
This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

J. SPROSTON. Discrete-Time Verification and Control for Probabilistic
Rectangular Hybrid Automata, in: Proceedings of the 8th International
Conference on Quantitative Evaluation of Systems (QEST 2011), IEEE
Computer Society Press, 2011, 9781457709739, pp: 79-88.

The publisher's version is available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6042032

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/123771

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/301875012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Discrete-Time Verification and Control for
Probabilistic Rectangular Hybrid Automata

Jeremy Sproston
University of Turin – Italy

sproston@di.unito.it

Abstract—Hybrid automata provide a modeling formalism for
systems characterized by a combination of discrete and contin-
uous components. Probabilistic rectangular automata generalize
the class of rectangular hybrid automata with the possibility
of representing random behavior of the discrete components of
the system. We consider the following two problems regarding
probabilistic rectangular automata: verification concerns the
computation of the maximum probability with which the system
can satisfy a certain ω-regular specification; control concerns
the computation of a strategy which guides certain choices of
the system in order to maximize the probability of satisfying
a certain ω-regular specification. Our main contribution is to
give algorithms for the verification and control problems for
probabilistic rectangular automata in a semantics in which
discrete control transitions can occur only at integer points
in time. Additionally, we give algorithms for verification of ω-
regular specifications of probabilistic timed automata, a subclass
of probabilistic rectangular automata, with the usual dense-time
semantics.

I. INTRODUCTION

Systems that are characterized by the interplay between
discrete and continuous components are called hybrid systems.
Examples of hybrid systems include digital controllers embed-
ded in analog environments, and can be found in a wide variety
of contexts, such as manufacturing processes, automotive or
aeronautic applications, and domestic appliances. The critical
nature of such systems, both from a social and economic
viewpoint, has lead to interest in formal techniques to support
their correct development. For this purpose, formalisms for
hybrid systems, such as hybrid automata [1], have been
introduced, along with their associated analysis techniques. A
hybrid automaton consists of a finite control graph equipped
with a finite set of real-valued variables. As time passes while
control remains within a node of the graph, the values of
the variables change continuously according to differential
equations associated with the node. At certain points in time,
control can instantaneously jump from one node to another,
and the variables either retain their current value or change
discontinuously with the jump. Analysis techniques for hy-
brid automata generally belong to two categories: verification
approaches, such as those based on model checking (see, for
example, [1], [2]), consist of determining whether the hy-
brid automaton satisfies some correctness property; controller-
synthesis approaches involve the computation of a control
strategy for (some of) the digital components of the system
such that the application of this strategy guides the system in

such a way as to guarantee the satisfaction of some correctness
property, no matter how the environment behaves (see, for
example, [3], [4], [5], [6]).

The basic hybrid automaton formalism does not take into
account the relative likelihood of system events. Consider that,
for example, in a manufacturing process a physical component
may break, or in an aeronautic application an exceptional
weather condition may present itself, in both cases with low
probability. We may wish to represent such events within our
hybrid automaton model, together with the information about
their probability of occurrence. This has lead to interest in
numerous probabilistic extensions of hybrid automata, where
probabilistic information is added in a number of different
ways [7], [8], [9], [10], [11], [12], [13], [14]. In this paper,
we consider probabilistic hybrid automata, as considered in
[8], [9], [12], which extend hybrid automata with probabilistic
choices over the discrete part of the system. This formalism
permits the modeling of events such as faults and message
losses, in addition to randomized choices made by the digital
components.

A practically relevant subclass of hybrid automata is that of
rectangular automata [15], in which the continuous dynamics
are governed by inclusions of the form ẋ ∈ I , where ẋ is the
first derivative of the variable x and I is an interval. The mo-
tivation for such inclusions is that they can over-approximate
complex continuous dynamics [16], [17]. However, even sim-
ple verification problems for rectangular automata, such as de-
termining whether an error state is reachable, are undecidable,
leading to the study of two orthogonal restrictions. In [15], the
assumption of initialization requires that if a jump between
nodes involves a change in a variable’s continuous dynamics
then the variable is discontinuously reset to a new value by
the jump. In [4], a discrete-time assumption requires that
jumps between nodes can only occur at evenly-spaced points
in time. Both assumptions lead to certain verification problems
becoming decidable. Initialization and discrete-time have also
been used to provide the basis of controller-synthesis algo-
rithms in [5] and [4], respectively. With regard to probabilistic
rectangular automata, the initialization assumption has been
applied in [8], [9] to obtain approximate probability of the
satisfaction of reachability properties. An approach based on
approximation is also given in [12], but for probabilistic hybrid
automaton models with a form of non-rectangular continuous
dynamics incomparable to that of rectangular automata.

In this paper we consider the application of the discrete-

time assumption to probabilistic rectangular automata. After
introducing some preliminary concepts in Section II and
probabilistic rectangular automata in Section III, we give the
main result of the paper in Section IV. This result consists of a
method for the computation both of the maximum probability
with which a controller of the discrete part of the system
can satisfy a certain property, no matter how the environment
of the system behaves, and involves a reduction to a finite-
state 2 1

2 -player game. We consider the class of ω-regular
properties, modeled here as deterministic Rabin or Streett
automata, which allow us to specify a wide variety of safety
and liveness requirements. As a side result, we give a method
for solving the verification problem, which in this context
concerns the computation of the maximum probability with
which a property is satisfied. This method involves a reduction
to finite-state Markov decision processes. We observe that
these results are in contrast to the currently obtained results
concerning initialization [8], [9], which do not give exact
results even for simple reachability properties. In Section V,
we consider a subclass of probabilistic rectangular automata,
namely probabilistic timed automata [18], [19], which extend
timed automata [20] with discrete probabilistic choice. Given
that we have considered ω-regular properties in the context
of discrete-time probabilistic rectangular automata, we also
show that ω-regular properties of probabilistic timed automata
can be verified, even when the usual dense-time semantics is
used. In order to rule out unrealistic behavior in which time
converges, we consider only executions of the system in which
time diverges with probability 1, following [19], [21].

II. PRELIMINARIES

We use R to denote the set of real numbers, R≥0 to
denote the set of non-negative real numbers, N to denote
the set of natural numbers, Z to denote the set of integers,
Q to denote the set of rational numbers, and AP to denote
a set of atomic propositions. Given a set Q and a function
μ : Q → R≥0, we define support(μ) = {q ∈ Q | μ(q) > 0}.
A (discrete) probability distribution over a countable set Q is
a function μ : Q → [0, 1] ∩ Q such that

∑
q∈Q μ(q) = 1.

Let Dist(Q) be the set of distributions over Q. If Q is an
uncountable set, we define Dist(Q) to be the set of functions
μ : Q → [0, 1], such that support(μ) is a countable set and μ
restricted to support(μ) is a (discrete) probability distribution.
Occasionally we use notation {q1 �→ λ1, ..., qn �→ λn} to
denote a distribution μ for which μ(q1) = λ1, ..., μ(qn) = λn.

A probabilistic game graph (or 2 1
2 -player game graph) G =

(S,→,Lab) comprises the following components: a (possibly
uncountable) set of states S; a (possibly uncountable) proba-
bilistic, game-based transition relation →⊆ S × 2Dist(S) \ ∅;
and a labeling function Lab : S → 2AP . The transitions
from state to state of a 2 1

2 -player game are performed in three
steps: given that the current state is s, the first step concerns
a nondeterministic selection by player 1 of (s, Λ) ∈→; the
second step comprises a nondeterministic selection by player 2
of some μ ∈ Λ; the third step comprises a probabilistic choice,
made according to the distribution μ, as to which state to make

the transition to (that is, we then make a transition to a state
s′ ∈ S with probability μ(s′)). Note that, in this paper, we
assume that turns of the game are played in a cyclic manner,
where each cycle consists first of the turn of player 1, then
that of player 2, followed by that of the probabilistic player.
This suffices for our purposes, but is in contrast to the usual
presentation of 2 1

2 -player games (see, for example, [22]), in
which the order of the turns of the game does not follow a
fixed cycle. A 2 1

2 -player game is total if, for each state s ∈ S,
there exists at least one transition (s,) ∈→. We generally
consider total 2 1

2 -player games in this paper. Occasionally we
omit the labeling function Lab for 2 1

2 -player games.

