28,609 research outputs found

    Application of a Fractional Order Integral Resonant Control to increase the achievable bandwidth of a nanopositioner

    Get PDF
    The congress program will essentially include papers selected on the highest standard by the IPC, according to the IFAC guidelines www.ifac-control.org/publications/Publications-requirements-1.4.pdf, and published in open access in partnership with Elsevier in the IFAC-PapersOnline series, hosted on the ScienceDirect platform www.sciencedirect.com/science/journal/24058963. Survey papers overviewing a research topic are also most welcome. Contributed papers will have usual 6 pages length limitation. 12 pages limitation will apply to survey papers.Publisher PD

    Robust multivariable predictive control: how can it be applied to industrial test stands ?

    Get PDF
    To cope with recent technological evolutions of air conditioning systems for aircraft, the French Aeronautical Test Center built a new test stand for certification at ground level. The constraints specified by the industrial users of the process seemed antagonistic for many reasons. First, the controller had to be implemented on an industrial automaton, not adaptable to modern algorithms. Then the specified dynamic performances were very demanding, especially taking into account the wide operating ranges of the process. Finally, the proposed controller had to be easy for nonspecialist users to handle. Thus, the control design and implementation steps had to be conducted considering both theoretical and technical aspects. This finally led to the development of a new multivariable predictive controller, called alpha-MPC, whose main characteristic is the introduction of an extra tuning parameter alpha that has enhanced the overall control robustness. In particular, the H1-norm of the sensitivity functions can be significantly reduced by tuning this single new parameter. It turns out to be a simple but efficient way to improve the robustness of the initial algorithm. The other classical tuning parameters are still physically meaningful, as is usual with predictive techniques. The initial results are very promising and this controller has already been adopted by the industrial users as the basis of the control part for future developments of the test stand

    Further experimental results on modelling and algebraic control of a delayed looped heating-cooling process under uncertainties

    Get PDF
    The aim of this research is to revise and substantially extend experimental modelling and control of a looped heating-cooling laboratory process with long input-output and internal delays under uncertainties. This research follows and extends the authors' recent results. As several significant improvements regarding robust modelling and control have been reached, the obtained results are provided with a link and comparison to the previous findings. First, an infinite-dimensional model based on mathematical-physical heat and mass transfer principles is developed. All important heat-fluid transport and control-signal delays are considered when assembling the model structure and relations of quantities. Model parameter values optimization based on the measurement data follows. When determining static model parameter values, all variations in steady-state measured data are taken into account simultaneously, which enhances previously obtained models. Values of dynamic model parameters and delays are further obtained by least mean square optimization. This innovative model is compared to two recently developed process models and to the best-fit model that ignores the measured variations. Controller structures are designed using algebraic tools for all four models. The designed controllers are robust in the sense of robust stability and performance. Both concepts are rigorously assessed, and the obtained conditions serve for controller parameter tuning. Two different control systems are assumed: the standard closed-loop feedback loop and the two-feedback-controllers control system. Numerous experimental measurements for nominal conditions and selected perturbations are performed. Obtained results are further analyzed via several criteria on manipulated input and controlled temperature. The designed controllers are compared to the Smith predictor structure that is wellestablished for time-delay systems control. An essential drawback of the predictor regarding disturbance rejection is highlighted.College of Polytechnics Jihlava; National Foreign Expert Project, (G2022178023L); Tomas Bata University in Zlin, TBU; Grantová Agentura České Republiky, GA ČR, (GAČR 21–45465L)Czech Science Foundation [GAC?R 21-45465L]; National Foreign Expert Project [G2022178023L
    corecore