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Abstract 

Real-time systems are characterised by the critical nature of their missions, and the 

demanding environment with which they interact. Real-time systems are used for 

dedicated applications. Every application is the subject of special requirements 

enforced by the customer. Considering the vital role that these systems play, it is 

imperative that a systematic approach be adopted in modelling their unique 

requirements. In this thesis I propose such a treatment. 

Real-time systems are time critical. Temporal requirements are the timing 

restrictions imposed by the application environment. Previous studies in 

requirements modelling of real-time systems have focused on adding the notion of 

time to modelling techniques of traditional systems without regard to the realities of 

requirements modelling. The information should be presented in the way the user 

handles it, and not the way which is convenient to the software engineer. I attempt 

to understand the needs of the users better by modelling the real world as close to 

the user's perspective as possible, and propose the Real World Model (RWM). 

RWM is assumed to be developed by users, and requirements engineers. An 

engineering approach to building the model is provided. 

A real-time system has a well defined use to its community. A requirements model 

must rely on the user level activities, and aid the human understanding and 

communication. In the RWM, a real-time system is viewed as a set of concurrently 
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acting automata, each representing a system entity. This model supports temporal 

reasoning in easily described ways, for all classes of timing properties. A 

generalised classification of timing constraints is provided. 

A requirements modelling language facilitates the description of requirements, and 

serves as a medium of communication among developers and stakeholders. 

Jarke et al [Jarke 94] observe that there is a need for a requirements language that 

manages the relationship between the meta-level domain scheme, and the scenarios 

that actually instantiate the scheme under development. Here I propose Timed 

Requirements Language (TRL) to bridge this gulf between the world of 

stakeholders, and the world of specifiers. TRL has natural looking expressions for 

formulating the needs. TRL has a number of novel features including the treatment 

of causality, and the description of static, and dynamic constraints all integrated into 

one uniform framework. TRL has been used with a number of systems. The 

generality of the language is validated through its application to specific systems. 
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Chapter 1 

Introduction 

Computers are used extensively in industrial, 

medical, scientific, and military systems. Many of 

these systems operate under critical conditions. The 

critical nature of these systems, coupled with their 

inherent complexities, demand that a systematic 

approach be employed while modelling the 

requirements of these systems. This thesis proposes 

such a treatment. 



1.1 Concept of Control 

Control is the essence of technology. The word control is usually taken to mean 

regulate, direct, or command. The need to mechanise the process of achieving a 

result is ever increasing. The early processes were primitive. They were controlled 

and supervised manually. Considerable progress has been made since the 

development of computers. The evolution of process control has been astounding 

with the continued improvement in the capability of computer hardware l . A major 

application of computers has been in the control of physical processes such as 

controlling the traffic, regulating the power supply, and etc. In all such 

applications computers monitor and control the functions. In process controlled 

systems, an important aspect is the process dynamics i.e., the time behaviour of 

changes in operating conditions. In all these circumstances computer has to adapt 

to the changes. For such reasons scientists and engineers agree that these systems 

are difficult to model, specify and design. This dissertation is however concerned 

only with a subset of these activities. In specific, requirements modelling is the 

subject of this dissertation. The remainder of this chapter introduces the 

characteristics of these systems in more detail and shows how and why these 

systems introduce unique problems into the requirements modelling process. This 

study enables us to discover the objectives of a requirements model to be employed 

with these systems. This work proposes an approach based on the objectives 

identified. 

1 There is a great factor of improvement in the ratio of the cost of the microprocessor. to its 

capabilities. This has spiralled the ambitious growth of the process controlled systems. 
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1.2 Context and Motivation 

A system which operates with a dynamic environment (variable environmental 

conditions) is forced to operate with temporal constraints. The temporal restriction 

depends upon the changes occurring in the environment. Such systems nonnally 

operate with a number of physical devices, to monitor and control the environment. 

These systems are termed differently depending on the area of application like 

process controlled systems, embedded systems, discrete event dynamic systems, 

and reactive systems. In general they can all be referred as real-time systems. The 

word real-time emphasises the fact that 

• time criticality is crucial for correctness rather than convenience, and 

• a number of semi-independent activities must be coordinated. 

These systems range in size from very large like air traffic control systems to much 

smaller systems like patient monitoring systems. Real-time systems normally 

interact with physical devices that have to be monitored and controlled. Real-time 

systems perform complex functions like control of physical devices, 

communication between various devices, and coordination of user interaction with 

the system. Thus we consider a real-time system as a combination of interacting 

elements forming a collective entity2. These systems are used for dedicated 

applications. This means that every application is the subject of special 

requirements enforced by the customers depending on the application environment. 

2 Oxford dictionary definition for a system. "a set or assemblage of things connected. associated or 

independent. so as to form a complex unity". 
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1.3 The Nature of Modelling 

A model is a representation of the problem usually on a smaller scale, and 

modelling is to create a model. A model represents the factors for the purpose 

being considered. For example a 'model of a shopping complex' (say, displayed in 

the city hall), does not provide any guidelines for the civil engineer to build the 

shopping complex. The purpose of such a model is to gain the public opinion on 

the proposed project. Model differs depending on its intended purpose. In fact a 

system development can be regarded as a series of model building activities. 

1.3.1 Requirements and Specifications 

In the computing literature the two words, requirements, and specification are used 

interchangeably, or mostly in conjunction. Abbott and Moorhead [Abbott 81] 

proposed that a distinction be made between requirements and specification. In 

their words, 'a requirements document defines the requirements of the system to be 

built, while a specification explains how a system that meets those requirements 

would look to the user'. In other words, requirements refer to the needs of the 

user, while specification gives a description of the system that meets those needs. 

In this work we use the two words requirements, and specification as two distinct 

activities, and for such a reason we detail out, what is requirements?, and what is 

specification? 

4 



1.3.1.1 Requirements 

Requirements reflect high level aims, or goals. The requirements are essentially 

conceptuaP. The requirements reflect the needs of the user, and are descriptive. 

Requirements provides a description of the environmental oriented activities. This 

phase is primarily an activity of determining the requirements. At this stage it is 

only possible to validate the requirements model. The role of requirements model 

is to act as input to a specification model. 

1.3.1.2 Specifications 

Specification, specifies the properties of a system to be developed. In other words, 

specification is prescriptive. Gehani and McGettrick [Gehani 86] express very 

clearly the intention of specification. They state: 

'There are important benefits from writing specifications, i.e., stating in 

precise terms the intended effect of a piece of software. For then it is 

possible to talk about such issues as the correctness of an implementation, a 

measure of the consistency between that specification and the effect of the 

program. The range of benefits are actually wider than this: they relate to 

the methods of programming, to possible approaches to verification and 

validation of programs, and even to the management and control of large 

software projects'. 

3 Conceptual -(Oxford dictionary meaning) - that is conceived or taken into the mind. 
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Thus the issues concerned during specifications closely relate to the implementation 

of a system. As mentioned earlier, in requirements explicit attention is given to the 

environment, while in specifications according to [Wing 90] it is often neglected. 

Sol [Sol 83] refers to the requirements model as 'conceptual model', and the 

specification model as 'empirical model'. Conceptual model is based on the belief 

that such a system is desirable from the human point of view. However whether a 

design actually meets the expectations, can only be determined when the 

'conceptual model' has been refined into empirically determinable characteristics. 

1.3.2 Requirements Modelling 

Requirements reflect a certain subjective desire. In other words, understanding a 

system from the user perspective forms the requirements. As defined by a number 

of researchers, requirements describe the functions to be performed by the system 

from the viewpoint of user or external environment, without implying a particular 

implementation [Heninger 80, Davis 79, Boehm 76]. During requirements 

modelling the objectives of a system that characterise the user's needs are 

documented and agreed upon. 

From the external (user's) point of view, a system can be characterised by the 

realistic descriptions of the service provided by it. Requirements document is the 

place to record that information. Requirements document serves the user, specifier, 

and acceptance tester. When a system is under acceptance testing, it is actually 

testing the system against the needs of the user. Any error made in identifying the 

requirements, may go undetected till the completion of the tests. Correction of such 

an error involves extensive reworking of the complete system. As noted by 

[Roman 85] and [Boehm 81] discrepancies discovered between the delivered 
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system and the requirements are the most difficult and expensive to correct, and 

they may even make the entire system useless. 

The basic activities in requirements phase are referred as requirements modelling. 

The languages used during requirements are referred as 'modelling languages', 

while the languages used during specification are termed as 'specification 

languages' [Greenspan 94]. 

1.4 The Problem 

To model the system, we must understand the various problems the system poses. 

Real-time systems introduce unique problems while modelling, because of the 

nature of their application. In the following sections, we discuss modelling these 

features. 

1.4.1 Real-Time Systems are Safety Critical 

Real-time systems are used in such applications, where an error4 could harm the 

plant and even the lives of the peopleS. These systems are safety critical. In the 

early days there was a reluctance to introduce the computers in safety critical 

systems. This reluctance was partly grounded in the fear of introducing an 

unknown (complex) factor. Safety-critical systems were largely controlled by 

mechanical or electronic devices, with the help of human. The human error was 

regarded as controllable and manageable before any damage could occur. As the 

4 [Leveson 86] discusses the vocabulary that has evolved to discuss safety. 

5 An extreme example is Bhopal. 
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microprocessors became cheap, and more powerful, the use of computers in safety 

critical systems could not be resisted, and are widely used. Some of the examples 

of these systems can be found in flight control, railway traffic control, aerospace, 

industrial plant control, and health care systems. The potential advantages of using 

the computers in safety critical systems are discussed in [Parnas 90]6. Reviewing 

[Leveson 86, Leveson 91, and Parnas 90] we can conclude that system accidents 

are intimately intertwined with complexity. With the advent of more powerful 

microprocessors the potential for problems may also be on the increase. Despite 

such apprehensions, computers are used to control safety-critical systems. As 

Rouse [Rouse 81] suggests introducing computers can improve safety 7. While 

Perrow [Perrow 84] argues that, though the increase in technological innovations 

can decrease the accidents, they (the technological innovations) also allow those 

making the decisions to run greater risks, in search of increased performance. This 

means, the safety factor may not get the consideration it deserves, before the 

demand for better performance. For example, 'feedback control makes it possible 

to design aircraft that are aerodynamically unstable (such as the X-29) so as to 

achieve high performance' [IEEE 87]. 