An infinite path of a 2 1
2 -player game G is an infinite

sequence r = s0Λ0μ0s1Λ1μ1 · · · such that (si, Λi) ∈→, μi ∈
Λi and μi(si+1) > 0 for each i ∈ N. Similarly, a finite path
of G is a finite sequence r = s0Λ0μ0s1Λ1μ1 · · ·Λn−1μn−1sn

such that (si, Λi) ∈→, μi ∈ Λi and μi(si+1) > 0 for each
i < n. If r is finite, the length of r, denoted by |r|, is equal
to the number of transitions (subsequences of the form sΛμ)
along r. If r is infinite, we let |r| = ∞. We use PathG

ful to
denote the set of infinite paths of G, and PathG

fin to denote
the set of finite paths of G. When clear from the context we
omit the superscript G. If r is a finite path, we denote by
last(r) the last state of r. For any path r and i ≤ |r|, let
r(i) = si be the (i+1)th state along r, and let step(r, i) = μi

be the (i+1)th distribution taken along r. Let PathG
ful(s) and

PathG
fin(s) refer to the sets of infinite and finite paths of G,

respectively, commencing in state s ∈ S.

Let G = (S,→,Lab) be a 2 1
2 -player game. A player 1 strat-

egy on G is a function σ mapping every finite path r ∈ Pathfin

to a transition (last(r), Λ) ∈→. Similarly, a player 2 strategy
on G is a function π mapping every sequence r ·Λ, such that
r ∈ Pathfin and (last(r), Λ) ∈→, to a distribution μ ∈ Λ.
We write ΣG and ΠG for the set of strategies of player 1
and player 2, respectively, on G. A pair (σ, π) ∈ ΣG × ΠG

is called a strategy profile. For any strategy profile (σ, π),
let Pathσ,π

ful and Pathσ,π
fin denote the sets of infinite and finite

paths, respectively, resulting from the choices of (σ, π). For
a state s ∈ S, let Pathσ,π

ful (s) = Pathσ,π
ful ∩ Path ful(s) and

Pathσ,π
fin (s) = Pathσ,π

fin ∩ Pathfin(s). Given a strategy profile
(σ, π) ∈ ΣG×ΠG and a state s ∈ S, we define the probability
measure Probσ,π

s over Pathσ,π
ful (s) in the standard way [23].

Note that, following the usual terminology for games on
graphs, we generally consider pure strategies (that is, strategies
that do not make randomized choices), the choices of which
may depend on the history of the system. The cases in which
randomized strategies (which, for player 1, map from finite
paths r to Dist(→) and, for player 2, map from r·Λ to Dist(Λ))
are considered will be signalled in the text.

Given an infinite path r = s0Λ0μ0s1Λ1μ1 · · · of a
2 1

2 -player game G = (S,→,Lab), the trace of r, de-
noted by trace(r), is defined to be the infinite sequence
Lab(s0)Lab(s1) · · · . Let Trace(G) be the set of all traces of
G (i.e., Trace(G) = {trace(r) ∈ (2AP)ω | r ∈ PathG

ful}). An
objective ϕ for G is a set of traces of G (i.e., ϕ ⊆ Trace(G)). In

this paper, we will consider the class of ω-regular objectives.
Given the ω-regular objective ϕ, a state s ∈ S and a strategy
profile (σ, π), we note that {r ∈ Pathσ,π

ful (s) | trace(r) ∈ ϕ}
is measurable, and for simplicity we write Probσ,π

s (ϕ) instead
of Probσ,π

s ({r ∈ Pathσ,π
ful (s) | trace(r) ∈ ϕ}). The value

function (for player 1 and the property ϕ) is defined as the
function ValG(ϕ) such that, for each state s ∈ S:

ValG(ϕ)(s) = sup
σ∈Σ

inf
π∈Π

Probσ,π
s (ϕ) .

A Markov decision process (MDP) is a 2 1
2 -player game

M = (S,→,Lab) for which |Λ| = 1 for each (s, Λ) ∈→.
Usually we write the transition relation → of an MDP as
→⊆ S × Dist(S). In contrast to 2 1

2 -player games, the transi-
tions from state to state of an MDP are performed in two steps:
given that the current state is s, the first step concerns a nonde-
terministic selection of (s, μ) ∈→; the second step comprises
a probabilistic choice made according to the distribution μ. A
(finite or infinite) path of an MDP is defined as for a 2 1

2 -player
game, with only minor notational differences (for example, an
infinite path of an MDP is denoted by s0μ0s1μ1 · · · , where
(si, μi) ∈→ and μi(si+1) > 0 for each i ∈ N). In the case
of MDPs, player 2 has a trivial choice over a single element,
and hence has only one strategy (i.e., |Π| = 1): therefore
we use the term strategy to refer both to player 1 strategies
and strategy profiles. Similarly, we omit the notation referring
to the player 2 strategy, and write, for example, Pathσ

ful (s)
and Probσ

s . The value function for the MDP M is defined as
ValM(ϕ)(s) = supσ∈Σ Probσ

s (ϕ) for each state s ∈ S.
A sub-MDP (S′,→′,Lab|S′) of M is a MDP such that S′ ⊆

S, →′⊆→, and Lab|S′ is equal to Lab restricted to S′. Let
T ⊆ S. The sub-MDP of M induced by T is the sub-MDP
(T,→|T ,Lab|T) of M, where →|T = {(s, ν) ∈→| s ∈ T ∧
support(ν) ⊆ T }.

The graph of an MDP (S,→) is the pair (S,Edges) where
(s, s′) ∈ Edges if and only if there exists (s, μ) ∈→ such that
s′ ∈ support(μ). An end component (EC) of an MDP M is
a sub-MDP (A, B) ∈ 2S × 2→ such that (1) if (s, μ) ∈ B,
then s ∈ A and support(μ) ⊆ A, and (2) the graph of (A, B)
is strongly connected [24]. An EC (A, B) of M is maximal if
there does not exist any EC (A′, B′) of M such that (A, B) �=
(A′, B′), A ⊆ A′ and B ⊆ B′.

A probabilistic timed labeled transition system (PTLTS)
T = (S,Events ,⇒,Lab) comprises the following compo-
nents: a (possibly uncountable) set of states S; a (possibly
uncountable) set of events Events ; a (possibly uncountable)
timed probabilistic, nondeterministic transition relation ⇒⊆
S × (R≥0 ∪ Events) × Dist(S); and a labeling function
Lab : S → 2AP . The transitions from state to state of a
PTLTS contain information about time duration of the event
corresponding to the transition. The notions of totality and
paths of PTLTSs are adapted in a straightforward way from
2 1

2 -player games: for example, an infinite path of a PTLTS is
denoted by r = s0a0μ0s1a1μ1 · · · where ai ∈ R≥0 ∪ Events
for each i ∈ N. We can interpret PTLTSs in two ways, depend-
ing on the type of analysis. The MDP interpretation of T is an

MDP M(T) = (S,→,Lab) where → is the smallest set such
that (s, a, μ) ∈⇒ implies (s, μ) ∈→. The MDP interpretation
of a PTLTS is used for verification problems, in which all
of the nondeterministic choices of which transitions to take
are under the control of a single player. Next, we introduce a
2 1

2 -player game interpretation of a PTLTS, which is used for
control problems: in this interpretation, the control problems
involve player 1 (the controller) choosing which event should
be taken and player 2 (the environment) choosing the exact
transition that is then taken, provided that it corresponds to
the event chosen by player 1; alternatively, player 1 can
choose that time should elapse, in which case player 2 chooses
the exact time duration and time-elapse transition. Formally,
the 2 1

2 -player game interpretation of T is a 2 1
2 -player game

G(T) = (S,→,Lab) where → is the smallest set such that,
for each s ∈ S:

• (Time transitions) (s, {μ | (s, d, μ) ∈⇒ and d ∈ R≥0})
∈→ if there exists d′ ∈ R≥0 such that (s, d′,) ∈⇒;

• (Event transitions) (s, {μ | (s, e, μ) ∈⇒}) ∈→ for each
e ∈ Events such that there exists (s, e,) ∈⇒.

In subsequent sections, we usually simplify the notation for
choices of the player 1 strategies: for a finite path r ∈ Pathfin ,
we write σ(r) = time if σ(r) corresponds to a transition
(last(r), Λ) obtained by the time transition rule, and we write
σ(r) = e if σ(r) corresponds to a transition (last(r), Λ)
obtained by the event transition rule for event e ∈ Events .

