3 research outputs found

    Adaptive Neuro-Fuzzy Control Approach for a Single Inverted Pendulum System

    Get PDF
    The inverted pendulum is an under-actuated and nonlinear system, which is also unstable. It is a single-input double-output system, where only one output is directly actuated. This paper investigates a single intelligent control system using an adaptive neuro-fuzzy inference system (ANFIS) to stabilize the inverted pendulum system while tracking the desired position. The non-linear inverted pendulum system was modelled and built using MATLAB Simulink. An adaptive neuro-fuzzy logic controller was implemented and its performance was compared with a Sugeno-fuzzy inference system in both simulation and real experiment. The ANFIS controller could reach its desired new destination in 1.5 s and could stabilize the entire system in 2.2 s in the simulation, while in the experiment it took 1.7 s to reach stability. Results from the simulation and experiment showed that ANFIS had better performance compared to the Sugeno-fuzzy controller as it provided faster and smoother response and much less steady-state error

    Using real interpolation method for adaptive identification of nonlinear inverted pendulum system

    Get PDF
    In this paper, we investigate the inverted pendulum system by using real interpolation method (RIM) algorithm. In the first stage, the mathematical model of the inverted pendulum system and the RIM algorithm are presented. After that, the identification of the inverted pendulum system by using the RIM algorithm is proposed. Finally, the comparison of the linear analytical model, RIM model, and nonlinear model is carried out. From the results, it is found that the inverted pendulum system by using RIM algorithm has simplicity, low computer source requirement, high accuracy and adaptiveness in the advantages

    Dise帽o de un transportador personal el茅ctrico auto-equilibrante

    Get PDF
    Se elabor贸 el dise帽o de un transportador personal el茅ctrico auto-equilibrante sobre 2 ruedas para el cual se realiz贸 un nuevo modelo matem谩tico basado en las leyes de Newton, se realiz贸 el dise帽o el sistema de estabilizaci贸n y desplazamiento mediante un dise帽o de control 贸ptimo LQR , se realiz贸 un dise帽o de la propuesta de implementaci贸n donde se seleccionaron los motores el茅ctricos, el chasis, bater铆as, el sensor inercial MPU9250 y el controlador principal STM32 (ARM C贸rtex de 32 bits) como componentes principales, as铆 mismo se gener贸 un seudoc贸digo para la programaci贸n del controlador principal. Respecto al dise帽o de control, seg煤n las simulaciones de la respuesta en el tiempo en el software Matlab2021a, se verificaron que los tiempos de asentamiento para el control de trayectoria y estabilidad se encuentran alrededor de los 3 segundos, los sobreimpulsos para la posici贸n lineal son menores al 0.5% de la referencia, as铆 mismo se comprob贸 seg煤n las simulaciones que el transportador realiza el seguimiento de diversas trayectorias manteni茅ndose en equilibrio. En una futura etapa de implementaci贸n, este dise帽o de transportador ser谩 una alternativa para el transporte de personas con dificultad para guiar su trayectoria de traslado (como turistas, visitantes a alg煤n establecimiento, supervisores que no conozcan el 谩rea, alumnos que no conozcan ubicaciones de sus aulas, personas con dificultad para trasladarse, entre otros)
    corecore