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ne of the fundamental difficulties en-
countered throughout process con-
trol is the presence of time delay
(often referred to as “dead time”).
This time delay is often a result of the
flow rate of material through a pro-
cess. Consideration of this problem led to the development
of predictive control strategies in the 1980s. Such algo-
rithms are now widely used in industrial environments, and
many successful applications have been reported in the lit-
erature (for instance, by [1]-[3]). As a result of theoretical
work dedicated to advanced predictive control that has
been conducted at ENSICA (see [4] and [5]), amultivariable
predictive controller (MPC) has been developed to regulate
a general M-input, N-output system in a stochastic frame-
work. This MPC algorithm has been successfully applied [6]
to an industrial test stand for air conditioning systems (Fig.
D).

The air conditioning system of an aircraft is used to regu-
late the cockpit temperature and pressure during flight and
usually generates its airflow from the compressor turbine of
the jet engine. Testing an air conditioning system requires
simulation of the running conditions at ground level. More
particularly, carrying out these experiments without run-
ning the jet engine requires the ability to simulate the ther-
modynamic conditions at the high-pressure stages. The
certification of modern systems, whose operating condi-
tions are subjected to wide-scale and very rapid fluctua-
tions depending on the engine rating, requires advanced
technologies. For this purpose, the French Aeronautical
Test Center (Centre d’Essais Aéronautique de Toulouse, or
CEAT) has recently developed a new test stand for air condi-
tioning systems. An installation has been created to gener-
ate an airflow at a given temperature and pressure,
controlling two high-pressure sources connected by two
servovalves. The control law primarily installed uses two
proportional-integral-differential (PID) controllers, imple-
mented on an April 5000 automaton. These controllers are
single-input, single-output (SISO) type (i.e., the
multivariable nature of the system is not taken into account
explicitly). The first results are not entirely satisfactory due
to important coupling effects and insufficient dynamic per-
formances relative to a very strict specification sheet: pres-
sure gradients of 10 bar/s and temperature gradients up to
100 °C/s. Finally the last constraint is related to the real time
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implementation: the controller has to be implemented on
the existing hardware system (i.e., the automaton), which
can accommodate very limited memory and computation
load.

The controller we propose in this article, denoted a-MPC,
is a robust extension of the initial multivariable predictive
control law that improves the disturbance-rejection proper-
ties of the closed-loop system, reducing the H_-norm of the
multivariable sensitivity function with an extra parameter.
This augmented algorithm has been chosen to carry out the
new tests on the industrial process. Experimental record-
ings reported here have confirmed significant performance
improvement with this new approach relative to the former
PID regulation. The paper is organized as follows. First we in-
troduce the original MPC. Next we describe the extended
a-MPC algorithm and analyze the robustness of the
closed-loop system through the H_ approach. Then we dis-
cuss the methodology of the control design task and de-
scribe the experimental test stand, focusing on the software
and hardware implementation. Finally, we report the results
of thea-MPC control law on the actual test stand. Special at-
tention is given to the comparison with the former control
system.

The Multivariable Predictive
Controller

System Model

Ever since the original generalized predictive controller
(GPC) was introduced by Clarke et al. in [7], studies have
been done to extend such algorithms to the multivariable
case, first in a deterministic framework [8], [9] and more re-
cently in an entirely stochastic context [10], [11]. Our con-
trol law is mostly based on these last two approaches. The
algorithm is developed for a general M-input, N-output sys-
tem described by the following controlled auto-regressive
integrated moving average (CARIMA) model:

Al )a(a () =B(g " Ypu(t-D+C(g)e() (1)

where y(t), u(t -1), and e(t) are the output, the input, and
the disturbance vectors of respective dimensions N, M, and
N. The {e(t)} sequence is assumed to satisfy
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Efe()1t-11=0 Efe(e(t)} =0,

where o, is a positive definite matrix. A(g™"), B(¢g™"), and
C(q’l) are matrices of respective dimensions N x N, N x M,
and N x N whose elements are polynomials in the unit delay
operator ¢, and A(g ") is the diagonal polynomial matrix

A(qil) = diagi:I,K,N{l _qil} .

