17,386 research outputs found

    Conserved charges in the quantum simulation of integrable spin chains

    Full text link
    When simulating the time evolution of quantum many-body systems on a digital quantum computer, one faces the challenges of quantum noise and of the Trotter error due to time discretization. The Trotter error in integrable spin chains can be under control if the discrete time evolution preserves integrability. In this work we implement, on a real quantum computer and on classical simulators, the integrable Trotterization of the spin-1/2 Heisenberg XXX spin chain. We study how quantum noise affects the time evolution of several conserved charges, and observe the decay of the expectation values. We in addition study the early time behaviors of the time evolution, which can potentially be used to benchmark quantum devices and algorithms in the future. We also provide an efficient method to generate the conserved charges at higher orders.Comment: 26 pages, data and codes available at https://github.com/takuoku/integrable-trotterizatio

    Optical control of competing exchange interactions and coherent spin-charge coupling in two-orbital Mott insulators

    Get PDF
    In order to have a better understanding of ultrafast electrical control of exchange interactions in multi-orbital systems, we study a two-orbital Hubbard model at half filling under the action of a time-periodic electric field. Using suitable projection operators and a generalized time-dependent canonical transformation, we derive an effective Hamiltonian which describes two different regimes. First, for a wide range of non-resonant frequencies, we find a change of the bilinear Heisenberg exchange JexJ_{\textrm{ex}} that is analogous to the single-orbital case. Moreover we demonstrate that also the additional biquadratic exchange interaction BexB_{\textrm{ex}} can be enhanced, reduced and even change sign depending on the electric field. Second, for special driving frequencies, we demonstrate a novel spin-charge coupling phenomenon enabling coherent transfer between spin and charge degrees of freedom of doubly ionized states. These results are confirmed by an exact time-evolution of the full two-orbital Mott-Hubbard Hamiltonian.Comment: 3 pages, 6 figure

    Tensor Product Approach to Quantum Control

    Get PDF
    In this proof-of-concept paper we show that tensor product approach is efficient for control of large quantum systems, such as Heisenberg spin wires, which are essential for emerging quantum computing technologies. We compute optimal control sequences using GRAPE method, applying the recently developed tAMEn algorithm to calculate evolution of quantum states represented in the tensor train format to reduce storage. Using tensor product algorithms we can overcome the curse of dimensionality and compute the optimal control pulse for a 41 spin system on a single workstation with fully controlled accuracy and huge savings of computational time and memory. The use of tensor product algorithms opens new approaches for development of quantum computers with 50 to 100 qubits.Comment: To appear in Proc. IMSE 201

    Hamiltonian quantum simulation with bounded-strength controls

    Get PDF
    We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a suitable modification of an "Eulerian decoupling cycle," that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system, while suppressing unwanted decoherence to the leading order. We present illustrative applications to both closed- and open-system simulation settings, with emphasis on simulation of non-local (two-body) Hamiltonians using only local (one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev's honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant to the dynamical generation of a topologically protected quantum memory. Additional implications for quantum information processing are discussed.Comment: 24 pages, 5 color figure

    Entanglement of the Ising-Heisenberg diamond spin-1/2 cluster in evolution

    Full text link
    In the last two decades, magnetic, thermodynamic properties and bipartite thermal entanglement in diamond spin clusters and chains have been studied. Such spin structures are presented in various compounds. The ions of Cu2+Cu^{2+} in the natural mineral azurite are arranged in a diamond spin chain. There are no studies of the entanglement behaviour during the quantum evolution of such systems. Herein, we consider the evolution of entanglement in the diamond spin-1/2 cluster. This cluster consists of two central spins described by the anisotropic Heisenberg model, which interact with two side spins via Ising interaction. The influence of the interaction coupling with side spins on the entanglement of central spins is investigated. It is shown that choosing the value of this coupling allows us to control the behaviour of entanglement between central spins. As a result, we find conditions for achieving the maximal values of entanglement. In addition, the entanglement behaviour between the side spins, central and side spins, and between a certain spin and the rest of the system is studied. In these cases, the conditions for achieving maximal entanglement are also obtained.Comment: 21 pages, 5 figure

    Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems

    Full text link
    Quantum simulators are controllable quantum systems that can reproduce the dynamics of the system of interest, which are unfeasible for classical computers. Recent developments in quantum technology enable the precise control of individual quantum particles as required for studying complex quantum systems. Particularly, quantum simulators capable of simulating frustrated Heisenberg spin systems provide platforms for understanding exotic matter such as high-temperature superconductors. Here we report the analog quantum simulation of the ground-state wavefunction to probe arbitrary Heisenberg-type interactions among four spin-1/2 particles . Depending on the interaction strength, frustration within the system emerges such that the ground state evolves from a localized to a resonating valence-bond state. This spin-1/2 tetramer is created using the polarization states of four photons. The single-particle addressability and tunable measurement-induced interactions provide us insights into entanglement dynamics among individual particles. We directly extract ground-state energies and pair-wise quantum correlations to observe the monogamy of entanglement

    Low-control and robust quantum refrigerator and applications with electronic spins in diamond

    Get PDF
    We propose a general protocol for low-control refrigeration and thermometry of thermal qubits, which can be implemented using electronic spins in diamond. The refrigeration is implemented by a probe, consisting of a network of interacting spins. The protocol involves two operations: (i) free evolution of the probe; and (ii) a swap gate between one spin in the probe and the thermal qubit we wish to cool. We show that if the initial state of the probe falls within a suitable range, and the free evolution of the probe is both unital and conserves the excitation in the zz-direction, then the cooling protocol will always succeed, with an efficiency that depends on the rate of spin dephasing and the swap gate fidelity. Furthermore, measuring the probe after it has cooled many qubits provides an estimate of their temperature. We provide a specific example where the probe is a Heisenberg spin chain, and suggest a physical implementation using electronic spins in diamond. Here the probe is constituted of nitrogen vacancy (NV) centers, while the thermal qubits are dark spins. By using a novel pulse sequence, a chain of NV centers can be made to evolve according to a Heisenberg Hamiltonian. This proposal allows for a range of applications, such as NV-based nuclear magnetic resonance of photosensitive molecules kept in a dark spot on a sample, and it opens up possibilities for the study of quantum thermodynamics, environment-assisted sensing, and many-body physics

    Quantum Phase Transition of Ground-state Entanglement in a Heisenberg Spin Chain Simulated in an NMR Quantum Computer

    Full text link
    Using an NMR quantum computer, we experimentally simulate the quantum phase transition of a Heisenberg spin chain. The Hamiltonian is generated by a multiple pulse sequence, the nuclear spin system is prepared in its (pseudo-pure) ground state and the effective Hamiltonian varied in such a way that the Heisenberg chain is taken from a product state to an entangled state and finally to a different product state.Comment: 5 pages, 5 eps figures. Accepted in Phys. Rev.
    corecore