6 The advantages are (l) possibility of building more logic into the system easily. (2) logic in 

software is easier to change (at least in theory), and (3) can provide more information to the 

operator. 

7 The techniques of improving the safety with computers are described in [Anderson 81], 

[Sennett 89], [Bowen 93], but are outside the scope of this thesis. 
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Safety criticality is associated with the consequences like loss of human lives, risk 

to the health of persons, environmental pollution, or damage to the property8. 

Safety is concerned with the causes, and consequences of accidents. 

1.4.1.1 Modelling Safety 

Safety is a system wide property [Leveson 86]. Safety relates mainly to the 

environment surrounding the target system. Safety requirements of a system 

depends on the application environment. For example, a temperature controller 

used in a home heating system, and in a nuclear reactor have totally different safety 

requirements. Thus safety requirements can be stated concentrating on the 

application environment. 

1.4.2 Real-Time Systems are Time Critical 

A crucial aspect of real-time system is its dynamicity. This aspect, makes the 

system time-critical. This is clear in the definition of real-time system in the Oxford 

Dictionary of Computing 

'Real-time system is any system, in which the time at which the output is 

produced is significant. This is usually because the input corresponds to 

some movement in the physical world, and the output has to relate to that 

same movement. The lag from the input time to output time must be 

sufficiently small for acceptable timeliness' [Oxford 90]. 

8 [MIL-STD 84J defines safety as "freedom from those conditions that can cause death, injury, 

occupational illness, or damage to or Joss of equipment or property", 
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Robert Glass [Glass 83] stresses the importance of timeliness as follows: 

The computer is controlling something that interacts with reality on a timely 

basis. In fact timing is the essence of interaction .... An unresponsive 

real-time system may be worse than no system at all' [Glass 83]. 

It is evident that the timeliness requirement, is defined by the application 

environment, and not by the computer. 

1.4.2.1 Modelling Timeliness 

Time as a property of the universe has intrigued people since centuries. Real-time 

systems are time critical. Temporal constraints are resulted from the characteristics 

of the environment. There does exist some difference of opinion among 

researchers, on the explicit use of time, while modelling the real-time systems. In 

an interesting article Turski [Turski 88] warns against the over reliance of timing 

factor. However Turski agrees that sometimes timing is the only viable way to 

express the interactions of a real-time system with a physical process. Mok 

[Mok 91] discusses at length the necessity of temporal considerations in real-time 

systems, and argues for the use of timing constraints as a control mechanism in a 

systematic way. Jaffe et al [Jaffe 91] discuss the importance of timing in 

requirements. These requirements are constraints on the real-time behaviour of the 

system. The criticality of functions arise due to the timeliness requirement. 

Timeliness has to be observed even under extreme load conditions. As Harel 

[Harel 92] pointed out behaviour over time is much less tangible than either 

functionality or physical structure, and more than anything else, this is the aspect 

that renders these systems so slippery and error-prone. 
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Real-time systems are time critical, and the consequences of this on the 

requirements description language are: 

• the description language must consider explicitly not only what happens, 

but also when it happens; 

• the description language must include syntactic mechanisms suitable for 

the definition of timing constraints. 

Timing constraints are dependent upon the application environment. For example 

the applications like, spray painting a car by robot have stringent timing 

restrictions. The job done either too early or too late can be dangerous, or 

ineffective. Timing constraints are determined by the environment. The dynamics 

of the environment imposes the timing constraints. 

1.4.3 Real-Time Systems are Reactive 

Harel and PnueH [Harel 85] introduce two different views on computing system. 

The first view regards the behaviour of a computing system as a function from an 

initial state to a final state in a deterministic case, and as a relation between initial 

and final states in a non-deterministic case. This view is appropriate for the 

systems, where all inputs are available before the beginning of the computation, 

and outputs are produced at the termination of computation. Such systems are 

referred as 'transformational systems'. 

On the other hand, there are systems, that cannot be covered by the 

transformational view. These systems are those that, ideally never terminate, since 
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their purpose is not to attain a final result, but rather to maintain some interaction 

with their environment. These systems are called as 'reactive systems'. 

Real-time systems fall into the latter category of systems. As such, the purpose of 

a real-time system, is to maintain an ongoing relationship with the environment 

[Stankovic 88a]. A real-time system controls a physical system, by taking into 

account all interactions with the environment where the physical system works. 

The real-time system must be aware of each change in the environment, and the 

action by the control system may change the environment in some manner. 

1.4.3.1 Modelling Reactivity 

A real-time system is driven by the events happening in the environment. These 

events occur irregularly, and a control system cannot control these events. A well 

known example is a telephone switch, where the telephone switch has no control 

over the subscribers initiating a call. Thus a reactive system cannot block the 

occurrence of events not under its control. A sufficient condition for reactivity is 

the enabling property proposed in [Lynch 88]. A reactivity can be modelled with 

the explicit notion of 'trigger' - where the system events are the result of an earlier 

trigger. The triggering mechanism plays a very important role in analysing the 

behaviour of real-time systems. The changes that take place in the system are 

resulted by some other change. For example, a telephone exchange is idle, if no 

subscriber initiates a call. When a subscriber picks up hislher handset, it causes a 

series of actions and reactions. The term reactivity gives the implication of a strong 

sense of cause and effect. The notion of causality plays a very important role in 

modelling the real-time systems. Reactivity can be modelled by focusing on the 

environment. 
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1.5 Scope of Requirements Model 

Gray and Thayer [Gray 91] identify two key components of any software 

requirements methodology: (1) to aid in determining the requirements and (2) to 

represent the software requirements. Requirements modelling is regarded as the 

core activity of Requirements Engineering. Davis [Davis 90] suggests that 

Requirements Engineering is the analysis, documentation, and ongoing evolution 

of both user needs, and the external behaviour of the system to be built. 

Greenspan et al [Greenspan 94] stress the importance of research in requirements 

modelling, 'it is our contention that such representation and reasoning issues must 

continue to be addressed and that their resolution is a prerequisite to progress in all 

aspects of Requirements Engineering research and practice'. The glaring limitation 

of the research in requirements modelling can be noted in the words of [Potts 91], 

"requirements engineering research seems to me to have been conducted because 

the people involved wished to apply techniques already developed for 

'downstream' software development phases further 'upstream'; for example, the 

application of plan-based program skeleton recognition and reuse techniques to 

domain model schemas, or the application of program transformations to 

requirements volatility". As such the research emphasis in software engineering 

has been a 'bottom-up' approach. In the 1960s emphasis was on 'coding', in 

1970s emphasis was on 'design', in 1980s emphasis was on 'specification', and in 

1990s the emphasis is focused on 'requirements'. Because of such an approach, 

the practice of using the same upstream activities for downstream activities arises. 

Each activity has its own unique problems to be addressed. and requires 

recognising those before addressing them. In contrast to the upstream phases, 

requirements modelling is firmly based in the problem world. rather than in the 

solution world. 
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Due to the advances in the processor chips, the realm of real-time system is 

expanding rapidly, involving most computer products. The requirements 

description of real-time systems must capture the real-time aspects of the system 

discussed above. It is essential that the requirements model is validated by the 

stakeholders, as the end product should meet those needs. Thus along with the 

components identified by Gray and Thayer [Gray 91] the approach must also 

support validation of the requirements. 

1.6 Objectives 

So far we discussed the significance of the requirements model. In this section we 

briefly recall the arguments to extract the objectives of requirements model for a 

real-time system. These objectives determined the course of the work reported 

here. 

Argument 1 

As discussed in earlier sections, requirements modelling is a need oriented 

approach rather than a strategy oriented one. A basic purpose of a requirements 

model is to serve as a reference frame for communication among developers and 

stakeholders. As Potts [Potts 91] puts it Requirements Engineering is about the 

communication of human intent. 

Objective 1: Requirements description must be understandable by naive 

users. 
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Argument 2 

Requirements model characterises the users' needs. In other words, requirements 

model concentrates on the application domain, rather than on the characteristics of 

the system to be delivered. As reasoned out earlier, stakeholders must be able to 

comment and validate the requirements model. This validation helps to reveal the 

errors in the model. An error in this stage is the error in perceiving the features of 

the system, as perceived by the users. 

Objective 2: Users' participation in the validation of requirements model is 

essential. 

Argument 3 

Requirements descriptions can be large. It must be possible to uncover static errors 

(e.g., syntax errors, range violations) in the requirements descriptions. Typically 

such improvements (though small) can be quite significant. 

Objective 3: Requirements description must be amenable to machine assisted 

reasoning. 

Argument 4 

Real-time systems are normally complex. A research challenge identified in the 

control system conference [IEEE 87]9, looks for an approach for the description of 

the system, and states: 

9 A joint report by the leading researchers in control system. 
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Solving almost any significant engineering problem requires finding a 

framework for identifying subsystems which interact with each other in 

easily described ways [IEEE 87]. 

Objective 4: A framework used for the problem description, must identify 

the subsystems. 

Objective 5: Description of the interaction of the subsystems must be simple 

for the users to understand. 

We recall the characteristics of real-time systems, and the modelling concepts of 

these aspects discussed earlier. 

Argument 5 

Real-time systems are time critical. A realistic description of the system must 

include not only the functional description, but also the evolution of such 

descriptions over time. 