Finally,C(g™")is such that C(0) = I and detC(g ")has all its
roots strictly outside the unit circle (in theq ™' plane). Notice
that in most industrial applications a successful identifica-
tion of this matrix is unlikely, and it would be preferable to
consider it as a design parameter extending the robustness
results introduced recently in the monovariable case [12].

Synthesis Filtered Predictions

Inthe original version of the GPC, Clarke et al. [ 7] introduced
an auxiliary quantity W(t). It represents the output of a syn-
thesis filter applied to the system response y(t):

W =P (¢){ P (a")} ¥

where P,(¢ ") and P,(¢ ") are N x N-dimensional matrices of
polynomials. This synthesis filter is used to tune the servo
behavior of the closed-loop system.

In the same way, as proposed by Gu et al. [11] in the
multivariable case, we have introduced a second intermedi-
ate variable that acts upon the frequency spectrum:

o0 =0u(¢" { (™)} du® @

withQ,(¢ ") and Q,(g ") being M x M-dimensional matrices
of polynomials.

These additional variables have to be predicted over the
prediction horizon H,. Denote the j-step-ahead optimal pre-
dictor of the auxiliary output as

$(t+ j)=E { W+ it}

The two optimal predictors are respectively given by
Kinnaert [10] and Gu et al. [11]:

W) = G aa(H) + %y (1)
B(0) = T D (1) + D, (1) ®)

with

By =[S +1yL S+ HP)T]T
bt =[@(t)'L o(t+H, —1)T]T
N6 = [Bu(t)L du(t + H, —1)T]’
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where G and T are lower triangular matrices of respective di-
mensions (N x H )x(M x H,), and (M x H,)x(M x H,),
resulting from Diophantine equations [13].

Notice that the global predictive model depends on fu-
ture controls Au(t), and on what has been measured until
time ¢ through the right-hand terms ¥, and ®,.

Then we can express:

) E Au(t-1) O B yr(t) E
W, () = Hype + Fype M
g&u(t degB)H @/F (t —degF)H
;o g
o @E(f —degC + 1)@

0 fu F<t D O
Py (1) = Syec
%uF(t —degS$ - 1)@

where

ye(O) =R} y(D
Du (1) = {Qp) ' Bu(t)

with Hype, Fypes Ve, and Sype being matrices of respective
dimensions (N x H,)x (M xdegB),
(N xH,))x(M x(degF +1)), (NxH,)x(M xdegC), and
(M x H,)x(M x (degS +1)), where

degF = max {degP, 1,degA +degP,}
degS = max{degQN -1,degQ, _1}-

Note: When Xis a matrix of polynomials,degX is the maxi-
mum degree of all the polynomials.
Control Law
With these equations, we can predict the behavior of the
system and thus determine the best inputs to be applied.

For this, we form the vector containing the H » desired pro-
cess outputs

i) =[w(t+ D" L w(t+ H,,)T]T
and the corresponding predictions

W =[wee+D" Lo wees B |
o) =[o) L o+ H, -]

Then the following criterion will be minimized:

= E{ %oy -, +[ocof i} @
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where x|, = x" Rx andA and Q are weighting diagonal matri-
ces with respective dimensions (N x H,)x (N x H,) and
(M x H,)x(M x H,). Later, we will consider A(;) and r( ),
the submatrices of A and Q, with respective dimensions
NxNand M x M:

@ 0 oW 0 O 1) 0 OO 0 0O
A:BO A O Mg :BO o M3
oM o o 0 O OM 0 O 0 O
0 0 0 0
DO om0 }\(Hp)D DO o o V(Hp)D
with
B\jl 0 00 G/ 0 08
AMH=g O 08  r(p=d o 0p