III. PROBABILISTIC RECTANGULAR AUTOMATA

A. Definition of probabilistic rectangular automata

Let X be a finite set of real-valued variables. A valuation
v : X → R is a function that assigns a real-value to each
variable of X . A rectangular inequality over X is defined as a
formula of the form x ∼ c, where x, y ∈ X , ∼∈ {<,≤, >,≥},
and c ∈ Z. A rectangular constraint over X is a conjunction
of rectangular inequalities over X . The set of all rectangular
constraints over X is denoted by Rect(X). Given a rectangular
constraint Φ and valuation v, we say that v satisfies Φ if Φ is
true after substituting v(x) in place of x for all x ∈ X . The
set of valuations that satisfy Φ is denoted by [[Φ]]. Let k ∈ N

be a non-negative integer. Then the rectangular constraint Φ
is k-definable if |c| ≤ k for every conjunct x ∼ c of Φ.

A probabilistic rectangular automaton (PRA) R =
(L,X ,Events, inv ,flow , prob,L) consists of the following
components:

• a finite set L of locations;
• a finite set X of variables;
• a finite set Events of events;
• a function inv : L → Rect(X) associating an invariant

condition with each location;
• a function flow : L → Rect(Ẋ) associating an flow

condition with each location, where Ẋ = {ẋ | x ∈ X} is
the set of first derivatives of variables in X ;

• a finite set prob ⊆ L × Rect(X) × Events ×
Dist(Upd(X)×L) of probabilistic edges, where Upd(X)
is the set of formulae of the form φ′ ∧ ∧

x∈X(x′ = x),

ldeact
ẋ = 0, ẏ = 1
40 ≤ x ≤ 50

loff
ẋ ∈ [−1,−2], ẏ = 1

10 ≤ x ≤ 50

lmalf

ẋ ∈ [2, 3], ẏ = 1
10 ≤ x ≤ 50, y ≤ 10

lon
ẋ ∈ [2, 3], ẏ = 1

10 ≤ x ≤ 25

x ≤ 15

99
100

1
100

y′ = 0
x ≥ 40

y = 10

x ≥ 20

Fig. 1. A PRA modeling a faulty thermostat

for X ⊆ X , φ′ ∈ Rect(X ′ \ X ′), where a primed
variable x′ refers to the value of x after traversing the
probabilistic edge, and where X ′ = {x′ | x ∈ X} and
X ′ = {x′ | x ∈ X};

• a labeling function L : L → 2AP .

A probabilistic edge (l, g, e, p) ∈ prob comprises (1) a source
location l, (2) a rectangular constraint g, called a guard, (3)
an event e, and (4) a probability distribution p that assigns
probability to pairs of the form (ϑ, l′), where ϑ ∈ Upd(X)
is a constraint describing the manner in which variables are
reset and l′ ∈ L is a location. A constraint ϑ ∈ Upd(X) is
said to be satisfied by a pair (v, v′) of valuations if ϑ is true
after substituting v(x) for x and v′(x) for x′.

The behavior of a probabilistic rectangular automaton takes
a similar form to that of a rectangular automaton [15]. If the
PRA is currently in location l, time can advance as long as
the current values of the variables in X satisfy the invariant
condition inv(l). As time passes, the value of the variables in
X change according to a differential trajectory satisfying the
flow condition flow(l). If the current values of the variables
satisfy the guard g of a probabilistic edge (l, g, a, p), then the
probabilistic edge can be taken, which involves a probabilistic
choice according to the distribution p: if the pair (ϑ, l′) is
chosen, then the PRA goes to location l′, resetting the variables
according to the constraint ϑ. More precisely, if ϑ is the
constraint φ′ ∧ ∧

x∈X(x′ = x), then variables in X retain the
same value, whereas variables in X \ X are reset to a value
satisfying the rectangular constraint φ′. The following choices
made by the PRA are nondeterministic: the amount of time to
let advance in the current location l; the differential trajectory
used to describe the change of the variables as time passes; the
probabilistic edge taken (after time has finished elapsing, and
provided that the guard of the probabilistic edge is satisfied
by the current variable valuation); and, finally, the values to
which the variables are reset (only for those variables that do
not retain their previous value). Instead, the only probabilistic
choice featured in the model concerns the choice of pair (ϑ, l′)
once a probabilistic edge has been chosen.

In Figure 1 we give an example of a PRA modeling a faulty
thermostat. We use a number of the usual conventions for illus-
trating hybrid automata, such as flow and invariant conditions
shown within locations. The temperature is represented by the
variable x, and variable y is used to measure elapsed time. The

system passes from the heater being on (location lon) to being
off (location loff) when the temperature is between 20 and 25.
The system passes from the heater being off (location loff) to
being on (location lon or location lmalf) when the temperature
is between 10 and 15. The location lon corresponds to non-
faulty behavior, and is reached with probability 99

100 from loff .
Instead, the location lmalf corresponds to the heater being on
in the presence of a fault in the temperature sensor, and is
reached with probability 1

100 . The sensor fault means that
the temperature can increase to a higher level than in lon .
After a malfunction, either the system is deactivated if the
temperature reaches an excessive level (location ldeact), or the
system times-out exactly 10 time units after the location lmalf

was entered. All probabilistic edges of the PRA correspond to
reaching a certain location with probability 1, apart from the
probabilistic edge from loff .

We now introduce formally the semantics of PRA in terms
of PTLTSs. The dense-time semantics of the PRA R =
(L,X ,Events, inv ,flow , prob,L) is the PTLTS TR

dense =
(S,Events ,⇒,Lab) defined in the following way. The set
of states of TR

dense is defined as S = {(l, v) ∈ L × RX |
v satisfies inv(l)}. To define the transition relation ⇒, we first
define a transition relation for each time duration and event.

• (Flows) Let d ∈ R≥0. Then
d⇒⊆ S × Dist(S) is the

smallest set such that ((l, v), d, {(l′, v′) �→ 1}) ∈ d⇒
implies that (1) l = l′, and (2) there exists a differentiable
function f : [0, d] → [[inv (l)]] such that f(0) = v,
f(d) = v′ and ḟ(ε) ∈ [[flow (l)]] for all reals ε ∈ (0, d),
where ḟ is the first derivative of f .

• (Jumps) Let e ∈ Events. Then
e⇒⊆ S × Dist(S) is

the smallest set of transitions such that ((l, v), e, μ) ∈ e⇒
implies that there exists a probabilistic edge (l, g, e, p) ∈
prob satisfying the following conditions:

1) v satisfies g,
2) given support(p) = {(ϑ1, l

′
1), ..., (ϑn, l′n)}, there

exists a vector [v′1, ..., v
′
n] of valuations over X such

that,

a) (v, v′i) satisfies ϑi for each 1 ≤ i ≤ n, and
b) for each (l′, v′) ∈ S:

μ(l′, v′) =
∑

1≤i≤n s.t. l′=l′
i

and v′=v′
i

p(ϑi, l
′
i) .

Then we define ⇒ as the transition relation (
⋃

d∈R≥0

d⇒) ∪
(
⋃

e∈Events
e⇒). Finally, the labeling function Lab is such that

Lab(l, v) = L(l) for each state (l, v) ∈ S.
We note that the summation in the definition of jump

transitions is necessary for the case in which the same state
can be obtained by more than one element (ϑ, l) in the support
set of the distribution of a probabilistic edge. We say that (l, v)
is a state of R if (l, v) is a state of TR

dense .
In addition to the usual dense-time semantics, we also

consider a discrete-time semantics for PRA in which only flow
transitions of duration 1 are included, following the precedent
of [4] for rectangular automata. Formally, the discrete-time

semantics of the PRA R = (L,X ,Events, inv ,flow , prob,L)
is the PTLTS TR

discrete = (S,Events ,⇒,Lab) defined as for
the dense-time semantics except for ⇒, which is defined as
1⇒ ∪(

⋃
e∈Events

e⇒).
We restrict our attention to PRA R with a semantic PTLTS

TR
discrete that is total. This can be guaranteed by a syntactic

condition similar to that which has been presented for PTA in
[25], which guarantees that a guard of at least one probabilistic
edge is enabled when the invariant of the current location is
not satisfied by letting time elapse.

Let R be a PRA with the set L of locations and the set
X of variables. We say that R is k-definable if every rectan-
gular constraint in the definition of R is k-definable. Given
x ∈ X and Φ ∈ Rect(X), we denote by [[Φ]]x the interval
{v(x) ∈ R | v ∈ [[Φ]]}. The variable x ∈ X is nondecreasing
if both [[inv(l)]]x ⊆ R≥0 and [[flow (l)]]x ⊆ R≥0 for all
locations l ∈ L. The variable x ∈ X is bounded if [[inv (l)]]x
is a bounded set, for all locations l ∈ L. The PRA R has
nondecreasing or bounded variables if all variables in X are
either nondecreasing or bounded. In the PRA of Figure 1, the
variable x is bounded, whereas the variable y is nondecreasing.

