10,713 research outputs found

    Ellipse-preserving Hermite interpolation and subdivision

    Get PDF
    We introduce a family of piecewise-exponential functions that have the Hermite interpolation property. Our design is motivated by the search for an effective scheme for the joint interpolation of points and associated tangents on a curve with the ability to perfectly reproduce ellipses. We prove that the proposed Hermite functions form a Riesz basis and that they reproduce prescribed exponential polynomials. We present a method based on Green's functions to unravel their multi-resolution and approximation-theoretic properties. Finally, we derive the corresponding vector and scalar subdivision schemes, which lend themselves to a fast implementation. The proposed vector scheme is interpolatory and level-dependent, but its asymptotic behaviour is the same as the classical cubic Hermite spline algorithm. The same convergence properties---i.e., fourth order of approximation---are hence ensured

    Smooth quasi-developable surfaces bounded by smooth curves

    Full text link
    Computing a quasi-developable strip surface bounded by design curves finds wide industrial applications. Existing methods compute discrete surfaces composed of developable lines connecting sampling points on input curves which are not adequate for generating smooth quasi-developable surfaces. We propose the first method which is capable of exploring the full solution space of continuous input curves to compute a smooth quasi-developable ruled surface with as large developability as possible. The resulting surface is exactly bounded by the input smooth curves and is guaranteed to have no self-intersections. The main contribution is a variational approach to compute a continuous mapping of parameters of input curves by minimizing a function evaluating surface developability. Moreover, we also present an algorithm to represent a resulting surface as a B-spline surface when input curves are B-spline curves.Comment: 18 page

    Rational-spline approximation with automatic tension adjustment

    Get PDF
    An algorithm for weighted least-squares approximation with rational splines is presented. A rational spline is a cubic function containing a distinct tension parameter for each interval defined by two consecutive knots. For zero tension, the rational spline is identical to a cubic spline; for very large tension, the rational spline is a linear function. The approximation algorithm incorporates an algorithm which automatically adjusts the tension on each interval to fulfill a user-specified criterion. Finally, an example is presented comparing results of the rational spline with those of the cubic spline

    The development of a finite elements based springback compensation tool for sheet metal products

    Get PDF
    Springback is a major problem in the deep drawing process. When the tools are released after the forming stage, the product springs back due to the action of internal stresses. In many cases the shape deviation is too large and springback compensation is needed: the tools of the deep drawing process are changed so, that the product becomes geometrically accurate after springback. In this paper, two different ways of geometric optimization are presented, the smooth displacement adjustment (SDA) method and the surface controlled overbending (SCO) method. Both methods use results from a finite elements deep drawing simulation for the optimization of the tool shape. The methods are demonstrated on an industrial product. The results are satisfactory, but it is shown that both methods still need to be improved and that the FE simulation needs to become more reliable to allow industrial application

    System Identification for Nonlinear Control Using Neural Networks

    Get PDF
    An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique

    Iterative springback compensation of NUMISHEET benchmark #1

    Get PDF
    Upon unloading after the forming stage, a sheet metal product will spring back due to internal stresses. Springback\ud is a major problem for process-planning engineers. In industrial practise, deformations due to springback are compensated\ud manually, by doing extensive measurements on prototype parts, and altering the tool geometry by hand. This is a time\ud consuming and costly operation. In this paper the application of two compensation algorithms, based on the finite element\ud simulation of the forming process are discussed. The smooth displacement adjustment (SDA) method and the springforward\ud (SF) method have been applied to several industrial products, such as the NUMISHEET 2005 benchmark#1. With the SDA\ud method successful compensations have been carried out. For the SF method some principal problems remain
    • 

    corecore