H 0 MH H o nH
According to the two optimal predictors presented ear-
lier, these two vectors satisfy
E{w@)} =%  E{o0)|} = 0.
On the assumption that the control increments are all

taken to be zero after the control horizon N, the optimal
control law is given by Vaucoret et al. [6]:

ni(6) = (G5, NGy, + Ty, 0T, ) [Gh A (6 -9,) -Ti, Q &, ]

®

where G, (respectively, 7, ) is the submatrix built from the
M x N ) first rows of G (respectively, 7). In a classic way,
this control law will be implemented in the receding horizon
sense. Thus, only the M first lines of the matrix relation (5)
(thus forming matrices L. and M) are needed to deter-
mine the control increment to be applied as the calculation
is repeated at each sampling time

Au(t) = LMPC(LD - qu) ~Mypc®, .

Dimensions of the Ly, and M, matrices are (M x NH,)
and (M x MH ), respectively.

Robust Extension:
The a-MPC Algorithm

Modified Criterion

Though there exist studies on the robustness of
multivariable predictive control (see [14]), the user’s con-
straints and specifications prevent any complex algorithm
to be used. This is why we have tried to improve the above
control law using few tuning parameters.
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The second synthesis filter Q,(¢ ){Q,(¢™")}" intro-
duced through (2) improves the robustness of the final con-
trol law, as shown by Soeterboek [2] in the monovariable
case. Indeed, when one frequency £, (e.g., a resonance fre-
quency) in the controller output is to be attenuated, one can
design the filter Q(¢™) =Q, (¢ ){Q,(g ™)} such that this
frequency f, is considerably more weighted than others.
Then, minimizing the criterion (4), this frequency f; will be
strongly attenuated in the controller outputs. Thus in the
case of an open-loop stable process, a high-pass Q-filter will
be a useful means of improving the robustness of the control
law by attenuating high frequencies in the controller out-
puts (see [2]). At this point, the robustness of the
closed-loop system can still be improved. Indeed, if the Q-fil-
ter amplifies high frequencies of the future increments Ai(t)
in (3) (which tend to smooth the controller behavior), it also
increases the level of high-frequency disturbances in past
events ®, (Fig. 2). All things considered, this tends to de-
grade the signal-to-noise ratio of past measurements. To
counter this drawback, a correction term 51 has been in-
cluded in the criterion function

s, = 6{[wo-al; + o+ o))

A simple way to correct the effects of the high-pass Q-fil-
ter is to build this correction term from the past measure-
ments

O (H)=-a D,(f) with 0<a
such that past gauge measurements of the algorithm be-
come

Dy () +®,() =(1-0) Dy ().

The relative part of high frequencies in the frequency
spectrum of this term is then attenuated for 0 <a, leveled
fora =1, as illustrated in Fig. 2, or even inverted in favor of
low frequencies for a >1.

The a-MPC control law with the extra parameter is then
directly derived from (5)

pi(0) = (G4 AG,, + Tt QT,, )"

[GrA(B-)+@-DT]0d,). ©

The effects obtained by filtering the errors and control
moves can also possibly be obtained by replacing the
weighting matrices A and Q in (4) by two full nondiagonal
positive definite matrices. But in the latter case, tuning is
more difficult and the corresponding physical sense is very
weak compared to the proposed approach. In an industrial
context where the users of the control system are not spe-
cialized, this point is crucial.
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Robustness Analysis and Design

From here on, the a-MPC algorithm is a robust extension of
the initial control law that corresponds to the special case
a =0.The H_-norm of the sensitivity function .S , will be con-
sidered in analyzing the robustness of a given closed-loop
system. Indeed, the literature [15] shows that the modulus
margin AM is equal to the inverse of the maximum of the
modulus of this function

am = (max|s,, (<)) " = (s, ].) "