A probabilistic timed automaton (PTA) [18], [19] is a PRA
for which:

• flow(l) =
∧

x∈X (ẋ = 1) for each location l ∈ L.
• for each (l, g, e, p) ∈ prob and each (ϑ, l′) ∈

support(p), the variable-update constraint ϑ is of the form∧
x∈X\X(x′ = 0) ∧ ∧

x∈X(x′ = x) for some X ⊆ X .

The variables of a PTA are referred to as clocks.

B. Verification and control problems

Both the dense-time and discrete-time semantics of a PRA
can have an MDP interpretation or a 2 1

2 -player game inter-
pretation. Let ϕ be an ω-regular objective. For Int ∈ {M, G}
and � ∈ {dense, discrete}, we use Val Int(R)

� (ϕ) to denote
Val Int(T�(R))(ϕ). The dense-time verification value function of
R and ϕ is the value function ValM(R)

dense(ϕ). The corresponding
discrete-time versions of the verification and control value
functions are ValM(R)

discrete(ϕ) and ValG(R)
discrete(ϕ), respectively.

Let s be a state of TR
dense and λ > 0 be a rational. For

� ∈ {dense, discrete}, the �-time verification problem for R,
s and ϕ consists of deciding whether ValM(R)

� (ϕ)(s) ≥ λ.
The discrete-time control problem for R, s and ϕ consists
of deciding whether ValG(R)

discrete(ϕ)(s) ≥ λ. The discrete-
time controller synthesis problem for R, s and ϕ consists
of the construction of a strategy for player 1 that witnesses
ValG(R)

discrete(ϕ)(s) ≥ λ, for the case in which the corresponding
control decision problem returns a positive answer.

Previous work in the field of PRA has mainly considered
verification problems for the subclass of PTA, and with respect
to properties expressed in the probabilistic temporal logic
PTCTL [19]. The most important subroutine of the PTCTL

model-checking algorithm of [19] concerns the computation
of the dense-time verification value function of the PTA with
regard to particular examples of ω-regular objectives, namely
eventually and always objectives, written as �a and �a,

respectively, in Linear Temporal Logic (LTL) notation (see
[26]), where a is an atomic proposition. These results are
summarized in the following theorem1.

Theorem 1 ([19], [27]): The dense-time verification prob-
lem for PTA with eventually or always objectives is
EXPTIME-complete.

We also recall that [28] considers a dense-time controller
synthesis problem concerning the computation of controllers
of PTA that optimize the expected time to reach a state set.

IV. DISCRETE-TIME CONTROL FOR PROBABILISTIC

RECTANGULAR AUTOMATA

In this section, we consider the discrete-time verification,
control and controller-synthesis problems for PRA with ω-
regular objectives under the discrete-time semantics. The key
tool that we use to obtain solutions to these problems is
that of probabilistic bisimulation [29], [30], in the same way
that bisimulation was used to obtain algorithms for non-
probabilistic rectangular automata in [4]. After describing how
probabilistic bisimulation can be used to obtain a finite-state
2 1

2 -player game or MDP from a PRA, we then consider
the resulting computation of value functions for ω-regular
properties modeled as deterministic Rabin or Streett automata.

A. Probabilistic bisimulation and finite quotient

Consider the set X of variables. Let ≈k⊆ (RX)2 be the
equivalence relation on valuations defined in the following
way: v ≈k w if and only if either (1) �v(x)� = �w(x)� and
�v(x)� = �w(x)�, (2) v(x), w(x) > k, or (3) v(x), w(x) <
−k, for all x ∈ X . We note that every equivalence class of
≈k corresponds to the set of valuations that satisfy some k-
definable rectangular constraint. Vice versa, every k-definable
rectangular constraint defines a union of ≈k-equivalence
classes.

For a PRA R whose (dense- or discrete-time) semantics
has the state set S, let ∼=k

R⊆ (S)2 be the equivalence relation
defined in the following way: (l, v) ∼=k

R (m, w) if and only if
l = m and v ≈k w.

We now apply the notion of probabilistic bisimulation
[29], [30] to PTLTSs. Let T = (S,Events ,⇒,Lab) be a
PTLTS. For any two distributions μ, ν ∈ Dist(S) and for
any equivalence relation ≡⊆ (S)2, we denote by μ ≡ ν the
condition that, for each equivalence class C of ≡, the equality∑

s∈C μ(s) =
∑

s∈C ν(s) holds. A probabilistic bisimulation
on T is an equivalence relation �⊆ (S)2 such that s � t
implies:

1) Lab(s) = Lab(t),
2) if (s, a, μ) ∈⇒, then there exists (t, a, ν) ∈⇒ such that

μ � ν.

Theorem 2: Let R be a k-definable PRA that has nonde-
creasing or bounded variables. Then ∼=k

R is a probabilistic
bisimulation of the discrete-time semantics TR

discrete of R.

1We assume that the size of the PTA is described in the usual way: constants
used in the conditions of the PTA are encoded in binary, and probabilities are
expressed as a ratio between two natural numbers, each written in binary.

Theorem 2 allows us to obtain the following proposition,
which states that ∼=k

R-equivalent states have the same values,
for any ω-regular objective.

Proposition 1: Let ϕ be an ω-regular objective, and let s, t
be states of the discrete-time semantics TR

discrete of the k-
definable PRA R with nondecreasing or bounded variables
such that s ∼=k

R t. Then:

ValM(R)
discrete(ϕ)(s) = ValM(R)

discrete(ϕ)(t)

ValG(R)
discrete(ϕ)(s) = ValG(R)

discrete(ϕ)(t) .

Let Λ, Λ′ ∈ 2Dist(S) \ ∅. We write Λ ∼=k
R Λ′ if (1) for

each μ ∈ Λ, there exists ν ∈ Λ′ such that μ ∼=k
R ν, and,

conversely, (2) for each ν ∈ Λ′, there exists μ ∈ Λ such that
μ ∼=k

R ν. Let r = s0Λ0μ0 · · · sn−1Λn−1μn−1sn and r′ =
t0Λ′

0ν0 · · · tn−1Λ′
n−1νn−1tn be paths such that (1) si

∼=k
R ti

for all i ≤ n, and (2) Λi
∼=k

R Λ′
i and μi

∼=k
R νi for all i < n.

Then a player 1 strategy σ ∈ Σ is ∼=k
R-oblivious if σ(r) =

σ(r′). Similarly, a player 2 strategy π ∈ Π is ∼=k
R-oblivious

if π(r · Λ) ∼=k
R π(r′ · Λ′) where Λ ∼=k

R Λ′. Let Σobl and Πobl

be the sets of ∼=k
R-oblivious strategies of player 1 and player

2, respectively. The next proposition shows that ∼=k
R-oblivious

strategies suffice for determining the value function.
Proposition 2: Let R be a k-definable PRA R with nonde-

creasing or bounded variables, and let s be a state of TR
discrete .

Then:

sup
σ∈Σ

inf
π∈Π

Probσ,π
s (ϕ) = sup

σ′∈Σobl

inf
π′∈Πobl

Probσ′,π′
s (ϕ) .

Following [4], we observe that the number of equivalence
classes of ∼=k

R equals |L| · (4k + 3)|X |. This, together with
Proposition 2 suggests using probabilistic bisimulation to
define a finite-state PTLTS on which verification, control
and controller synthesis problems may be solved.2 The ∼=k

R-
quotient of the k-definable PRA R with nondecreasing or
bounded variables R = (L,X ,Events , inv ,flow , prob,L) is
the PTLTS Pk(R) = (C,Events, �, Lab) defined in the
following way.

• C is the set of equivalence classes of ∼=k
R.

• � is the set
1� ∪(

⋃
e∈Events

e�) defined as follows.

First,
1� is the smallest set of transitions such that, for

each C, C′ ∈ C for which there exist s ∈ C, s′ ∈ C′ with

(s, 1, {s′ �→ 1}) ∈⇒, we have (C, 1, {C′ �→ 1}) ∈ 1�.
Second, for each e ∈ Events ,

e� is the smallest set
of transitions such that, for each C ∈ C and each
(s, e, μ) ∈⇒, we have (C, e, ν) ∈�, where ν(C′) =∑

s′∈C′ μ(s′) for each C′ ∈ C.
• Lab is defined by Lab(C) = Lab(s), for each C ∈ C

and an arbitrary s ∈ C.

