any controllability, while for an anharmonic system the conduction properties of the junction strongly depend on the parameters of the gates. Realizations of the model system within nanodevices and macromolecules are discussed

    Transition from Band insulator to Bose-Einstein Condensate superfluid and Mott State of Cold Fermi Gases with Multiband Effects in Optical Lattices

    Full text link
    We study two models realized by two-component Fermi gases loaded in optical lattices. We clarify that multi-band effects inevitably caused by the optical lattices generate a rich structure, when the systems crossover from the region of weakly bound molecular bosons to the region of strongly bound atomic bosons. Here the crossover can be controlled by attractive fermion interaction. One of the present models is a case with attractive fermion interaction, where an insulator-superfluid transition takes place. The transition is characterized as the transition between a band insulator and a Bose-Einstein condensate (BEC) superfluid state. Differing from the conventional BCS superfluid transition, this transition shows unconventional properties. In contrast to the one particle excitation gap scaled by the superfluid order parameter in the conventional BCS transition, because of the multi-band effects, a large gap of one-particle density of states is retained all through the transition although the superfluid order grows continuously from zero. A reentrant transition with lowering temperature is another unconventionality. The other model is the case with coexisting attractive and repulsive interactions. Within a mean field treatment, we find a new insulating state, an orbital ordered insulator. This insulator is one candidate for the Mott insulator of molecular bosons and is the first example that the orbital internal degrees of freedom of molecular bosons appears explicitly. Besides the emergence of a new phase, a coexisting phase also appears where superfluidity and an orbital order coexist just by doping holes or particles. The insulating and superfluid particles show differentiation in momentum space as in the high-Tc cuprate superconductors.Comment: 13 pages, 10 figure

    Combined Error Correction Techniques for Quantum Computing Architectures

    Get PDF
    Proposals for quantum computing devices are many and varied. They each have unique noise processes that make none of them fully reliable at this time. There are several error correction/avoidance techniques which are valuable for reducing or eliminating errors, but not one, alone, will serve as a panacea. One must therefore take advantage of the strength of each of these techniques so that we may extend the coherence times of the quantum systems and create more reliable computing devices. To this end we give a general strategy for using dynamical decoupling operations on encoded subspaces. These encodings may be of any form; of particular importance are decoherence-free subspaces and quantum error correction codes. We then give means for empirically determining an appropriate set of dynamical decoupling operations for a given experiment. Using these techniques, we then propose a comprehensive encoding solution to many of the problems of quantum computing proposals which use exchange-type interactions. This uses a decoherence-free subspace and an efficient set of dynamical decoupling operations. It also addresses the problems of controllability in solid state quantum dot devices.Comment: Contribution to Proceedings of the 2002 Physics of Quantum Electronics Conference", to be published in J. Mod. Optics. This paper provides a summary and review of quant-ph/0205156 and quant-ph/0112054, and some new result
    • …
    corecore