As a consequence, the reduction of HSWH will imply the
increase of AM. Denote G (respectively, o) the largest (re-
spectively, smallest) singular value of the multivariable sen-
sitivity function S, ) [16]. Then the H_-norm is defined as

. =sup o(S,, (7))

5.,

Thus far, the robust synthesis has been based upon the
determination of an optimal value for a, denoted o, using
the H,-norms of the sensitivity function.S , and the comple-
mentary sensitivity function 7,. But as a theoretical analy-
sis of the robustness is not yet available, the design has
been performed numerically. So, given a nominal model, an
a-MPC controller is first tuned fora =0. Then, varyinga, we
look for the minimum of the H_-norm of the sensitivity func-
tions .S, and T ,. The observed results from the simulations
are as follows.

e Starting from a =0, as a increases, the H_-norms de-
crease smoothly or do not change (i.e., the robustness
either improves or is constant but never deterio-
rates). In particular, one of the two considered norms
can reach a minimum, as will be presented in the next
case study. But the theoretical conditions leading to a
minimum are not guaranteed yet, so only a numerical
computation is performed. Once the minimum of one
of the two norms is found, the corresponding a ,, is
considered for the control law (6), and the plots of the
singular values of S,,(e”) and T,,(e ") are used to
verify a posteriori the gain over the robustness.

¢ In the case where either of the two norms reach as a
minimum (i.e., when the norms continuously de-
crease), there exists a bound, denoted a4, beyond
which the H_-norm rapidly increases. This bound has
to be numerically detected. In addition, as we are con-
sidering the control of a real process, we apply a secu-
rity factor of 20%. The magnitude of this margin is
chosen as a function of the validity of the plant model
(the more precise the model, the smaller the factor).
Thus, in this case, we have

a opt = 08 a bound *
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As an illustration, we can consider the example of an
SISO system, with H_-norms of the sensitivity functions as
depicted in Figs. 5 and 6. In this case, only HS is influ-

.

enced by variations of o, with HTybH remaining constant. In

addition, the break on the H_-norms evolution is clearly
shown, leading to abouta ., = 25. Then, applying the secu-
rity factor, the control law (6) will be implemented using
Ao =0.8 0,4 =20, leading to an HSWHOO gain of about 4 dB

(Fig. 5).
Case Study

As a complete illustration of the robust control law design,
let us consider the following two-input, two-output CARIMA
model, which results from the on-line identification of the in-
dustrial plant, for a given nominal operating point of P =10
bar and T =120 °C:

%411(‘771) Alz(qil)D

-1 1D_
E“m(q?l) Azz(qil)ga(q )gzﬁ_
G B,(¢") ¢ “By(¢")Cu,0, .,
70" a eI

A, =1-14067¢ " +04348 ¢
A, =00086 ¢~ -0.0082¢
A, = -15319 ¢ +14497 ¢
A, =1-15939 ¢ +06151 ¢
g B, = 00056 g™ +0.0894 ¢ +0.8134 ¢ +21714 g™
g %B,, = —00104 ¢ +00336 > +00287¢ > + 03387 ¢
q "B, = -22561¢7° +5.8590 ¢ +46272¢ 7 -05204 ¢
g “B,, =35972q +34753 ¢° +32996 g7 +15961 ¢

where y, stands for the pressure P, and where y, stands for
the temperature T.

Note that time delay of five sampling periods for the last
two polynomials in (29) is one of the motivations for the use
of predictive control methods. This time delay, relative to
the temperature control, includes the physical phenomena
due to material propagation and the thermocouple dy-
namic.

The controller has been tuned with the following param-
eters:

30 0 O 100 0 O
H =15 N =2 A(j)= N =
» u D=0 o00sf "P=Ho 100

and with the following synthesis filters:
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oy _1-09¢™ -
PN(ql):B 0 1- 09 *1D e HO OID
Ly_1-096g¢" 0 O - m04 "
(g 1)=5 0 1 09647 @) =Fo onef

The result of the controller design is clearly in accor-
dance with the theory, in the sense that the synthesis filters
are high-pass types, which is a reasonable way to improve
robustness for open-loop stable processes [2].