In the following, given PTLTSs T = (S,Events ,⇒,Lab)
and T′ = (S′,Events ′,⇒′,Lab ′), let the union PTLTS be

2We choose to define a finite-state PTLTS, rather than computing symbol-
ically directly on the equivalence classes using a value iteration algorithm
(see, for example, [31]), as done for non-probabilistic rectangular automata
in [4], because this allows us to obtain a more precise complexity analysis.

defined by T�T′ = (S�S′,Events∪Events ′,⇒ � ⇒′,Lab′′),
where Lab′′(s) = Lab(s) if s ∈ S and Lab ′′(s) = Lab′(s) if
s ∈ S′.

Proposition 3: Let R be a k-definable PRA R with nonde-
creasing or bounded variables, let C be an equivalence class
of ∼=k

R, and let s be a state of TR
discrete such that s ∈ C. Then

s and C are probabilistically bisimilar in TR
discrete � Pk(R),

and hence:

ValM(R)
discrete(ϕ)(s) = ValM(Pk(R))(ϕ)(C)

ValG(R)
discrete(ϕ)(s) = ValG(Pk(R))(ϕ)(C) .

Proposition 3 suggests the following approach for com-
puting the value functions ValM(R)

discrete(ϕ) and ValG(R)
discrete(ϕ):

construct the ∼=k
R-quotient of the PRA: then compute the value

functions ValM(Pk(R))(ϕ) and ValG(Pk(R))(ϕ) using methods
for the computation of value functions on finite-state MDPs
and 2 1

2 -player games (see, for example, [26], [22]).

B. Deterministic Rabin and Streett automata

In this section, we recall basic concepts concerning Rabin
and Streett automata, which we use for the specification of
ω-regular properties. Our notation is adapted from [26], [32].

A deterministic ω-automaton A = (Q, Alph, δ, qinit, Acc)
consists of a set Q of automaton states, an alphabet Alph,
a transition function δ : Q × Alph → Q, an initial state
qinit ∈ Q and an acceptance condition Acc ⊆ 2Q × 2Q. Let
Acc = {(H1, K1), ..., (Hn, Kn)}. A set Q′ ⊆ Q is called
Rabin accepting if there exists 1 ≤ i ≤ n such that Q′∩Hi = ∅
and Q′ ∩Ki �= ∅. The set Q′ is called Streett accepting if for
each 1 ≤ i ≤ n we have Q′ ∩ Hi �= ∅ or Q′ ∩ Ki = ∅.

Let ς = υ1υ2υ3 · · · be an infinite word over Alph. The
run for ς is the infinite sequence ρς = q0q1q2 · · · such
that q0 = qinit and qi = δ(qi−1, υi) for each i ≥ 1. Let
inf(ρς) be the set of states that occur infinitely often along ρς .
Then the Rabin-accepted language of A is LangRabin(A) =
{ς ∈ Alphω | inf(ρς) is Rabin accepting}. Similarly, the
Streett-accepted language of A is defined by LangStreett(A) =
{ς ∈ Alphω | inf(ρς) is Streett accepting}. A deterministic
Rabin automaton is a deterministic ω-automaton for which
Rabin acceptance is used to define its language. Similarly, a
deterministic Streett automaton is a deterministic ω-automaton
for which Streett acceptance is used to define its language. In
the following we use the alphabet Alph = 2AP .

Let R = (L,X ,Events, inv ,flow , prob,L) be a PRA
and A = (Q, Alph, δ, qinit, Acc) be a deterministic ω-
automaton. We define the product PRA R ⊗ A =
(L × Q,X ,Events , înv , fl̂ow , p̂rob, L̂) as the PRA defined in
the following way:

• înv(l, q) = inv(l) and fl̂ow(l, q) = flow(l) for each
(l, q) ∈ L × Q;

• p̂rob is the smallest set of probabilistic edges such that
((l, q), g, e, p̂) ∈ p̂rob if there exists (l, g, e, p) ∈ prob
such that:

p̂(ϑ, (l′, q′)) =
{

p(ϑ, l′) if q′ = δ(q,L(l′))
0 otherwise.

• L̂(l, q) = {q} for each (l, q) ∈ L × Q.

In the following, we consider the 2 1
2 -player game interpre-

tation of the discrete-time semantics of R ⊗ A, denoted in
the usual way by G(TR⊗A

discrete). For � ∈ {Rabin, Streett}, we
let accept� be the set of traces of G(TR⊗A

discrete) defined by
accept� = {ρ ∈ (Q)ω | inf(ρ) is �-accepting}.

Let (σ, π) be a strategy profile of G(TR
discrete). Then we

define the strategy profile (σ+, π+) of G(TR⊗A
discrete) in the

following way. First we note that, for any finite path r =
(l0, v0)Λ0μ0(l1, v1)Λ1μ1 · · · (ln−1, vn−1)Λn−1μn−1(ln, vn)
of G(TR

discrete), there exists a unique path
r+ = ((l0, q1), v0)Λ′

0ν0 · · · ((ln−1, qn), vn−1)Λ′
n−1νn−1

((ln, qn+1), vn) of G(TR⊗A
discrete). Vice versa, for any such r+

of G(TR⊗A
discrete), there exists a unique r of G(TR

discrete). Then
the strategy σ+ after path r+ mimics the choice of σ after
the path r: more precisely, if σ(r) = a, then σ(r+) = a, for
a ∈ Events ∪ {time}. Similarly, the strategy π+ after path
r+ · Λ′ mimics the choice of π after the path r · Λ if both Λ
and Λ′ both correspond to either the time transition rule or
the event transition rule for the same event: more precisely, if
π(r ·Λ) = μ and last(r+) = ((l, q), v), then π+(r+ ·Λ′) = ν,
where we have ν((l′, δ(q,L(l′))), v′) = μ(l′, v′) for each
(l′, v′) ∈ S (it can be verified that such a distribution exists
by definition of R⊗A).

The following result states the equality of the probability
of a strategy profile (σ, π) exhibiting traces of G(TR

discrete)
accepted by A with acceptance condition � ∈ {Rabin, Streett}
and the probability of the strategy profile (σ+, π+) exhibiting
traces of G(TR⊗A

discrete) that are �-accepting.
Proposition 4: Let R be a PRA, let A be a deterministic ω-

automaton with � ∈ {Rabin, Streett} acceptance, let (l, v) ∈ S
be a state of TR

discrete , and let (σ, π) be a strategy profile of
G(TR

discrete). Then:

Probσ,π
(l,v)(Lang�(A)) = Probσ+,π+

((l,δ(qinit,Lab(l))),v)(accept�) .

The proposition then implies that the problem of computing
ValG(R)

discrete(Lang�(A))(s) can be reduced to that of com-
puting ValG(R⊗A)

discrete (accept�)(s). By Proposition 3, we have

ValG(R⊗A)
discrete (accept�)(s) = ValG(Pk(R⊗A))(accept�)(C) for

the unique ∼=k
R⊗A-equivalence class C for which s ∈ C.

The latter value can be computed using standard methods for
computing value functions for Rabin and Streett acceptance
conditions on finite-state 2 1

2 -player games [33]. Given the
computational complexity results of [33], together with the
fact that the size of R⊗A is exponential in the size of R,
we have the following result.

Theorem 3: The discrete-time verification problem for PRA
with nondecreasing or bounded variables is in EXPTIME
for deterministic Rabin or Streett automata objectives. The
discrete-time control and controller synthesis problems for
PRA with nondecreasing or bounded variables can be solved in
NEXPTIME for deterministic Rabin automata objectives, and
in coNEXPTIME for deterministic Streett automata objectives.

We can derive from Theorem 1 EXPTIME-lower bounds
for all the problems considered in Theorem 3. The solutions to

the controller synthesis problems follow from the fact that, for
Rabin and Streett acceptance conditions, either finite-memory
or randomized strategies for player 1 can be obtained for finite-
state 2 1

2 -player games [33].

C. Sampling-controller synthesis

In this subsection, we extend the sampling-controller
synthesis construction presented for discrete-time non-
probabilistic rectangular automata in [4] to PRA. The motiva-
tion for the construction arises from the observation that, at
some point in time, a controller can enforce the execution of
an arbitrary number of jump transitions based on probabilistic
edges. To avoid this problem, [4] suggests alternating control
explicitly between the controller and the plant under control.
In the following, we adapt this approach to PRA.