Objective 6: Requirements description, must include both the functional and 

temporal aspects in the same framework. 

Objective 7: Requirements description must handle all classes of quantitative 

timing requirements. 

Argument 6 

Real-time systems are safety critical. Safety considerations involve real-time 

constraints. The timing constraints are derived from the safety of the objects in the 
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control system. The limiting factors (like temporal constraints) are derived from the 

operational conditions, like the loss of data as time passes, or maintaining a safe 

distance between two vehicles in vehicle control system, and so on. If timing 

constraints cannot be met, then a timing error will occur. In such occasions it is 

necessary to describe the reaction to timing errors. 

Objective 8: Requirements description, must provide a framework to 

describe reaction to timing errors. 

Argument 7 

Real-time systems are reactive. In earlier sections we discussed reactivity, and its 

modelling respectively. 

Objective 9: Requirements description, must explicitly handle causality. 

The work described in this thesis addresses these objectives. Many issues 

discussed in this thesis have been reported in articles [Sateesh 95a, Sateesh 95b, 

Sateesh 95c, Sateesh 95d, Sateesh 94a, Sateesh 94b, Sateesh 94c, Sateesh 94d]. 

1.7 Structure of the Thesis 

In chapter 2, we review the research efforts in requirements modelling that have 

been addressed in the past few years. We provide a classification of the research 

efforts by means of their underlying mechanism. We evaluate some of the 

representative techniques based on the characteristics of real-time systems. Here 

we set the background and the criteria for thinking about modelling the real-time 

systems. The criteria concentrates on the characteristics of real-time systems. This 
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review helps us to discover the need to address the problems identified in modelling 

the requirements of real-time systems. 

In chapter 3, the notion of the requirements is examined in detail, and we propose 

the modelling approach, namely the real world model formalism. Following a brief 

overview of the guiding principles that motivated our approach, we present the 

basic components of our model. Here we present an approach for thinking and 

reasoning about a perceived application domain. An engineering approach to 

building the conceptual model of a system is provided. 

In chapter 4, we provide an automata-theoretic approach for the real-world model 

discussed earlier. We discuss the various formalisms of time, and provide 

justification for the choice of our model - dense time. We introduce time 

constrained automata to model the dynamic nature of real-time systems. The model 

discussed provides a single formalism to describe both the functional, and temporal 

aspects of the system. A system is viewed as a set of concurrently acting automata, 

each representing a system entity. 

Chapter 5, presents TRL (Timed Requirements Language). We present an 

overview of TRL (Timed Requirements Language) followed by its syntax, and 

semantics. Here we model the system by user oriented concepts and the constructs 

are easily readable. Elements of the language are discrete events and this applies to 

a wide class of systems. We provide a generalised classification of timing 

properties that may arise in a real-time system. We demonstrate that TRL 

conveniently handles all classes of timing constraints. TRL projects operational 

behaviour through time. 
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Chapter 6, provides a practical demonstration of the use of the concepts developed 

in the previous chapters, by means of its application to the problems, for which the 

requirements are derived and described using the criteria developed earlier. 

Chapter 7 provides evaluation of our approach with the representative techniques 

discussed earlier in chapter 2. 

Chapter 8 summarises the conclusions of this dissertation. It also identifies the 

possible paths for future research. 
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Chapter 2 

Requirements for Real-Time Systems 

The problem associated with requirements become 

amplified for real-time systems [Stankovic 88aJ. A 

number of techniques have evolved over recent years 

to support this difficult task. The goal is to represent 

the high level objectives of a system. Here we 

examine the characteristics associated with real-time 

systems, and critically review the techniques 

suggested by various researchers. 
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2.1 Introduction 

The "software crisis" is dead! [Freeman 89]. Yes software is no-more regarded as 

an unmanageable beast as it was considered to be. As Harel argued [Harel 92] the 

engineers in software community have fairly understood an insight into building the 

software. A million lines of code is the nonn, and not an exception. Requirements 

has been identified as the main teething problem during system development. 

Requirements engineering emphasises the activities during requirements stage. In 

this phase of the software development life cycle, the external behaviour of the 

system is described [Davis 82]. Requirements description is now widely 

recognised as a critical step in the development of large software systems. Both 

Brooks [Brooks 87] and Turski [Turski 86] highlight this activity as the essence of 

software engineering. 

McMenamin and Palmer [McMenamin 84] divide the system development activities 

into the essence of a system and its incarnation. The essence of a system 

constitutes understanding the system level activities, while the incarnation includes 

the side effects (like the availability of the technology/tool to implement the system, 

the social conflicts, and the cognitive limitations). The first step which describes 

the activities of the system provides the essential model of the system. This 

suggests that at the front end is the needs of the user, and at the other end is the 

(control) system to be designed to meet these needs. 

The features of a system differ depending on the environment, and the needs of the 

users. For example the requirements of office systems (example: database 

systems, decision support systems), public information systems (example: home 

tele-shopping, transport information system), knowledge-based systems (example: 
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advice-giving systems), and real-time systems differ. Each class of systems has a 

set of distinguishable characteristics. Accordingly the needs and the objectives of a 

system differ as the properties differ from one class to another. The requirements 

method employed must be suitable to these systems. For such a reason we will 

briefly discuss the important features of real-time systems. Distinguishing features 

of real-time systems is dealt in detail in [Stankovic 88a, Foster 81, Bums 90, and 

Mellichamp 83]. 

2.1.1 Features of Real-Time Systems 

A typical real-time system consists of a controller (computer) and an environment 

as a controlled object. Environment may comprise of physical processes and 

humans. The environment and the controller have a mutual influence upon one 

another. Koymans et al [Koymans 88] define real-time system as a particular kind 

of interactional system: one that maintains an on-going relationship with the 

dynamic environment. Consequently, a real-time system is fully responsible for 

the proper operation with respect to its environment. In a dynamic environment, 

the situations are characteristically complex and immediate. The control system 

must deal with the immediate situation. Such requirements poses restrictions on the 

real-time behaviour of the system. Wirth [Wirth 77] singled out this time 

dependency as the one aspect that differentiates real-time systems from other 

systems. 

Burns [Burns 91] provides a classification of the systems, defining utiIitylO as a 

function of time. Utility is the contribution of the execution of a task towards the 

10 Utility as a time varying function is defined in [Jenson 851. 
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system's objectives. The key idea is that the completion of a task has a value to the 

system that can be expressed as a function of time. Depending upon such a 

classification the various activities carried out by a computer are either real-time 

tasks or non real-time tasks. 

Real-time tasks are time critical tasks and can be sub classified as [Stanko vic 88a] 

• periodic tasks, 

• aperiodic tasks, and 

• alarm tasks 

While non real-time tasks may be performed as background tasks. 

Periodic tasks are started at regular intervals specified by their period. Aperiodic 

tasks are activated randomly as a result of the environmental action. These are 

asynchronous. System has no control over such incidents. Aperiodic tasks can 

have stringent timing constraints. Alarm tasks are aperiodic tasks but they run with 

absolute priority over all real-time tasks. Alarm tasks are intended to handle 

exceptional conditions. Background tasks are tasks with no real-time properties. 

Real-time systems are nonnally required to respond within a specified time. For 

example consider the firing operation of spark plug in an engine control system. 

Here it is the time at which the service is provided is important, not merely 

providing it, in which case the engine may never start at all. In some systems a 

right result produced late may contribute to a wrong result or may cause a 

catastrophe. We refer to these requirements as 'timing constraints'. Timing 
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constraints depend on the physical characteristics of the plant. For example, 

advanced variable cycle jet engines can blow up if correct control inputs are not 

applied every 20 to 50 milliseconds [Lala 91]. Depending on the prominence of 

time criticality the systems are classified as soft real-time systems and hard real-time 

systems [Shin 87]. Faulk and Parnas [Faulk 83] provide a concise definition of 

hard real-time systems: 'we use the term 'hard real-time' to describe systems that 

must supply their information within specified real-time limits. If the information 

supplied is too early or too late it is not useful'. 

2.2 Requirements Document 

Computer controlled systems are complex entities [Dasgupta 91]. A process of 

abstraction is essential in understanding the user's expectations. The requirements 

are considered as an abstract representation of the system [Verrijn-Stuart 87]. 

Requirements engineer makes use of a description language to represent the needs 

of the user. These languages are requirements languages. Requirements languages 

provide frames with which the user's needs are defined. User needs are recorded 

in the requirements document. The requirements document is written using the 

terminology of the task environment, reflecting the user's view of the problem 

[Wassennan 79]. The purpose of the requirements document [Parnas 86] is 

• 

• 

to serve as a common reference frame for communication among 

customers, users, and developers; 

to serve as a model of reality. offering insight into the application 

domain; 
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• to provide documentation in order to facilitate the modifications or 

enhancements; 

• to serve as a basis for test plan development. 

At the heart of the requirements engineering process are the users and the 

customers. The primary requirement for the language employed for the 

requirements elicitation and representation is that it be understandable by naive 

users [Fraser 91]. The purpose of the requirements is to provide a model of the 

system. Thus requirements languages are referred as modelling languages 

[Greenspan 94]. These languages employ a variety of approaches. These 

approaches vary from employing a natural language to formal language. The 

language is formal in the sense that it has a well defined syntax and semantics 

[Davis 82]. Much research has been done in the design of languages. To get a 

more detailed view of the ongoing research, we provide a rough genealogy of these 

languages. 

2.3 An Overview of the Approaches 

Each system is unique in its own way. The needs of a system depends upon its 

application environment. Thus the expected features of the language differs from 

one class of system to another. Also the difference of opinion among researchers 

on such basic questions like: what should requirements be? how should 

requirements be stated? has led to the use of different approaches. The approaches 

suggested by various researchers are based on different flavours. Some of these 

flavours are appropriate during specification and design phase. For the sake of 

completeness we briefly refer to the various approaches. 
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2.3.1 Data-based Approaches 

Early attempts at expressing the requirements shared a common view of the 

systems as data manipulators. Traditionally all the activities performed by a 

computer can be regarded as the manipulation of data. Entity relationship model 

[Chen 76, Hall 76] emphasises the structure and the relationship between the data 

items. These have been extensively used to model the static properties of the data. 