Then, considering the evolution of

[ ana | asa

Sypr reaches a

minimum for a =128, which will be chosen as a - Finally,
=128, and the max-
imum and minimum singular values of the sensitivity func-
tions are then plotted (Figs. 9 and 10) to confirm the

obtained gain: about 1 dB for HSYPHM and 8dB for HT;”HW

the controllaw (6) is calculated witha

Looking more precisely at Figs. 7 and 8, it appears that a
greater value could have been chosen for a. Indeed, it can
be observed on Fig. 7 that HS

" Hm is increasing very little from

a =128toa =28, while[T,,| is still decreasing significantly.

In this case, the choice fora may be made considering which
of the two sensitivity functions must be improved as a prior-
ity.

Finally, it is interesting to perform a trade-off between the
closed-loop behavior of both controllers, with a =0 and
o =128. The corresponding plots (Figs. 11 and 12) show that
the global performance is not modified; the time responses
are identical, while a minor deterioration of decoupling is
observed.

Control Design for the

Experimental Test Stand

The simulation of onboard air conditioning led the CEAT to
build a test stand, called REBECA, which is depicted in Fig. 1.
To run under variable pressure conditions, the tests are per-
formed inside a large vacuum chamber, whose diameter is
about 6 m. The different supplies (hot and cold
high-pressure sources) are located outside the chamber.
The test stand is controlled by means of two valves u, , and
u., and the variables to be controlled are the airflow pres-
sure Pand temperature 7. The main components of the over-
all system are depicted in Fig. 2. Inside the vacuum chamber,
the two airflows mix in a tube (77 mm in diameter and 3 m in
length). The expected performances are: pressure gradients
of 10 bar/s and temperature gradients up to 100 °C/s with-
out offset. Finally, to simulate extended flight domains, pres-
sure and temperature should vary widely (Pfrom 5 to 25 bar,
T from 50 to 400 °C).

Numerical Simulation of the Process
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The first step of the control design was to develop a soft-
ware simulation of the physical phenomena, the most diffi-
cult point being the transition between subsonic and
supersonic airflows. Indeed, an analytical study of the ther-
modynamics led to the following expression for the temper-
ature and pressure derivatives.

e Subsonic conditions

% = (Auhot + Bucold)T’\ll)l2 _PZ _GQT
T T
= (Cuhot + Duculd);\lplz -P° _BQF

e Supersonic conditions

= (Au,, + Buy, )T -aQT

ar
dt
aT
ar 60,

= (Cuhot + Duculd)

where A,B,C,D,A,B,C,D,anda ,B are constant, and Q is the
airflow. The transition between both flow conditions is de-
termined by the difference between the air supplies upper
pressure P, and the airflow pressure P, the flow is subsonic
(respectively, supersonic) when this difference is lower (re-
spectively, higher) than the following limit value:

10013
1156

AR,

0 0
m = A= ;o
O O

with C, being a dimensionless coefficient characterizing the
servovalves. In our case, P, =25 bar and C, =0.8, so that

AP, =64 bar. Thus, the transition between both flow types
will occur around 18 bar.

The nonlinear behavior is obvious from the above equa-
tions, and in the same way coupling effects will be inherent.
It is also interesting to note that the dynamics are a function
of the airflow, which is neither controlled nor measured dur-
ing normal operating conditions; this is simply because the
airflow is subject to unpredictable evolution during flight.

The simulator has been validated by comparing real-time
and simulated recordings. As the plant was initially running
in a closed loop with two PID controllers, we have simulated
the entire control loop, including controllers. The results
were very good; comparing both outputs, errors between
simulations and real data remained very small, even during
transients due to setpoint changes. This simulator will be
the basis for the next step of identification, and later for
roughly tuning the MPC parameters. Indeed, running peri-
ods are very hard to negotiate (and, of course, very expen-
sive), because one fundamental constraint prescribed by
the CEAT was that the control design tests should not dis-
turb the normal (and commercial) use of the test stand.

