2,586 research outputs found

    A timeband framework for modelling real-time systems

    Get PDF
    Complex real-time systems must integrate physical processes with digital control, human operation and organisational structures. New scientific foundations are required for specifying, designing and implementing these systems. One key challenge is to cope with the wide range of time scales and dynamics inherent in such systems. To exploit the unique properties of time, with the aim of producing more dependable computer-based systems, it is desirable to explicitly identify distinct time bands in which the system is situated. Such a framework enables the temporal properties and associated dynamic behaviour of existing systems to be described and the requirements for new or modified systems to be specified. A system model based on a finite set of distinct time bands is motivated and developed in this paper

    On the decidability and complexity of Metric Temporal Logic over finite words

    Full text link
    Metric Temporal Logic (MTL) is a prominent specification formalism for real-time systems. In this paper, we show that the satisfiability problem for MTL over finite timed words is decidable, with non-primitive recursive complexity. We also consider the model-checking problem for MTL: whether all words accepted by a given Alur-Dill timed automaton satisfy a given MTL formula. We show that this problem is decidable over finite words. Over infinite words, we show that model checking the safety fragment of MTL--which includes invariance and time-bounded response properties--is also decidable. These results are quite surprising in that they contradict various claims to the contrary that have appeared in the literature

    Verification and control of partially observable probabilistic systems

    Get PDF
    We present automated techniques for the verification and control of partially observable, probabilistic systems for both discrete and dense models of time. For the discrete-time case, we formally model these systems using partially observable Markov decision processes; for dense time, we propose an extension of probabilistic timed automata in which local states are partially visible to an observer or controller. We give probabilistic temporal logics that can express a range of quantitative properties of these models, relating to the probability of an event’s occurrence or the expected value of a reward measure. We then propose techniques to either verify that such a property holds or synthesise a controller for the model which makes it true. Our approach is based on a grid-based abstraction of the uncountable belief space induced by partial observability and, for dense-time models, an integer discretisation of real-time behaviour. The former is necessarily approximate since the underlying problem is undecidable, however we show how both lower and upper bounds on numerical results can be generated. We illustrate the effectiveness of the approach by implementing it in the PRISM model checker and applying it to several case studies from the domains of task and network scheduling, computer security and planning

    Discrete-Time Verification and Control for Probabilistic Rectangular Hybrid Automata

    Get PDF

    Verification and Control of Partially Observable Probabilistic Real-Time Systems

    Full text link
    We propose automated techniques for the verification and control of probabilistic real-time systems that are only partially observable. To formally model such systems, we define an extension of probabilistic timed automata in which local states are partially visible to an observer or controller. We give a probabilistic temporal logic that can express a range of quantitative properties of these models, relating to the probability of an event's occurrence or the expected value of a reward measure. We then propose techniques to either verify that such a property holds or to synthesise a controller for the model which makes it true. Our approach is based on an integer discretisation of the model's dense-time behaviour and a grid-based abstraction of the uncountable belief space induced by partial observability. The latter is necessarily approximate since the underlying problem is undecidable, however we show how both lower and upper bounds on numerical results can be generated. We illustrate the effectiveness of the approach by implementing it in the PRISM model checker and applying it to several case studies, from the domains of computer security and task scheduling

    A multiform time approach to real-time system modeling: Application to an automotive system

    Get PDF
    The original publication is available at ieee.org ({http://dx.doi.org/10.1109/SIES.2007.4297340)International audienceIn the context of an effort to answer the OMG RFP for Modeling and Analysis of Real-Time Embedded systems (MARTE), we are defining extensions to the simple time model of UML2. After a brief review of some time-related UML profiles, we focus on the specificity of our approach: the ability to take account of multiform time-a concept inherited from reactive system modeling. Using an example from the automotive industry, we illustrate the use of our profile to represent, to constraint and to analyze behaviors depending on multiform time

    Multiform Time in UML for Real-time Embedded Applications

    Get PDF
    The original publication is available at ieee.org (http://dx.doi.org/10.1109/RTCSA.2007.51)International audienceEach domain has its own interpretation of time. We propose to extend UML, which is more and more used in the domain of real-time embedded applications, with a concept of time inherited from reactive system modeling : multiform time. After a brief review of some UML profiles, we present our extensions and we illustrate on an example from the automotive industry how to represent and to constraint behaviors depending on multiform time. We advocate that this model of time offers wider possibilities than restricting models only to the physical time

    A methodology for the requirements analysis of critical real-time systems

    Get PDF
    PhD ThesisThis thesis describes a methodology for the requirements analysis of critical real-time systems. The methodology is based on formal methods, and provides a systematic way in which requirements can be analysed and specifications produced. The proposed methodology consists of a framework with distinct phases of analysis, a set oftechniques appropriate for the issues to be analysed at each phase of the framework, a hierarchical structure of the specifications obtained from the process of analysis, and techniques to perform quality assessment of the specifications. The phases of the framework, which are abstraction levels for the analysis of the requirements, follow directly from a general structure adopted for critical real-time systems. The intention is to define abstraction levels, or domains, in which the analysis of requirements can be performed in terms of specific properties of the system, thus reducing the inherent complexity of the analysis. Depending on the issues to be analysed in each domain, the choice of the appropriate formalism is determined by the set of features, related to that domain, that a formalism should possess. In this work, instead of proposing new formalisms we concentrate on identifying and enumerating those features that a formalism should have. The specifications produced at each phase of the framework are organised by means of a specification hierarchy, which facilitates our assessment of the quality of the requirements specifications, and their traceability. Such an assessment should be performed by qualitative and quantitative means in order to obtain high confidence (assurance) that the level of safety is acceptable. In order to exemplify the proposed methodology for the requirements analysis of critical real-time systems we discuss a case study based on a crossing of two rail tracks (in a model railway), which raises safety issues that are similar to those found at a traditional level crossing (i.e. rail-road)CAPES/Ministry of Education (Brazil
    • …
    corecore