Entity relationship diagrams are the basis of high level data models. Diagrams 

emphasise data and the associations among data elements. 

Data flow models extend this concept by incorporating the flow of information 

[Yourdon 79, DeMarco 78, Gane 79]. DFD (data flow diagrams) shows the flow 

of data. It shows how data entities are progressively transformed as they are 

processed by the system. Popularity of DFD is attributed to its simplicity, it 

requires no formal training to read the diagrams: bubbles are used to represent 

functions~ decomposition, arcs connecting them represent 

functional dependencies among their input and output data, and suitable 

representations are provided to represent data stores and data exchange with the 

external environment [Fuggetta 93]. DFD has several weakness for real world 

modelling. DFDs are inherently ambiguous and incomplete for any procedural 

interpretation. The flow includes data flow, information flow, control flow and 

material flow. DFD has been criticised for its failure to model the dynamics in a 

proper way and for the lack of formal basis [Richter 86]. For example it is not 

clear when a process is activated, and how the complex combination of input can 

influence the activation. Many extensions have been suggested to address some of 

these issues like [Ward 86, France 92]. 
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An early attempt to improve the practice during system development was the CRIS­

effort. Unfortunately the CRIS-effort COlle 82] limited its focus to the design 

phase. In this way it sought better ways to improve the design method. The 

efforts of Ward and Mellor [Ward 85, 86], Hatley and Pirbhai [Hatley 87], and 

Gomaa [Gomaa 84, 86] were directed towards providing a design method for 

real-time systems. Database modelling was the popular choice to represent 

solutions. The basic components in data-oriented model are entities, and data 

types. Data oriented perspective places emphasis on a complete analysis of data 

and its relationships. Data oriented models are solution centred. GIST 

[Goldman 80] is based on operational modelling over relational databases. 

Operational base of GIST allows executable specifications. Kung [Kung 89] 

proposes a graphical approach for conceptual modelling. An ER-like language is 

used along with the traditional DFD technique. 

DFDs stress on logical decomposition of system into modules and on data 

dependencies. Heitmeyer [Heitmeyer 83] has shown that functional decomposition 

of system is implementation dependent and always results in an inferior system 

owing to the boundaries imposed by the decomposition. Yourdon [Y ourdon 90] 

proclaimed the limitations of DFD and suggested to knock away the old technique. 

2.3.2 State-based Approaches 

Several attempts have been proposed to use finite state machine for modelling the 

system. An early suggestion can be traced to [Parnas 69]. The notable works 

include [Alford 77] and [Heninger 80]. SREM (Software Requirements 

Engineering Methodology) [Alford 85, Alford 77] was developed by a consortium 

of contractors for the specification and analysis of systems. It comprises of a set of 
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tools and is based on stimulus-response paths and finite-state machine 

representation. SREM identifies events subject to timing constraints. SREM has 

very little support for abstractions and modularity [Berzins 85]. Heninger 

[Heninger 80] describes the external behaviour of systems in terms of events 

defined by transitions. However this approach has not explicitly modelled the 

timing constraints associated with the system. Recently Leveson et al 

[Leveson 94] propose a modified Statechart [Harel 87] notation. It may be noted 

that Davis [Davis 88] compares ten specification languages, and rates statecharts 

3rd from the bottom in understandability to the naive users. 

Dasarathy [Dasarathy 85] added timer alarms to finite state machine to model the 

temporal constraints. A state based language RTRL is reported in [Dasarathy 85], 

[Taylor 80]. SREM's RSL (Requirement Statement Language) and RTRL share a 

common view of the system, in which a response at any instance is determined by 

the system's present state and the stimulus that has arrived. State based languages 

have been found to be unsuitable for describing complex systems [Davis 88]. 

Descriptions in a state based language tend to be monolithic. 

Recent works have addressed the issue of providing a temporal framework for the 

finite state machine. Lewis [Lewis 90] extends finite state graphs to incorporate 

timing constraints which is expressed as lower and upper bounds. Alur, 

Courcoubetis, and Dill [Alur 90] proposed the use of Timed Btichi Automata 

(TBA) to model the behaviour of finite-state real-time systems. TBA is a Btichi 

Automata augmented with a mechanism to express the timing constraints. Timing 

constraints are expressed using a finite set of clocks for each automaton. The 

clocks are set instantaneously with each transition. Nancy Lynch [Lynch 88] 

proposed the use of Input-Output automata as a model of computation, and this 
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model is extended to include timing [Lynch 90]. The timed model allows the 

specification of lower and upper bounds on the transition. 

A pure graphic formalism called Statecharts is proposed by Harel [Harel 87]. 

Statechart decreases the number of states by introducing the multiple active state 

notion. Jahanian and Mok [Jahanian 86, 88, 94] proposed modechart as a 

structured way of representing real-time systems. Modecharts is similar to 

Statecharts. In Modechart, a transition can be a time-bound pair which defines the 

smallest time (the delay), and the largest time (the deadline) for making a transition. 

For the purpose of reasoning about the specifications, Modecharts are translated 

into RTL (Real-Time Logic). 

2.3.3 Petri-net-based Approaches 

Petri -nets [Peterson 81, Reisig 85] consist of two basic components: a set of places 

and a set of transitions. In addition the movement of tokens represent the control 

flow. Tokens are passed from place to place through transitions by simple rules. 

Several researchers have proposed extension of Petri-nets to include the notion of 

time. The two earlier extensions are of Ramchandani [Ramchandani 74] and of 

Merlin [Merlin 76a, Merlin 76b]. Ramchandani associates computational delays 

with transitions. Here each transition is associated with a (finite) firing duration (a 

delay) of time 't'o The transition is prevented from occurring for the period 't', 

and is fired immediately after the elapse of time 't'. Ramchandani proposed this 

scheme mainly for performance evaluation. Merlin introduced the extension to 

specify and evaluate the communication protocols. Here each transition is 

associated with two values of time (1, u) lower bound and upper bound where 

1 < u. If a transition is enabled then it remains enabled for a minimum time of '1' 
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before it fires, and 'u' is the maximum time during which a transition can remain 

enabled without being fired. The latter extension is more general and can 

incorporate the former. Associating delays on transitions violates the instantaneous 

firing feature of basic Petri-nets. This was remedied by associating delays on 

places rather than transitions [Coolahan 83]. Timed Petri-nets have been used for 

performance evaluation [Holliday 87] and safety analysis [Leveson 87]. 

A high level Petri-net fonnalism called ER nets [Ghezzi 91] is proposed to specify 

control, function, and timing issues. ER nets is similar to other high level Petri­

nets [Agarvala 79] and integrates the timing extension mentioned above. 

A certain amount of practice is needed in understanding Petri-nets and relating them 

to the real world. Petri-net lacks the ability to model the plant (environment) and 

controller separately. Petri-net handles plant and controller as one system. Thus 

Petri-net does not accommodate a systematic exploration of the system. 

2.3.4 Process-Algebra-based Approaches 

Algebras provide an abstract approach for the analysis of systems. A popular 

formalism is Hoare's theory of Communicating Sequential Processes (CSP) 

[Hoare 78, Hoare 85]. CSP provides a set of constructs for writing concurrent 

programs and laws for reasoning about them. The work of Davies and Schneider 

[Davies 89] has extended this model to include the timing. Timing is included with 

the addition of process wait d, where d is the non negative unit of time. The wait 

process terminates after d units of time. A conceptual global clock is used for 

delaying the process. 
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Another notable approach is Milner's CCS (Calculus of Communicating Systems). 

CCS views the system computation as a finitely-branching tree. CCS is based on 

two central ideas: firstly the notion of observationally equivalent processes, i.e., 

processes that are indistinguishable to an observer. Equivalence classes of 

processes are the basic objects of CCS; and secondly the definition and 

manipulation of these basic objects using algebraic operators. Various notions of 

observational equivalences have been proposed and studied. Untimed CCS is also 

extended with time [Wang 91]. 

LOTOS [Faci 91] [Bolognesi 87] (Language of Temporal Ordering Specification) 

is developed within ISO for specifying communication protocols. LOTOS makes 

use of a combination of methods like Act One (for the description of data 

structures) and CCS with some CSP influence (for the description of process 

behaviours and interactions). LOTOS notations have been criticised for the 

difficulty in reading it. It is remarked in [Ruggles 90] that LOTOS really stands 

for 'Lots Of Terribly Obscure Symbols'. 

2.3.5 Logic-based Approaches 

Pnueli in his seminal work [Pnueli 77] suggested the use of temporal logic for the 

specification of non terminating programs. From then on several researchers have 

greatly contributed to this field. Temporal logic makes use of the modal operators 

to describe the order in which the events happen rather than the actual times at 

which they happen. The structure of state is an important concept in temporal 

logic. A formula containing temporal operators is interpreted over this structure of 

states (sequence or a tree). Lamport [Lamport 83] suggested that time can be 

modelled by introducing a clock as a global variable. Then the assertions 
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involving real time will be temporal logic formulae involving the clock variable. 

Here clock has to be incremented by the time required to execute that action at the 

end of every action. Ostroff and Wonham [Ostroff 87, 89] instead suggested the 

use of an infinite loop process (a clock process) to increment the clock variable ad 

infinitum. Ostroff proposed suitable structures to specify real-time constraints. In 

this formalism it is difficult to state some quantitative timing constraints 

[Ostroff 92]. Temporal logic has been found to be more suitable to state the global 

properties of the system like safety and liveness. Temporal logic notations tend to 

be terse, and as noted by some researchers (for example [Wing 90]) temporal logic 

specification is simply an unstructured set of predicates. 