Preliminary Identification

IEEE Control Systems Magazine 5



The test stand has a wide operating range, with tempera-
tures from 150 °C up to 650 °C and pressures from 2 up to 40
bar. Thus, the global behavior is nonlinear, and it is clear
that a unique finite dimensional linear model cannot render
the entire input-output behavior for any operating condi-
tion. On the other hand, the constraint of a unique control-
ler with fixed parameters completely prevents
consideration of any adaptive method. So the first step has
been an open-loop identification of the two-input,
two-output model, considering various operating zones.
The two input signals were an uncorrelated pseudorandom
binary sequence (PRBS) with fixed amplitude (10% of the
maximum amplitude). The sampling period is 7, =40 ms.
The operating ranges have been chosen by the test stand us-
ers. Fig. 13 illustrates the resulting zones in terms of stan-
dard deviations around the nominal points for both
temperature and pressure.

The standard deviations of the 11 tests clearly reveal the
two kinds of behavior: the first four tests with pressures
lower than 18 bar cover the supersonic operating range,
whereas the others tests cover the subsonic operating
range. In addition, Fig. 7 clearly shows that the open-loop
gain drops as pressure increases, and that this gain is less
dependent on temperature.

The model structure, directly from (1), is as follows:

B(a") o),

) a2

_dan(q_l) d'Blz(q ) a1
) ol e

where u, and u, now stand foru, , and u_,.

The first step was to determine the two time delays d,
and d,. This was done by minimizing Akaike’s Final Predic-
tion Error (FPE) criterion [17]:

1+ dim©®

FPE =
1-

i @V(@)

N

where O is the model parameter vector, /N is the number of
data points, and V,(©) is the determinant of the estimated
covariance matrix of the innovations. The minimal value
has been obtained for

These results, in accordance with reality (pressure sen-
sors are quite instantaneous, thermocouples much slower),
are another argument for the use of long-range predictive
control techniques: Indeed, the presence of this (not negligi-
ble) pure time delay renders classical PID regulation insuffi-
cient, as will be shown next.
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The second step was the choice of a nominal model as a
basis for the MPC design. This model has been computed
minimizing the sum of squared prediction errors using
least-squares methods [18]. It describes the process behav-
ior over the entire supersonic operating range

A,(g7) =1-05359¢™" —04031g ™

A,(g7™) = 000127 -00005g

Ay(g7™) = -04039¢™" +03128¢

A,(q7) =1-05040¢ ~04122q*
g “B,,(q7) = 00762 +01927* +10249g * +15084¢
g “B,,(q™) = 00248¢™" +00411g ™ +02994¢ > +04109¢ ~*
q B, (q7) = 415477 +62671g™° + 71529 " +116429 "
g B,(q7") = 941317 +10081g™° + 87914¢ 7 +17224¢

To validate this model, we have expressed the correla-
tionratesp,, andp,; between the measured outputs (Pand
T) and the simulated ones (P, and 7,) obtained with the same
input PRBS. This has been realized with the first four tests,
which cover the supersonic operating range. Thus, with
correlation rates always greater than 96%, this mean model
has been validated over the entire supersonic operating
range.

Controller Implementation
As previously mentioned, the system is controlled by an
April 5000 automaton. As this automaton also covers other
tasks (mainly monitoring and supervision of the whole test
stand), it was not possible to replace it with another hard-
ware system more adapted to control tasks. This constraint
led to a drastic optimization of the computation burden to
make it compatible with the sampling period. Indeed, this
industrial automaton is not especially dedicated to the im-
plementation of sophisticated amenable controllers.