Let R be a k-definable PRA. Let S, ⇒ and Lab denote the
state set, transition relation and labeling function, respectively,
of the discrete-time semantics of R. The sampling-control
PTLTS of R is TR

sampling = (S × {control , plant},Events,
⇒′,Lab ′), where ⇒′ is the smallest set of transitions defined
in the following way: let ((s, plant), 1, μ) ∈⇒′ if (s, 1, ν) ∈⇒
and μ(t, control) = ν(t) for each t ∈ S, and, for each
e ∈ Events , let ((s, control), e, μ) ∈⇒′ if (s, e, ν) ∈⇒
and μ(t, plant) = ν(t) for each t ∈ S. Furthermore, we
let Lab ′(s, �) = Lab(s) for each state s ∈ S and � ∈
{control , plant}.

Let ϕ be an ω-regular objective, and write ValG(R)
sampling(ϕ)

to denote ValG(TR
sampling)(ϕ). Let s be a state of TR

sampling .
The discrete-time sampling-control problem for R and ϕ
consists of deciding whether ValG(R)

sampling(ϕ)(s) ≥ λ. The
discrete-time sampling-controller synthesis problem for R and
ϕ consists of the construction of a strategy for player 1
that witnesses ValG(R)

sampling(ϕ)(s) ≥ λ, for the case in which
the corresponding control decision problem returns a positive
answer.

As in [4], the sampling-control PTLTS can
be reduced to a discrete-time PTLTS. Let R =
(L,X ,Events, inv ,flow , prob,L) be a k-definable PRA
with nondecreasing or bounded variables. First, we transform
R to the PRA R̃ = (L,X ∪ {z},Events, ĩnv , fl̃ow , p̃rob,L).
For each l ∈ L, we have ĩnv(l) = inv(l) ∧ (z ≤ 1),
fl̃ow(l) = flow (l) ∧ (ż = 1). For each probabilistic edge
(l, g, e, p) ∈ prob, we have (l, g∧(z = 1), e, p̃) ∈ p̃rob, where
p̃((ϑ ∧ (z′ = 0)), l′) = p(ϑ, l′) for each (ϑ, l′) ∈ support(p).
Then there exists a probabilistic bisimulation between
state (l, v) of TR̃

discrete , where v(z) = 0, and the state
((l, plant), v|X) of TR

sampling , where v|X denotes the
restriction of v to X . Similarly, there exists a probabilistic
bisimulation between state (l, v) of TR̃

discrete , where v(z) = 1,
and the state ((l, control), v|X) of TR

sampling . Hence the
discrete-time sampling-control and sampling-controller
synthesis problems can be solved using the algorithms
already presented for the discrete-time control and synthesis
problems, with no blow-up in complexity.

V. DENSE-TIME VERIFICATION FOR PROBABILISTIC

TIMED AUTOMATA

In this section, we consider the dense-time verification
problem for PTAs and ω-regular properties. Recall that an
important issue in the verification of timed automata is that of
time divergence: paths of a model in which the accumulated
time does not exceed a bound correspond to unrealizable
behavior, and therefore should be discarded during analysis
[34], [35]. In contrast to the discrete-time case featured in this
paper, we choose not to impose syntactic restrictions (such
as the alternation between jumps and flows as featured in
Section IV-C, or the structural non-Zenoness requirement of
[36]) to ensure the divergence of time along paths, but instead
we consider only strategies that let accumulated time diverge
with probability 1 [19], [21].

Let P = (L,X ,Events , inv ,flow , prob,L) be a PTA.
To reason about time divergence in the remainder of the
paper, we construct a modified PTA in the following man-
ner [37], [38]. First we add a new atomic proposition
tick to AP . The enlarged PTA of P , denoted by P =
(L,X ,Events , inv ,flow , prob,L) is constructed as follows.
For each location l ∈ L, we introduce a new location l.
Let L = L ∪ {l | l ∈ L}, let X = X ∪ {z} and let
Events = Events∪{τ}. For each l ∈ L, let inv (l) = inv (l) =
inv(l)∧(z ≤ 1), and let flow(l) = flow(l) = flow(l)∧(ż = 1).
Let prob = prob ∪ {(l, (z = 1), τ, {(ϑ∅, l) �→ 1}), (l, (z =
1), τ, {(ϑz, l) �→ 1}) | l ∈ L}, where ϑ∅ =

∧
x∈X (x′ = x)

and ϑz = (z′ = 0) ∧ ∧
x∈X (x′ = x). Finally, let L(l) = L(l)

and L(l) = L(l) ∪ {tick} for each l ∈ L. Note that tick
becomes true at all natural numbered time points after the
start of execution of the PTA.

Let P be a PTA and A be a deterministic ω-automaton,
which we assume to be fixed throughout this section. To sim-
plify notation, we write P⊗A = (L,X ,Events , inv , prob,L)
to denote the enlarged PTA obtained from the product of P
and A, and henceforth omit flow from the definition of PTA.
As in Section IV-B, we can identify a one-to-one relationship
between strategies σ and σ+ of M(TP

dense) and M(TP⊗A
dense),

respectively, and, analogously to Proposition 4, we can show
that Probσ

(l,v)(Lang�(A)) = Probσ+

((l,δ(qinit,Lab(l))),v)(accept�).
Furthermore, we henceforth use the notation l for locations to
refer to locations of P ⊗ A (in contrast to using pairs (l, q),
where q is a state of A).

Let r = s0a0μ0s1a1μ1 · · · be an infinite path of TP⊗A
dense .

Let the path of M(TP⊗A
dense) derived from r be the path

s0μ0s1μ1 · · · . We say that path s0μ0s1μ1 · · · of M(TP⊗A
dense) is

divergent if it can be derived from a path s0a0μ0s1a1μ1 · · ·
of TP⊗A

dense such that limk→∞(
∑

i≤k s.t. ai∈R≥0
ai) = ∞. Let

Timediv be the set of divergent paths of TP⊗A
dense . A strategy σ ∈

ΣM(TP⊗A
dense

) is divergent if Probσ
s (Timediv) = 1 for all states

s ∈ S of TP⊗A
dense . The set of divergent strategies of M(TP⊗A

dense)
is denoted by Σdiv

P⊗A, and will henceforth be referred to simply
as the set of divergent strategies of P ⊗ A. Our task in the
remainder of the section concerns computing the divergent
value function on M(TP⊗A

dense) with respect to accept�, defined

by ValR⊗A
div (accept�)(s) = supσ∈Σdiv

P⊗A
Probσ

s (accept�) for
each state s ∈ S.

Our first task is to construct a finite-state MDP from P⊗A
by using the standard region graph construction [20], [19]. For
θ ∈ R≥0, we let frac(θ) = δ − �θ�. For each clock x ∈ X ,
we let cx be the maximal constant to which x is compared
in any of the guards of probabilistic edges or invariants of
P (if x is not involved in any clock constraint of P , we let
cx = 1). Two valuations v, v′ ∈ RX

≥0 are clock equivalent if the
following conditions are satisfied: (1) for all clocks x ∈ X ,
we have v(x) ≤ cx if and only if v′(x) ≤ cx; (2) for all
clocks x ∈ X with v(x) ≤ cx, we have �v(x)� = �v′(x)�;
(3) for all clocks x, y ∈ X with v(x) ≤ cx and v(y) ≤ cy ,
we have frac(v(x)) ≤ frac(v(y)) if and only if frac(v′(x)) ≤
frac(v′(y)); and (4) for all clocks x ∈ X with v(x) ≤ cx, we
have frac(v(x)) = 0 if and only if frac(v′(x)) = 0. We use α
and β to refer to classes of clock equivalence.

Two states (l, v), (l′, v′) are region equivalent if (1) l = l′,
and (2) v and v′ are clock equivalent. A region is an equiv-
alence class of region equivalence. Let Regions be the set of
regions of P ⊗ A. The number of regions corresponding to
the PTA P ⊗A is bounded by |L| ·∏x∈X (cx +1) · |X |! ·2|X |.

The set of regions of a PTA P ⊗ A can be used
to construct an untimed, finite-state MDP Reg[P ⊗A] =
(Regions,→Reg,LabReg) in the following way. The set of
states of Reg[P ⊗A] is the set Regions of regions. The
transition relation →Reg⊆ Regions × Dist(Regions) is the
smallest set such that:

1) ((l, α), {(l, β) �→ 1}) ∈→Reg if there exists
((l, v), d, {(l, v′) �→ 1}) ∈⇒ where v ∈ α, d ∈ R≥0

and v′ ∈ β;
2) ((l, α), ν) ∈→Reg if there exists ((l, v), e, μ) ∈⇒ such

that:

a) v ∈ α,
b) for each (l′, β) ∈ Regions for which there exists

(l′, v′) ∈ support(μ) and v′ ∈ β (by definition,
this (l′, v′) will be unique), we have ν(l′, β) =
μ(l′, v′), otherwise (l′, β) = 0.