Unity [Chandy 89] gives specifications as formulas in logic which is similar to 

temporal logic. It also provides a collection of inference rules to deduce additional 

formulas that are satisfiable by a system. Shankar and Lam [Shankar 93, Lam 90] 

make use of a combination of styles. Safety properties are specified using 

automaton, and liveness properties by temporal logic formulae. 

Allen [Allen 81] proposed a method for maintaining a network of relationships 

between temporal intervals. Seven types of relationships are defined that can hold 

between the two intervals. These relationships between the intervals has been a 

fundamental tool to think about the intervals, and has been used by a number of 

researchers. However Allen's relations face difficulties in handling the metric 

constraints. 

2.4 Requirements Languages 

A representation language is used to describe the essence of a system. Here the 

word 'language' is used in a very general sense, it includes natural languages, 
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diagrammatic notations, or artificial languages based on different representation 

formalisms. An often used formalism is data oriented like, SA-diagrams 

[Yourdon 89], ER-diagrams [Chen 76], SADT [Ross 77a, 77b] etc. These 

semi-formal languages use a combination of graphics to describe system 

requirements. Other languages are the variants of Petri-nets or state-transition 

diagrams. Some of the other approaches are influenced by the concepts of the 

programming/simulation languages like SimulalSmalltalk. It includes knowledge 

representation languages like RML [Borgida 85]. Another notable approach is the 

executable language PAISley [Zave 82]. 

A basic requirement of the language employed for the description of requirements is 

that it be suitable for the task, and must aid the communication among the various 

parties involved in the process. The requirements language is employed for 

reasoning and communication. 

2.4.1 Comments on Specification Languages 

As we pointed out in earlier chapter requirements is different from specification. 

Here we focus our attention on requirements languages rather than on the 

specification languages 11. In an excellent introductory work on specification 

languages Wing [Wing 90] points out that specification languages neglect the 

environment. Fraser et al [Fraser 94] state that the specification languages are 

inappropriate to use during the early stages of lifecyc1e. 

11 Specification languages are discussed briefly in Section 2.7 
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2.4.2 Discussion of Features for Requirements 

Languages 

It is widely recognised that well defined requirements is vital to the success of the 

project. The language employed to describe the requirements, must be suitable for 

the application. Depending on the type of the system, the tool to be employed for 

requirements description also varies. The effectiveness of the technique can be 

discussed with respect to some goal. The intended goal is the requirements model 

for real-time systems, and the technique must address all the aspects of 

requirements modelling. As we are interested in real-time systems the feature relies 

on the characteristics of real-time systems. We extend the dimensions suggested by 

Kung [Kung 83] with real-time requirements. A requirements model must support 

the following features: 

• understandability 

• expressiveness 

• processing independence 

• checkability 

• changeability 

• capability to handle quantitative timing requirements 

• causality, and 

• capability to handle timing errors 
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The first feature deals with the style of the content. User's involvement in the 

requirements development process is regarded as a crucial factor for the success of 

a system [S¢lveberg 80]. This suggests that the model must include user-oriented 

concepts, and constructs should be easily readable. However the use of a natural 

language increases the ambiguity of the expressions at the same time. 

Understandability includes unambiguity, clarity and intuitivity. Intuitivity and 

clarity includes more than the representational formalism (i.e., graphs or tables so 

on). It essentially involves the aspects of enhancing the understanding of the 

application-oriented features. 

The second feature deals with the description of the human perception of the reality. 

This refers to the concepts and constructs that are used - is this powerful enough to 

describe the features that need to be described without much effort. Model must 

include the time domain. Time perspective is required not only by the application 

domain but also improves the expressiveness [Bubenko 80]. 

The third feature refers to avoiding the premature design decisions. Designers must 

have an unrestricted choice of design alternatives. The requirements model must 

not cut into the space of the design alternatives. This implies that the model must 

be kept free of data processing considerations. 

The checkability feature concerns the validation of the model. The model must not 

contain inconsistencies. It should be possible to determine whether the model 

represents the user intended goals. 

The changeability feature deals with the nature of reality. The only truth about 

requirements is that it changes [Scharer 81]. To achieve a high degree of 
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changeability a model must be localised and loosely structured. It should be 

possible to add and remove the system components while readjusting the schema. 

The importance of the other three features has been discussed in detail in Chapter 1. 

These features in general deal with the relative merits of the modelling formalism. 

In addition we concentrate on the generic characteristics of the time mode1. This 

deals with temporal functionality issues like primitive temporal notions and 

temporal reasoning formalisms. Characterisation of a technique according to our 

chosen dimensions has two advantages (1) it provides valuable information on the 

intended goals, and (2) it provides a basis for relating our observation on the actual 

use of the technique. 

In the following sections we review the techniques. A fuller description of the 

approaches with example is further discussed in Chapter 7. 

2.5 Specific Languages 

2.5.1 Structured Analysis and Design Technique (SADT) 

The development of SADT12 was pioneered by Ross [Ross 77a, 77b]. SADT is a 

network of diagrams consisting of boxes representing activities. The arrows on the 

four sides of the box represent input, output, control and mechanism for the activity 

involved. The activities can be decomposed in a top down fashion. A natural 

language or an artificial language can be embedded into this graphical framework. 

12 SADT is a trademark of Soffech Inc. 

36 



An indexing scheme is used to state the relationship between boxes and arrows. 

SADT is often used during requirements phase. 

Although SADT has a visual formalism, the large number of primitive constructs 

(around forty) can hinder the understanding. The mechanism concept may force 

an analyst to deal with premature implementation issues. SADT has no underlying 

formalism and any language can be used with it. SADT is a manual method. 

Davis and Vick [Davis 77] characterise SADT as primarily an MIS technique. Zave 

and Yeh [Zave 81] note that SADT is grossly inadequate for real-time systems. 

2.5.2 Requirements Statement Language (RSL) 

RSL is a part of SREM [Alford 77, Alford 80, Alford 85]. RSL makes uses of a 

stimulus - response mechanism, and views requirements in terms of processing 

paths. Each processing step represents the arrival of a stimulus and the generation 

of a response. Each processing step is known as Alpha. Each Alpha can be 

replaced by a number of lower level of Alphas. The processing paths and step are 

represented in a graphical form known as R-nets. R-net is a data flow - like 

description of the processing steps to be performed. 

R-Nets are used to input all the necessary constraints like maximum and minimum 

values, allowed ranges of the data and the timing constraints. It is difficult to keep 

track of the timing requirements, as they may span several R-nets. Timing 

constraints can be represented on stimulus - response paths. This allows timing 

constraints to be associated from a stimulus to a response. RSL is limited to 

describe the requirements only along the control flow path in an R-net. 

37 



Requirements in RSL is very difficult to express even for the experienced persons 

[Scheffer 85]. Also it has very little support for abstraction. It is more appropriate 

during specification, rather than requirements [Scheffer 85]. 

2.5.3 Real Time Requirements Language (RTRL) 

RTRL [Taylor 80, Casey 82, Dasarathy 85] is based upon finite-state-machine and 

stimulus-response sequences. RTRL essentially consists of states and transitions. 

RTRL is nothing more than the textual representation to record the state-transition 

diagrams. Description in RTRL tends to be cryptic and the finite-state machine 

model shows through the syntax of the language. RTRL provides timer extensions 

to the finite-state-machine to describe temporal constraints. 

2.5.4 PAISLey 

PAISLey (Process oriented Applicative Interpretable Specification Language) is 

aimed at specification of embedded systems [Zave 82, Zave 84, Zave 86]. Both the 

environment and the system are modelled as a set of co-operating sequential 

processes. The language is based on APL, and is interpretable. The main thrust of 

PAISLey is on the output. The input to the system is modelled as an output from 

the environmental processes. The specifications can be executed. 

Zave [Zave 82] emphasises on timing constraints and is implemented in PAISLey 

as comment. (a part of BNF of PAISLey is given below) 

<timing attribute> :: =! ~ <comment> 

<comment>:: = any string of Ascn characters 
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PAISLey provides a mechanism for denoting the timing constraints, but does not 

enforce the same. A timing constraint always refers to the evaluation time of a 

particular function. When the specification is executed, the printer attached to the 

simulator prints the timing of each event. Thus it can be known, whether the 

timing requirements are satisfiable. 

With PAISLey to state what a system must do, it is required to state how the 

system should do it. Such a mechanism severely compromises the basic tenet of 

requirements engineering - the separation of concerns. 

2.5.5 Requirements Modelling Language (RML) 

RML is a sibling of the TAXIS [Mylopoulos 80J programming language. RML 

[Borgida 85, Greenspan 86] expresses the requirements in terms of objects 

organised in classes. In RML everything that is described is an object. RML 

distinguishes entity, activity, and assertion objects in order to model different kinds 

of things. An object can only be described by describing its relation to other 

objects. Similar approach was also suggested by [Bubenko 80]. 

The classes in RML can be built into generalisations or is-a hierarchies. The is-a 

relation allows sub-classes to be defined, providing a notion of inheritance. The 

idea is that general classes can be defined first and then sub-classes can be defined 

while developing the details at a later stage. Subclass hierarchies are well known 

by SimulaiSmalltalk. 

In RML temporal information can be expressed by defining interval relations 

suggested by Allen [Allen 83J. Predicates like during, before, and overlaps can all 
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be defined as classes in RML. The temporal description in this form is verbose 

[Greenspan 94]. 

Requirements are the top level objectives of a system. An object model developed 

in the requirements phase can be an actual base for construction of the system. 