In the monovariable case, the algorithm is usually rewrit-
ten in polynomial form:

R(g ™ )u(d) =T(q ™ )w(®)-S(q ™ )y(D

where R(¢™), S(¢™"), and T(¢ ") are polynomials easily cal-
culated from the model and from the controller parameters.
From there, implementation of the controller in the C lan-
guage is very easy and not time consuming.

In the multivariable case, however, the polynomial form
is not obvious, and of course R(g™), S(¢™"), and T(g™") be-
come polynomial matrices. To render the algorithm as sim-
ple as possible, we first made an assumption about the
disturbance polynomial (i.e.,C(¢™") =1,), and the synthesis
filters were chosen so that

0 0
p(s")=0 Db, g 0,(¢7) = %671 0 %
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(i.e., matrices with constant parameters). Then the expres-
sions of the R(g™), T(¢g™"), and S(¢ ") polynomial matrices
are made simpler [13]. Finally, the calculation time has been
measured to be less than 20 ms, which is compatible with
the 40 ms sample time constraint.

Results

Two-Controller Structure

To date, the industrial process was controlled with two in-
dependent PIDs, one for controlling pressure and the other
for temperature. For the treated example, set points are cho-
sen to be square signals with large amplitudes (10 —20 bar
and 200 —-450 °C to explore wide operating zones (Fig. 14).
The performance is summarized in Table 1, where both 95%
rise times and the maximum deviations, as measured on the
real test stand, are listed.

Both the rise times and deviations are greater than ex-
pected. In addition, coupling between the two control loops
is greatly affecting the global behavior, leading to critical os-
cillations when the operating zone is quite different from the
zone considered to tune the PID controllers. Clearly, in this
case, the PID controllers have been tuned for large pressure
and temperature levels, but not for 7 =200 °Cand P =20 bar
(Fig. 14).

A good way to compare the capabilities of predictive con-
trol with the existing control structure is to keep the two
SISO loops and to replace the PID controllers with SISO
a-MPCs. Using the same criteria as before, the results are re-
ported in Table 2. The controllers have been tuned using the
parameters of Table 3.

Note: These results are not sufficient to render the bene-
fits of predictive control and to compare with the former
method. Indeed, taking into account the user specifications,
the performance can be shaped in different ways using the
controller parameters H,, N,, the weighting matrices A and
Q, and the synthesis filters.

One-Controller Structure
Thea-MPC was designed and tuned using numerical simula-
tions; this first step resulted in a rough “pretuning” of the
controller parameters and especially in the calculation of
the optimal value for a. The controller was then imple-
mented on the April 5000 in the polynomial form described
earlier. The corresponding plots, shown in Fig. 15, illustrate
a large improvement of both transients and coupling rejec-
tion. With maximum deviations kept smaller than 1.5 bar for
pressure and 40 °C for temperature, thea-MPC also resulted
in substantial reduction inrise times, as reported in Table 4.
The controller was tuned using the following parame-
ters:
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1 0 10 00

AC) = =

@) % 00030 r() D 101

p _0-0%" 0 O 1 00
"“H oo 1-09H " H of
_1-096g" 0 O 004 0O

U=0 0 1-0e6E @ THo 00

The weighting parameters are the same as in the
two-controller case, so only the prediction and control hori-
zons have been changed. In particular, H, has been dou-
bled, thus improving stability robustness, as is well known
[2], without any deterioration of performance. Changing H,
from 6 to 15 has not affected the transient performance.

It should be underscored that the performance improve-
ment, in terms of time responses and coupling rejection, did
not lead to excessive variance of both output signals (from
the user’s point of view). These parameters remain inside
reasonable limits, as do the input signals. This particular
point is certainly the main advantage of the full
multivariable algorithm with respect to the previous one. In-
deed, as the model explicitly accounts for the coupling ef-
fects, tuning the controller parameters to get high
performance and sufficiently smooth signals is feasible.
Figs. 16 and 17 report other tests realized with this new con-
troller.