For each region (l, α) ∈ Regions, we let LabReg(l, α) = L(l).
Given a clock valuation v, the unique clock equivalence

class to which v belongs is denoted by [v]. Given a state
(l, v) ∈ S, the unique region to which (l, v) belongs is
(l, [v]), and is denoted by [(l, v)]. An infinite path r =
s0a0μ0s1a1μ1 · · · of TP⊗A

dense corresponds to a unique infinite
path [r] = [s0]

ν0−→ [s1]
ν1−→ · · · . Similarly, a finite path r =

s0a0μ0s1a1μ1 · · · sn−1an−1μn−1sn of TP⊗A
dense corresponds to

a unique finite path [r] = [s0]
ν0−→ [s1]

ν1−→ · · · νn−1−−−→ [sn].
Observe that paths and region paths related by [·] result in the
same traces (formally, trace(r) = trace([r]) for any path r).

We now introduce a concept of divergent strategies on
Reg[P ⊗A]. In the following we use LTL notation, which
is interpreted on paths of Reg[P ⊗A] in the standard way
(see, for example, [26]). An infinite path r of Reg[P ⊗A]
is region divergent if it satisfies the condition ��tick . Note
that an infinite path r of TP⊗A

dense is divergent if and only if

[r] is region divergent. Hence [Timediv] =
⋃

r∈Timediv [r] =
{r ∈ PathReg[P⊗A]

ful | r |= ��tick} is the set of all region
divergent runs (where |= is the standard satisfaction relation
for LTL properties). A strategy σ ∈ ΣReg[P⊗A] is region
divergent if Probσ

R(��tick) = 1 for all regions R ∈ Regions.
The set of all region divergent strategies of Reg[P ⊗A] is
denoted by Σdiv

Reg[P⊗A].
We can check whether there exists a region divergent

strategy of Reg[P ⊗A] by computing the set Regions��tick

of regions for which there exists a strategy satisfying ��tick
with probability 1. The computation of Regions��tick can be
done in polynomial-time in the size of Reg[P ⊗A] [39]. If
Regions \ Regions��tick �= ∅, then there does not exist a
region divergent strategy. In such a case, we compute the sub-
MDP of Reg[P ⊗A] induced by Regions��tick and use it
in the place of Reg[P ⊗A]. This allows us to assume that
Regions = Regions��tick in the remainder of this section.

From the fact that region equivalence is a probabilistic
bisimulation on TP⊗A

dense , we obtain the following proposition.
We use accept′� to denote the set {ρ ∈ (Q ∪ {tick})ω |
inf(ρ) ∩ Q is �-accepting} of traces of P ⊗ A such that the
elements occurring infinitely often along the trace, restricted
to states of A, form a �-accepting set.

Proposition 5: Let � ∈ {Rabin, Streett} and s ∈ S be a
state of TP⊗A

dense . Then:

sup
σ∈Σdiv

P⊗A

Probσ
s (accept�) = sup

σ∈Σdiv
Reg[P⊗A]

Probσ
[s](accept′�) .

Hence, to compute ValR⊗A
div (accept�), it suffices to compute

supσ∈Σdiv
Reg[P⊗A]

Probσ
R(accept′�) on Reg[P ⊗A] for each R ∈

Regions. In the remainder of this section, we generally omit
the subscript from the sets of strategies of Reg[P ⊗A], and
write Σ for ΣReg[P⊗A], and Σdiv for Σdiv

Reg[P⊗A].
We recall the notion of time-divergent EC from [21]. A

time-divergent EC (A, B) is an EC of Reg[P ⊗A] such that
tick ∈ LabReg(R) for some region R ∈ A. For an infinite

path r ∈ PathReg[P⊗A]
ful , let Ar = {R |∞∃ i ≥ 0.r(i) = R}

and Br = {(R, ν) |∞∃ i ≥ 0.R ∈ Ar ∧ step(r, i) = ν}. Let
InfEC(r) = (Ar, Br). Note that a path r ∈ PathReg[P⊗A]

ful

of Reg[P ⊗A] is region divergent if and only if InfEC(r)
is a time-divergent EC. For A ⊆ Regions and B ⊆→Reg,
let Path(A,B)

ful (R) = {r ∈ PathReg[P⊗A]
ful (R) | InfEC(r) =

(A, B)}. The next lemma states that a probabilistically region
divergent strategy will be confined eventually to time-divergent
ECs with probability 1.

Lemma 1 ([21]): Let E be the set of time-divergent ECs
of Reg[P ⊗A], let R ∈ Regions and let σ ∈ Σdiv. Then
Probσ

R(
⋃

(A,B)∈E Path(A,B)
ful (R)) = 1.

Next, recall that methods for computing value functions for
Rabin and Streett acceptance over the full set of strategies
of a finite-state MDPs rely on the computation of a set of
maximal ECs, ERabin and EStreett, respectively; then the overall
value function is obtained by calculating the maximum prob-
ability of reaching the computed maximal ECs. Algorithms
for computing ERabin and EStreett have been presented in [24],

[40] and [33], respectively. For � ∈ {Rabin, Streett}, we let
Ediv

� = {(A, B) ∈ E� | ∃R ∈ A s.t. tick ∈ LabReg(R)},
and let F� =

⋃
(A,B)∈Ediv

�
A. The next lemma follows from

standard reasoning that, when in an EC, we can (using either
finite-memory or randomized strategies) visit all regions of the
EC infinitely often with probability 1, thereby satisfying the
acceptance condition and the condition of region divergence
with probability 1.

Lemma 2: Let � ∈ {Rabin, Streett} and R ∈ F�. Then
there exists a region divergent strategy σ ∈ Σdiv such that
Probσ

R(accept′�) = 1.
Proposition 6: Let � ∈ {Rabin, Streett} and R ∈ Regions.

Then:

sup
σ∈Σdiv

Probσ
R(accept′�) = sup

σ∈Σdiv
Probσ

R(�F�) .

Proof: (Sketch.) (≤) We first show that
Probσ

R(accept′�) ≤ Probσ
R(�F�) for any σ ∈ Σdiv. By

Lemma 1, the strategy σ confines itself eventually in
time-divergent ECs with probability 1. The probability
Probσ

R(accept′�) is obtained from the sum of the probability
of being confined to ECs that are sub-MDPs of the maximal
ECs in Ediv

� . Given that Probσ
R(�F�) is the probability of

reaching such maximal ECs, the inequality follows.
(≥) We show that, for any σ ∈ Σdiv, we can obtain

σ′ ∈ Σdiv such that Probσ′
s (accept′�) ≥ Probσ

s (�F�). The
strategy σ′ is obtained by copying the choices of σ, except
for the paths in which a F� has been reached. For those
paths, as soon as a region R in F� is reached, σ′ switches
from copying σ to behaving as a region divergent strategy σ′′

for which Probσ′′
R (accept′�) = 1, which exists by Lemma 2.

It can be observed that σ′ is region divergent and that
Probσ′

s (accept′�) ≥ Probσ
s (�F�).

From Proposition 6, we can reduce the computation of
supσ∈Σdiv Probσ

R(accept′�) for each region R ∈ Regions
to that of supσ∈Σdiv Probσ

R(�F�). The final question that
remains is how to compute this value. The following lemma
states that, for reachability properties, we can find an optimal
region divergent strategy.

Lemma 3 ([21]): Let F ⊆ L be a set of locations of
P ⊗ A. Then, for any R ∈ Regions and any strategy σ ∈ Σ,
there exists a region divergent strategy σ′ ∈ Σdiv such that
Probσ

R(�F) ≤ Probσ′
R (�F).

Lemma 3 and the fact that Σdiv ⊆ Σ imply that:

sup
σ∈Σdiv

Probσ
R(�F�) = sup

σ∈Σ
Probσ

R(�F�) .

In order to compute supσ∈Σ Probσ
R(�F�), we can use standard

computations for reachability properties on MDPs.
Noting that the size of Reg[P ⊗A] is exponential in the size

of P , that the computation of F� can be done in polynomial
time in the size of Reg[P ⊗A], and the lower bound of
Theorem 1, we have the following result.