Such an approach may lead to a structure that is not stable and maintainable 

[Jacobson 92]. Similar opinion is expressed by McDermid [McDermid 93]: 

'In the author's experience, the greatest problem with requirements is that 

they typically start at too a low level - indeed they are presented in 

implementation terms. A stress on object orientation may well exacerbate 

this problem'. 

2.5.6 ERAE (Entity-Relation-Attribute-Event) 

ERAE [Dubois 85, Dubois 87] is based upon ER analysis [Chen 76]. It involves 

the definition of entities and relationships between them. It is an extension of the 

E-R model. The basic component of the model are objects and associations. In 

this sense both ERAE and RML share a similar view regarding the development of 

requirements. An object can be an entity or an event. Time is introduced as a 

distinguished value type. These concepts are handled in the framework of 

multi-sorted first order temporal logic. 

In ERAE time is considered to consist of a linear sequence of states, with a set of 

events labelling the transitions between states. Each state is associated with a time 

value which increases along the sequence. A set of temporal operators [Dubois 87] 

is employed to refer to the past or future. 
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It may be difficult to translate customer's requirements in to the fIrst-order temporal 

logic. Also customers cannot read and comment on the description. 

2.5.7 FOREST 

FOREST [Finkelstein 87, Goldsack 91] project makes use of SCS (Structured 

Common Sense) and MAL (Modal Action Logic). SCS is based upon the known 

methods like JSD [Jackson 83], CORE [Mullery 79] and ER [Chen 76]. SCS 

provides the method to write the specifIcations. SpecifIcations are written in MAL. 

MAL is based upon a many-sorted first order logic. The logic includes the 

definition of variables, predicates, constant symbols, logical symbols, function 

symbols and a number of axioms and inference rules. The logic is extended with 

two sorts, actions and agents and a branching line temporal interval logic. Interval 

logic is used to describe time related objects. Agents identify the entities in a 

system, as is the case in CORE with viewpoints. Action describes the processes 

that the agents can carry out. Steps between SCS and MAL are not very clear. 

Also, it is difficult to express quantitative temporal requirements using intervals. 

2.6 Discussion 

A widely recognised problem with requirements is as follows. Firstly the 

complexity of the systems renders the description of the functionalities and 

constraints very difficult, and secondly a complete and correct set of requirements 

is seldom known in advance. These problems are increased with real-time systems 

because they are time critical and reactive. Reactive systems differ from the 

traditional information systems in being environmentally driven [Harel 85]. A 

sufficient condition for reactivity is the input enabling property proposed in 

[Lynch 88]. This admits the causal nature of physical processes. It requires that 
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locally controlled actions be produced only as a result of an earlier trigger. Thus 

causal relationships are necessary to capture the environmental oriented activities. 

Although PAISLey is designed for embedded systems, it fails in many respects. 

Time is added as an afterthought and the notion of causality is non-existent. 

Coombes and McDermid [Coombes 93] describe temporal logic as conceptually 

unsuited to the specification of distributed systems. They conclude that temporal 

logic can be used to represent certain issues, but at the expense of clarity. Similarly 

Bowen et al [Bowen 95] remark that trying to specify a concurrent system in a 

model-based specification language, such as Z or VDM, is like using a hammer to 

insert a screw. The languages based on notations adopted from mathematical logic 

are inappropriate for communicating with the end user during the requirements 

elicitation and confirmation stages [Fraser 94]. Fraser et at [Fraser 94] discuss at 

length the problems associated with such representational notations and state: 

Preliminary empirical evidence from cognitive science suggests that in the 

stages of problem solving, when the problem area is relatively ill structured, 

the use of formal representations inhibits the exploration of alternatives and 

is detrimental to the quality of the outcome. Thus··· formal specification 

languages may not be an ideal tool for exploring and discovering the 

problem structure during the problem refinement process. 

Some of the approaches [for example Kung 89, Fraser 91] have tried to redress this 

situation. These approaches have tried to bridge the gap of providing user 

understandability while providing the rigour of languages based on mathematical 

logic. Fraser et al [Fraser 91] propose the use of data flow diagram and decision 

tables to develop a complete set of requirements. While [Kung 89] proposes an ER 
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like language to be used with traditional DFD technique. These approaches are 

commendable but they are not suitable for real-time systems. Though DFD 

provides intuitivity and understandability it fails to provide the processing 

independence, and the temporal informations are an afterthought and ad hoc. This 

study makes us to understand the deficiency of a language which 

* 

* 

* 

* 

* 

* 

provides a common reference frame for communication among developers 

and customers; 

provides a model offering insight into the application domain; 

provides processing independence; 

deals with the features of real-time systems; 

allows the expression of stringent timing constraints for time critical 

activities; 

deals with tasks of different nature, to integrate real-time and non real-time 

activities. 

2.7 Quest for a Requirements Language 

Most researchers in requirements engineering (for example Greenspan 94, 

larke 94) believe that research on requirements language will remain central to 

further development in the field. I believe this faith is rooted in two propositions: 
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1. Languages are the primary notational vehicle of our field. As concepts 

are explored, and become woven into the fabric of the field, they 

invariably find expression in languages. 

2. There is an implicit hypothesis that the nature of the language shapes 

the ways in which we think about the problems. Although it is 

difficult to substantiate this directly, it is believed that the person 

equipped with a language suitable for the purpose is better equipped to 

deal with complex problems. 

A requirements language has at least three goals: 

1. It is an analysis tool. 

2. It is a vehicle for human communication. 

3. It is a vehicle towards automation. 

A fuller description of these goals with examples is provided in Chapter 7, here we 

provide an outlook of these goals. 

2.7.1 Analysis Tool 

The requirements engineer faced with a task, has to choose a model that will 

accomplish the task. The model must be amenable to inevitable modifications, as 

the requirements do change. The initial stages of this process are generally best 

conducted at an abstract level. 
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The perspective of requirements engineer, specifier, and designer is different. Each 

perspective is different, in that it is dealing with a different set of constraints 

relevant to that perspective. For example: 

• Requirements Engineer: Deals with utility or usability constraints in the 

conceptual view of the end product. It provides a conceptual model of the 

system. 

• Specifier: Deals with the logical view of the product, and considers the 

operational constraints. It provides an empirical model of the system. 

• Designer: Deals with the physical view of the product, and considers the 

design (constructional) constraints. It provides a solution model of the 

system. 

The basic focus is the identification and recording of the requirements essential to 

the system. The figure 2.1 describes the factors that influence analysis. The basis 

for analysis is the belief that the document can be improved. 

Analysis 

Localisation 

I Temporal 
Reasomng 

Figure 2.1 Characteristics of analysis tool 
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Abstraction: The concept of abstraction is to extract the essential properties while 

omitting the inessential details. The use of abstraction permits one to work with 

concepts and terms that are familiar in the problem environment without the need to 

transform them into unfamiliar structure. The concept of abstraction is perhaps 

among the oldest in computing (see Parnas 72). However the concept of 

abstraction at the requirements level is still a matter of controversy 13. 

Localisation: Localisation builds on the notion of abstraction. Localisation is the 

idea of grouping the requirements. The requirements can be grouped depending on 

the environment, and the proposed system. The localised requirements provide a 

framework to understand the needs of the system better. This improves the 

reviewability of the document. There is no argument that the document be more 

reviewable as it could be improved to cater to the needs, while discovering the 

mistakes. 

Uniformity: The concept of uniformity is applied to notational matters. The 

notation must provide a uniform way of describing all types of requirements. For 

example, with the notation the functional requirements, and the temporal 

requirements must be describable at the same level. The concept of uniformity 

provides a notation free of confusing terminologies. 

Temporal Reasoning: This is an important concept that concerns real-time systems 

in particular. The notation must provide a uniform way of defining all types of 

temporal requirements that may arise in a system. The description of timing 

13 Davis [Davis 90] provides a detailed discussion of what versus how controversy. 
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constraints must also obey the concept of abstraction. The temporal requirements 

must emphasise the needs, not the way of implementing temporal requirements. 

A language facilitates analysis by allowing the persons to use simple 

representations. If the representation of the requirements is closer to the problem 

space, then its applicability can be clarified through interaction with the users. 

Usually we understand a system by its expected features. Similarly the 

requirements document is validated with respect to user needs. Essentially the 

requirements must reflect the needs of the user. The users are concerned with the 

way they use the system. The requirements language must emphasise the way the 

users interact with the system. It is necessary that the model be expressed in a non­

computing presentation mode. The representational factors influence human 

communication, and is discussed below. 

2.7.2 Human Communication 

A requirements language serves as a communication medium in two contexts: 

1. After a requirements document is created, it is required to be used by a 

number of persons like specifiers, acceptance testers and users. 

2. In large multiperson projects conveying the expression of thought, or 

concepts is important. 

In both contexts one's ability to read and understand a fragment (of requirements) 

is more important than the ability to write the same fragment. A language's direct 

inclusion of central concepts that are characteristic of those class of systems is a 

major factor in making the concepts comprehensible. Also the document is to be 
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used by various persons, and the computing concepts must be made invisible and 

unobtrusive as possible. The underlying concepts of computing system should be 

hidden from the user to the greatest extent possible. The way in which the 

requirements are integrated into the environment is significant in conveying the 

concepts. The requirements should be easily adaptable to conform to the changing 

user requirements. Most real-time systems are complex. Thus the language 

reflecting the features of real-time systems embedded with readable constructs 

increases the effective communication among persons involved in the project. 

Human 
Communication 

Understandability 

Modifiability 

Figure 2.2 Characteristics of human communication 

Conciseness 

Structuredness 

Readability 

Writeability 

Extendability 

As implied in Figure 2.2, we are of the opinion that human communication 

improves with understandability, and modifiability. In the realm of requirements 

development, objectives are stated in terms of desired properties of the resultant 

document. 