Concerning the robustness analysis, Table 5 reports the
H_-norms of the sensitivity functions for the classical
multivariable controller (a =0) and the proposed one
(o =2).Inthis case, the robustness gain is significant mainly
for the complementary sensitivity function HTyb 80 the ro-

bustness of the closed loop with respect to output distur-
bances is greatly improved. This point is crucial in
considering such an industrial application.

Conclusion

To cope with recent technological evolutions of air condi-
tioning systems for aircraft, the French Aeronautical Test
Center built a new test stand for certification at ground
level. The constraints specified by the industrial users of
the process seemed antagonistic for many reasons. First,
the controller had to be implemented on an industrial au-
tomaton, not adaptable to modern algorithms. Then the
specified dynamic performances were very demanding, es-
pecially taking into account the wide operating ranges of the
process. Finally, the proposed controller had to be easy for
nonspecialist users to handle.

Thus, the control design and implementation steps had
to be conducted considering both theoretical and technical
aspects. This finally led to the development of a new MPC,
called a-MPC, whose main characteristic is the introduction
of an extra tuning parametera that has enhanced the overall
control robustness. In particular, the H_-norm of the sensi-

IEEE Control Systems Magazine 7



tivity functions can be significantly reduced by tuning this
single new parameter. This turns out to be a simple but effi-
cient way to improve the robustness of the initial algorithm.
The other classical tuning parameters are still physically
meaningful, as is usual with predictive techniques. The ini-
tial results are very promising and this controller has al-
ready been adopted by the industrial users as the basis of
the control part for future developments of the test stand.
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Figure 1. Global view of the industrial test stand.

Figure 2. Schematic diagram of the test stand.

Figure 3. Example oftB(I) frequency spectrum for a classical

MPC design.

Figure 4. Example ofp(t) frequency spectra for severaMPC

designs.

Figure 5. H_-norm of S as a function ofa: SISO example.

Sensitivity functiors, .
Figure 6.

8 IEEE Control Systems Magazine

H,,-norm ofT, as a function ofi: SISO example. Complementary
sensitivity functio,.
Figure 7. H_-norm ofS  as a function oéi. Sensitivity function
S
Fiygure 8. H,-norm of T, as a function ofx. Complementary
sensitivity functior,,
Figure 9. Singular values of the sensitivity functi&y, fora =0
anda =128
Figure 10. Singular values of the complementary sensitivity
functionT,, fora = 0 anda =1.28
Figure 11. Closed-loop response far= 0.
Figure 12. Closed-loop response far=128
Figure 13. Operating zones for the open-loop identification.
Figure 14. Experimental results using PID control.
Figure 15. Experimental results usirg-MPC control.
Figure 16. Example of closed-loop response at constant
temperature.
Figure 17. Example of closed-loop response at constant
pressure.
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Callouts:

The first step of the control
design was to develop a
software simulation of the
physical phenomena..

The test stand has a wide
operating range, and thus
the global behavior is
nonlinear.

These results (instantaneous
pressure sensors, slower
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thermocouples) are another
argument for the use of

Table 1. Closed-loop performance with two PID controllers.

Pressure

Temperature

t95%

Max. deviation

t Max. deviation

95%

3.7s | 2bar

84s | 50°C

long-range predictive control
techniques.

Table 4. Closed-loop performances with one a-MPC con-

troller.
Table 2. Closed-loop performances with two a-MPC con-
trollers. Pressure Temperature
Pressure Temperature t Max. deviation t max. deviation

95%

95%

t95%

Max. deviation

t95%

Max. deviation

24s

1.5 bar

22s

40 °C

24s

1.9 bar

5s

40 °C

Table 5. H_-norm of the sensitivity functions.

Table 3. Parameter tuning for the two a-MPC controllers. a=0 a=2
N, |A Q a IS, 16.9 dB 15.7 dB
o - MPC, 3 1L 107, |2 IT,,| 22,5 dB 13.6 dB
a -MPC, 3 00037, | 101, 2
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