Theorem 4: The dense-time verification problem for PTA
is EXPTIME-complete for deterministic Rabin or Streett au-
tomata objectives.

VI. CONCLUSION

In this paper we have presented methods for discrete-time
verification and control problems for PRA, and for dense-
time verification problems for PTA. For all of the consid-
ered problems, the solution is obtained using a probabilistic
bisimulation: ∼=k

R-equivalence for the case of discrete-time
PRA, and region equivalence for PTA. Note that the discrete-
time approach used in this paper is different from that in
[41], in which a PTA model with digital clocks in used as a
correctness-preserving representation of the usual dense-time
PTA model, rather than assuming from the outset that the PTA
makes jump transitions only at integer points in time, as we
do in the discrete-time semantics this paper. By considering
ω-regular properties, we have enlarged the class of properties
that can be considered in the PRA and PTA framework.

ACKNOWLEDGMENT

The author is supported in part by the MIUR-PRIN project
PaCo - Performability-Aware Computing: Logics, Models and
Languages. The author would like to thank Arnaud Sangnier
for useful comments on a draft of this paper.

REFERENCES

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” TCS, vol. 138, no. 1, pp. 3–34, 1995.

[2] T. A. Henzinger, “The theory of hybrid automata,” in Proc. LICS’96.
IEEE, 1996, pp. 278–292.

[3] H. Wong-Toi, “The synthesis of controllers for linear hybrid automata,”
in Proc. CDC’97. IEEE, 1997, pp. 4607–4612.

[4] T. A. Henzinger and P. W. Kopke, “Discrete-time control for rectangular
hybrid automata,” TCS, vol. 221, no. (1-2), pp. 369–392, 1999.

[5] T. A. Henzinger, B. Horowitz, and R. Majumdar, “Rectangular hybrid
games,” in Proc. CONCUR’99, ser. LNCS, vol. 1664. Springer, 1999,
pp. 320–335.

[6] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli, “Effective
synthesis of switching controllers for linear systems,” Proc. IEEE,
vol. 88, pp. 1011–1025, 2000.

[7] J. Hu, J. Lygeros, and S. Sastry, “Towards a theory of stochastic hybrid
systems,” in Proc. HSCC’00, ser. LNCS, vol. 1790. Springer, 2000,
pp. 160–173.

[8] J. Sproston, “Decidable model checking of probabilistic hybrid au-
tomata,” in Proc. FTRTFT’00, ser. LNCS, vol. 1926. Springer, 2000,
pp. 31–45.

[9] ——, “Model checking for probabilistic timed and hybrid systems,”
Ph.D. dissertation, School of Computer Science, University of Birm-
ingham, 2001.

[10] M. L. Bujorianu, “Extended stochastic hybrid systems and their reach-
ability problem,” in Proc. HSCC’04, ser. LNCS, vol. 2993. Springer,
2004, pp. 234–249.

[11] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic reacha-
bility and safety for controlled discrete time stochastic hybrid systems,”
Automatica, vol. 44, no. 11, pp. 2724–2734, 2008.

[12] L. Zhang, Z. She, S. Ratschan, H. Hermanns, and E. M. Hahn, “Safety
verification for probabilistic hybrid systems,” in Proc. CAV’10, ser.
Lecture Notes in Computer Science, vol. 6174. Springer, 2010, pp.
196–211.

[13] J. Assouramou and J. Desharnais, “Continuous time and/or continuous
distributions,” in Proc. EPEW’10, ser. LNCS, vol. 6342. Springer, 2010,
pp. 99–114.

[14] M. Fränzle, E. M. Hahn, H. Hermanns, N. Wolovick, and L. Zhang,
“Measurability and safety verification for stochastic hybrid systems,” in
Proc. HSCC’11. ACM, 2011, to appear.

[15] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decidable
about hybrid automata?” J. Comput. Syst. Sci., vol. 57, no. 1, pp. 94–124,
1998.

[16] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “Algorithmic analysis of
nonlinear hybrid systems,” IEEE Trans. Autom. Control, vol. 43, pp.
540–554, 1998.

[17] L. Doyen, T. A. Henzinger, and J.-F. Raskin, “Automatic rectangular
refinement of affine hybrid systems,” in Proc. FORMATS’05, ser. LNCS,
vol. 3829. Springer, 2005, pp. 144–161.

[18] H. Gregersen and H. E. Jensen, “Formal design of reliable real time
systems,” Master’s Thesis, Department of Mathematics and Computer
Science, Aalborg University, 1995.

[19] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston, “Automatic
verification of real-time systems with discrete probability distributions,”
TCS, vol. 286, pp. 101–150, 2002.

[20] R. Alur and D. L. Dill, “A theory of timed automata,” TCS, vol. 126,
no. 2, pp. 183–235, 1994.

[21] J. Sproston, “Strict divergence for probabilistic timed automata,” in Proc.
CONCUR’09, ser. LNCS, vol. 5710. Springer, 2009, pp. 620–636.

[22] K. Chatterjee and T. A. Henzinger, “A survey of stochastic omega-
regular games,” J. Comput. Syst. Sci., 2011, to appear.

[23] J. G. Kemeny, J. L. Snell, and A. W. Knapp, Denumerable Markov
Chains, 2nd ed., ser. Graduate Texts in Mathematics. Springer, 1976.

[24] L. de Alfaro, “Formal verification of probabilistic systems,” Ph.D.
dissertation, Stanford University, Department of Computer Science,
1997.

[25] M. Jurdziński, F. Laroussinie, and J. Sproston, “Model checking prob-
abilistic timed automata with one or two clocks,” LMCS, vol. 4, no. 3,
pp. 1–28, 2008.

[26] C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,
2008.

[27] F. Laroussinie and J. Sproston, “State explosion in almost-sure proba-
bilistic reachability,” IPL, vol. 102, no. 6, pp. 236–241, 2007.

[28] V. Forejt, M. Kwiatkowska, G. Norman, and A. Trivedi, “Expected
reachability-time games,” in Proc. FORMATS’10, ser. LNCS, vol. 6246.
Springer, 2010, pp. 122–136.

[29] K. G. Larsen and A. Skou, “Bisimulation through probabilistic testing,”
I & C, vol. 94, no. 1, pp. 1–28, 1991.

[30] R. Segala and N. A. Lynch, “Probabilistic simulations for probabilistic
processes,” Nordic Journal of Computing, vol. 2, no. 2, pp. 250–273,
1995.

[31] K. Chatterjee and T. A. Henzinger, “Value iteration,” in 25 Years
of Model Checking - History, Achievements, Perspectives, ser. LNCS.
Springer, 2008, vol. 5000, pp. 107–138.

[32] C. Baier, M. Größer, and F. Ciesinski, “Model checking linear-time
properties of probabilistic systems,” in Handbook of Weighted Automata,
ser. EATCS Monographs in Theoretical Computer Science. Springer,
2009, pp. 519–570.

[33] K. Chatterjee, L. de Alfaro, and T. A. Henzinger, “The complexity of
stochastic Rabin and Streett games,” in Proc. ICALP’05, ser. LNCS, vol.
3580. Springer, 2005, pp. 878–890.

[34] R. Alur, C. Courcoubetis, and D. L. Dill, “Model-checking in dense
real-time,” I & C, vol. 104, no. 1, pp. 2–34, 1993.

[35] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic model
checking for real-time systems,” I & C, vol. 111, no. 2, pp. 193–244,
1994.

[36] S. Tripakis, S. Yovine, and A. Bouajjani, “Checking timed Büchi
automata emptiness efficiently,” FMSD, vol. 26, no. 3, pp. 267–292,
2005.

[37] R. Alur and T. Henzinger, “Real-time system = discrete system + clock
variables,” STTT, vol. 1, pp. 86–109, 1997.

[38] L. de Alfaro, M. Faella, T. Henzinger, R. Majumdar, and M. Stoelinga,
“The element of surprise in timed games,” in Proc. CONCUR’03, ser.
LNCS, vol. 2761. Springer, 2003, pp. 144–158.

[39] K. Chatterjee, M. Jurdziński, and T. Henzinger, “Simple stochastic parity
games,” in Proc. CSL’03, ser. LNCS, vol. 2803. Springer, 2003, pp.
100–113.

[40] C. Baier and M. Kwiatkowska, “Model checking for a probabilistic
branching time logic with fairness,” Dist. Comp., vol. 11, no. 3, pp.
125–155, 1998.

[41] M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston, “Performance
analysis of probabilistic timed automata using digital clocks,” FMSD,
vol. 29, pp. 33–78, 2006.