The influence of understandability depends upon the intended audience: users, 

management, or technical. Understandability involves the entire conceptual model. 
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Real-time systems are inherently complex. The notation must provide a structure to 

ease this complexity. Understandability involves many factors such as self­

descriptiveness, conciseness, structuredness, and readability. These factors also 

improve the analysis. It is obvious that an understandable description can be 

analysed easily. The notion of self-descriptiveness implies a clear statement of 

requirements. Self-descriptiveness helps to ascertain the correspondence between 

the requirements document, and user needs. With conciseness the problems 

become intellectually manageable by highlighting the important features. 

Conciseness makes the description of the goal easier. The notion of structuredness 

denotes the ability to organise the requirements as a number of small units. 

Structuredness makes it easier to describe large systems. The notion of readability 

combined with structuredness, and conciseness makes the description of the 

requirements lucid. It is important that the stakeholders must be able to read the 

document before they can agree to it. Also the requirements development team 

consists of a number of persons, and readability helps in conveying the concepts. 

Modifiability requires the ability to have an adaptable and evolutionary structure. 

The factors such as structuredness, conciseness also affect modifiability. The two 

other factors that interest us here are extendability, and writeability. Extendability 

implies controlled change, in which some parts of the document are altered while 

retaining some of the aspects. Extendibility is important as requirements change for 

different reasons. Writeability is a much less rigorous factor compared to other 

factors discussed above. Write ability imposes that the notation employed to 

document the requirements must be easily expressible. Writeability depends much 

upon the syntactic aspects of the notation. Write ability describes how easy it is to 

document the requirements in the chosen notation. 
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2.7.3 Vehicle towards Automation 

Requirements document has different roles within the software life cycle. It serves 

as an input to the specification, and acts as a checkpoint in the design phase. 

Acceptance testing ascertains the correspondence between the deliverable system 

and the requirements document. Unfortunately, the requirements are never perfect, 

and requirements engineers are forced to reconceive their description of the system. 

Modifications and enhancement to a system requirement are common. To a certain 

extent the language must help in propagating the changes. Also with the notation 

employed the errors like syntax errors, or timing range violations must be easily 

checkable. 

2.8 Related Issues 

A number of issues concern the initial phase of a development of a system. In this 

section we briefly visit those issues. 

2.S.1 Requirements Engineering 

Prototyping has been suggested by many researchers to come to grips with 

problems associated during early stages [for example, Balzer 82]. Prototyping is 

successfully used in other disciplines like automobile industry. This is a very 

successful approach for massively produced systems. Prototyping is a solution 

oriented activity. It may become difficult to isolate customer requirements and 

implementor's responsibilities. Despite these difficulties, Luqi et al [Luqi 1988] 

have developed a prototyping tool that helps with the construction of prototypes. 

50 



Knowledge-based tools like KATE [Fickas 87], Requirements-Apprentice 

[Reubenstein 91], Analyst Assist [Adhame 89], have been suggested to help the 

analyst. KATE makes use of the domain knowledge to identify potentially missing 

components in requirements. Requirements-Apprentice uses 'frame' as the 

underlying concept, and can also use the domain knowledge in the same way as 

KATE. Analyst Assist, makes use of conceptual graphs, as the underlying 

mechanism, and involves - method knowledge, and domain knowledge. The 

motivation for the tool TARA (Tool Assisted Requirements Analysis) 

[Finkelstein 88] was based on the concepts of validation through animation, and 

reuse. The concepts were investigated in the context of CORE [Mullery 79]. 

Finkelstein concluded that reusability can be added, although not in a clean way. 

Requirements modelling involves a number of persons. This involvement with a 

number of people may lead to conflicts in requirement. In recent years, many 

researchers have felt the need to address this issue. Nuseibeh and Finkelstein 

[Nuseibeh 94] propose the notion of a Viewpoint model, where one person can 

have several viewpoints, and also one viewpoint can represent several people. The 

tools are provided to support the environment. While Feather [Feather 89] uses a 

basic specification as a source which can then depart along different lines 

depending on the concern. These different parallel specifications are later merged. 

Another question that appears in this context is how to manage the conflicts. 

Anderson and Fickas [Anderson 89] suggested to look for the help of experts in the 

field to manage the conflicts. While Easterbrook [Easterbrook 93] proposed a tool 

(Synoptic) which allowed the participants to compare their viewpoints. 

Another important aspect in requirements engineering is traceability. Ramesh and 

Dhar [Ramesh 92] propose a model to support this aspect. [Ramesh 93] also 
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discusses the importance to assign accountability to identifiable team members. 

This helps to detennine the criticality of the requirements. 

The social issues that surround the requirements modelling was identified by 

[DeMarco 78, Checkland 81]. The problem articulation produces a picture of the 

stakeholders involved, and the goals people have [Checkland 81]. This places a 

solution in the socio-technical context. Recently ethnography a social process has 

been suggested to investigate the requirements [Gougen 93, Sommerville 93]. 

[Dobson 93] discuss the issues of safety in a system with human components. 

They argue that safety be modelled as a part of a process in the human activity 

system. The philosophical issues concerning the articulation of problems is 

discussed in [Hirschheim 89]. 

2.8.2 Specification Languages 

SDL (Specification Description Language14) [CCITT 88] is a very popular 

language among communication engineers. An extension of SDL, (an object 

version of SDL - OOSDL) is its underway. LOTOS (Language of Temporal Order 

Specification) [Bolognesi 87] has been proposed by ISO for protocol specification. 

The present LOTOS (ISO accepted) however does not provide the facilities to 

represent quantitative timing constraints15• State based specification languages like 

Z [Spivey 89], and VDM [Jones 90] have been popular in the literature. 

Mahony et al [Mahony 92] discuss an approach to specify timing information with 

14 Also see [Rockstrom 83], and the whole issue ofCOM-30. 

15 Research efforts have been reported suggesting the ways to specify quantitative timing 

constraints in LOTOS. 
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Z. Ledru [Ledru 93] discusses a method to specify temporal information with 

VDM. Schobbens [Schobbens 93] propose a decomposition method for algebraic 

specification. Schobbens decompose the specifications into defaults (those that 

follow the rules), and exceptions. Dardenne et al [Dardenne 93] discuss a general 

approach to requirements acquisition in the context of KAOS (Knowledge 

Acquisition in autOmated Specification) an AI project. A set of rules is provided 

for transforming KAOS objects and actions into Z data and operation schemas. 

Kurki-Suonio [Kurki-Suonio 92, 93] discuss DisCo language. They discuss 

stepwise design with DisCo specification. Ghezzi et al [Ghezzi 91] discuss TRIO 

a temporal logic language. The specification language ASTRAL (a derivative of 

RT-ASLAN [Auemheimer 86]) can be translated into TRIO. Ciapessoni et al 

[Ciapessoni 93] discuss a revised version of TRIO to allow the reasoning on metric 

time. This extension is similar to the extension of temporal logic - metric temporal 

logic (MTL) discussed by Koymans [Koymans 90]. Specification language based 

on Petri-nets is also suggested [Ghezzi 91]. Fickas et al [Fickas 92] combine 

Petri-nets and temporal logic for the design description. 

While Shaw [Shaw 92] discusses the use of CRSM (Communicating Real-Time 

State Machines) in the specification of real-time systems. Raju et al [Raju 94] 

discuss a prototyping environment for CRSM with the programming language 

C++. The other specification formalisms are based on Statecharts [Harel 87]. 

Timed Statecharts is proposed in [Kesten 91]. Gabrielian [Gabriel ian 91] propose 

a method based on Petri nets, Statecharts, and temporal logic called HMS 

(Hierarchical State Machines). ENCOMPASS environment supports incremental 

construction of Ada programs [Terwilliger 87]. In ENCOMPASS, software is 

specified using PLEASE, an Ada based executable specification language. 
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2.9 Summary 

As noted by Pohl [Pohl 94] the three phases of requirements engineering are 

representation, agreement, and specification. It is evident from the current literature 

that the majority of the work done is to support the specification, and incremental 

design. This is not necessarily surprising as the research work in specification, and 

design has matured (the upstream activities, as suggested in Chapter 1). While 

there is very little work done in bridging the gap between requirements, and 

specifications. This gap is also noticed by Jarke et at [Jarke 94], they state 'we do 

see a need for a formal requirements language that manages the relationships 

between meta-level domain scheme, actual specification, and instance scenarios of 

this specification'. Here we perceived such a gap, and in further chapters we 

discuss our approach to bridge this gap. 
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Chapter 3 

Real World Model of ReaI-Time Systems 

We attempt to understand the needs of the users 

better by modelling the real world as close to the 

user's perspective as possible. This model is 

assumed to be developed by users, and requirements 

engineers during the requirements acquisition 

process. Here we introduce an approach for 

thinking and reasoning about a perceived application 

domain. Our approach is non-data processing 

friendly more than the traditional approaches. 

55 



3.1 Introduction 

Ramamoorthy and So [Ramamoorthy 78] state 'system requirements, needs, and 

objectives are generally vague and ambiguous, chiefly because they are at the top 

level and arise directly from the application area problems'. Since this statement, 

much work has been done in the field. We studied in the earlier chapter some of 

the suggested approaches and noted that real-time systems need some special 

attention. As Brooks [Brooks 87] noted 'the difficulty is not in saying but to know 

what to say'. For such a reason we need an abstract representation of the system to 

determine its requirements. A model of a system provides such a representation. 

In the following sections we discuss the modelling approach. 

3.2 Modelling the Real-Time System 

Stankovic [Stankovic 88b], and Ward and Mellor [Ward 85] characterise real-time 

systems by the existence of non-trivial interfaces between computers and their 

environment. The environment includes various technical components (devices) 

and people interacting with the controller (computer). In general a real-time system 

is an arrangement of physical components connected or related in such a way as to 

command, direct, or regulate itself or another system. With real-time systems 

everything that happens alters the environment in some manner. The system 

dynamics is understood by measuring the changes in the operating environment. 

The changes occurring in the environment is monitored by the sensors. Sensors 

provide the information on environment variables like temperature, pressure, 

velocity, position, level, and flow. The controller processes this information and 

determines the desired control actions. These actions are sent to actuators. An 

operator often supervises the system functions. The operator has a greater control 
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on the system. As in flight operation, the operator can replace the control system 

and run the operation manually. A system can be described from external user's 

point of view as shown in Figure 3.1. Each of the components shown in Figure 

3.1 have some kind of associated behaviour. A system can be thought of as a 

parallel composition16 (II) of these components. Thus a real-time system can be 

modelled as controller II sensor II actuator II operator. 

Environment _____ 1 

Figure 3.1 Abstract model of a real-time system 

A model of a system is a simplified representation of a system (postulated or real) 

[Stavely 83]. A system can be modelled from the views of an observer. As Zeigler 

[Zeigler 76] notes: 

16 Formalisation of the operator (II) is provided in Chapter 4. 
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The real system refers to nothing more or less than a source of observable 

information. The system may be a natural one, such as biological or 

ecological system, an artificial one, such as a computer operating system, or 

a mixed one involving both natural and artificial elements such as 

transportation, urban or world systems. The important characteristic is the 

identification of a segment of reality and the distinguishing of it from the 

rest, permitting measurements and other observations to be made on it. 

Similar observation is also made by Hoare [Hoare 90], a model of a computational 

paradigm is a set of direct or indirect observations that can be made of a 

computational process. The observer view of the system is a very high level and 

domain-specific view of the system. Requirements describe only externally visible 

behaviour of a computer system [Heitmeyer 83]. It is easier and natural to 

modularise the requirements by means of features perceived by the user. Such a 

mod~l of the system is called as a conceptual model. 

A conceptual model provides a user understanding of the system behaviour. A 

conceptual model is not an actual construction model, it only provides a synoptic 

view of what is going on in the system. The phrase conceptual model was 

popularised in 1970's, and was used as a synonym for data modelling. It was 

often used in discussion with the design of database (see for e.g. Brodie et al. 84). 

In the literature, conceptual model is used at various levels. As Bennett 

[Bennett 91] comments there are different conceptual models dependent upon the 

observer: the designer's model, the user's model, and the assessor's model. 

Similarly Deutsch [Deutsch 88] proposes three different models (viewpoints) that 

are related to the major parties involved in system development: the customer, the 

user, and the implementor. 
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In the literature conceptual model is also referred as user model. Reviewing the 

obligation of a conceptual model, we can notice two different perspectives of a 

conceptual model, viz. the use perspective and the user perspective. Conceptual 

model discussed here emphasises on the use, rather than on the 'user'. Use 

perspective emphasises on the use of the model like: 

* to provide a conceptual framework for precise thinking; 

* to provide a framework to initiate communication among people; 

* to check that the model reflects the intentions of stakeholders; 

* to provide a framework for the stakeholders, on which they can test the 

end product. 

While the user perspective emphasises the roles of different persons involved in the 

project. A number of persons are involved in a project, and their requirements of a 

product can vary, like the requirements of 

* end users, 

* specifiers, 

* designers, 

* quality engineers, 

* maintenance engineers, and 

* project managers. 
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The user perspective identifies that differences exist in the view of the system 

depending on the role of the person. This perspective models the views and their 

relationship [Finkelstein 92]. 

Our view of conceptual model refers to a highly abstract level of system 

description, and emphasises the use perspective. At a conceptual level the 

characteristics of the system are important. It provides an integral aspect of the 

system's definition. Conceptual modelling is closer to the human conceptualisation 

of the problem domain [Gorski 89]. Description at this level is aimed to enhance 

the communication between persons involved in the project including the 

customers. For the purpose of determining the requirements the conceptual models 

are abstracted at the highest level. In conceptual modelling the conceptual process 

is essential. Then what is the conceptual modelling process? 

3.2.1 Conceptual Modelling Process 

The conceptual modelling process deals with understanding the purpose of the 

system. As Ross [Ross 85] expresses 'at first, you don't actually know what the 

problem is. You have to get into the details to find out how it shapes up'. To get 

into the details, we need an orderly procedure. An orderly procedure (method) 

helps to determine the requirements, i.e., to build the conceptual model of the 

system. A model represents understanding of the system without having to deal 

with every detail of it. The modelling process detailed in Figure 3.2 provides a 

systematised way of reflecting the inherent structure of the model. In Figure 3.2, 

the left column represents the activities in the application world, and the right 

column represents the activities of the modelling process. The figure provides a 

description of the interrelated phases that occur during modelling. A layered 
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approach is suggested for the development of a conceptual model. The first layer 

emphasises understanding the application domain, in the second layer we identify 

the various components that make up the application, in the third layer we develop 

an engineering understanding of the various components that enter the system, in 

the fourth layer we develop the specific use of the system, and in the last layer we 

revisit the model by developing the safety critical aspects of the system. 

Needs and objectives 

Composition of the model 

Use of scenari~s to 
confirm the mcpdel 

I 

I 
I 

+ 

.....1 Characterize the model 

'------:-~ -----I ~ 

,,--D_e_te_nnI_·n_e_th_e_c_o_n_str_al_·n_ts---ll... .. =1 ===Q=U=al=if=Y:th=e=m=od=e=I===== 

Define the service 

, 
Conceptual model of the requirements 

Figure 3.2 Different phases of conceptual model 

In Chapter 1, we discussed the importance of modelling the environment. The 

important characteristics of the real-time systems concerns the environment. In 

Section 3.4, we discuss the concepts of identifying the components that take part in 

J 
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a system. This details out what we mean by components, and what is its use to the 

definition of the system. In Section 3.5 we detail out how a component interacts 

with another. Section 3.6 discusses an approach to define the use of a system. A 

definition of a system is provided by defining its use. Section 3.7 discusses the 

constraints that introduce the restrictions to the behaviour of the system. The use of 

the system is refined with the constraints identified. A requirements model is not 

constructed by the requirements engineer alone, the model building activity is a 

shared task involving stakeholders. In Section 3.8 we discuss the validation of the 

model involving stakeholders. Section 3.9 discusses the significance of the 

approach, and summarises the approach. 

We consider an example to motivate our discussion. 

3.3 A Railroad Crossing Example 

Consider the rail road crossing system shown in Figure 3.3. This problem was 

introduced by Leveson [Leveson 85]. This system involves operating a gate at a 

railroad crossing. The requirement is whenever a train is in the crossing, the 

crossing gate must be down. We make use of this example for discussing the 

various concepts. 
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Controller 

~ 

Figure 3.3 Railroad crossing system 

3.4 Real World Model 

Software systems are typically large and complex, and reasoning about uch 

systems is a difficult task. An approach that has been suggested by many people to 

deal with this complexity, i to build a model that focuses only on those properties 

that are of interest, while ignoring the mas es of irrelevant detail. This abstraction 

focuses on the identification of what an application doe. An application takes 

place in the real world, and this call for modelling the real world. 

Determination of requirements is ba ed on understanding the problem environment 

[Davis 82a]. Understanding the problem environment becomes es ential to 

perceive what is important, and what is needed. The need for understanding the 

environment for the effective development of a y tern ha been widely recognised 

[Jackson 83, Zave 83]. The requirements of a sy tern is always in its relation hip 

with the environment. Environment influences the requirement in three key 
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dimensions: perception of needs, problem definition, and system safety. As Turski 

[Turski 86] notes the properties of the environment are difficult to describe and the 

resulting descriptions are quite complex. For such a reason a systematic 

description helps to perceive the intrinsic nature of the problem domain. An 

environment based system description provides a conceptual structure of the system 

at a very high level. The word structure refers to a partial description of the system 

showing it as a collection of parts and showing relations between the parts 

[Parnas 74]. This structure establishes a portfolio of responsibilities that will 

provide a complete coverage of the needs. To create such a conceptual structure we 

need to introduce some concepts. 

I am of the opinion that for the reason of simplicity and comprehensibility (which is 

vital in the initial phases) only few basic concepts have to be introduced. In other 

approaches, often a large number of artefacts (for example, see Alford 85) are 

used. Our approach does not promote countless artefacts, and several steps. We 

present concepts that are suitable for understanding the system, and describe an 

approach to use these concepts. For consideration about the conceptual model two 

basic concepts are sufficient, namely agent and role. The concept of agent is 

well known [Feather 87, Finkelstein 87]. The notion of viewpoints introduced in 

CORE [Mullery 79] characterised as something that does things, is similar to an 

agent. As in [Feather 87, Finkelstein 87] we name agents those that contribute to 

the behaviour exhibited by the controller and its environment. In fact I define an 

agent as an artificial device that serves a representational function. In this sense an 

agent still refers largely to 'components', we mentioned in the earlier Sections. 

Ro 1 e relates to a specific set of characteristics to be exhibited by an agent. 
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3.4.1 Concept of an Agent 

A model of a system is identified in tenns of the devices (parts), and its properties. 

Devices have specific capabilities. The capabilities are tailored depending on the 

customer needs. We name these devices as agents. An agent is an abstraction of a 

problem domain which models the characteristics of an entity. An agent is 

described by its external operations and usage restrictions. Agents are identified 

during problem analysis. These are characterised by what they do rather than what 

they are. Agent characterises the resources and the operations assigned to it. 

Agents can be either concrete or abstract. A concrete agent may have a 

representation in a system like a switch, a printer and so on. An abstract agent may 

have no direct representation in a system, instead it models a behaviour which is a 

set of operations that it can be requested to carry out. An agent has a particular 

responsibility to the system. 

3.4.2 Concept of Role 

Role describes an agent that has been selected for modelling. In essence, it is the 

role, that clarifies the intended purpose of an agent in the context of the problem 

domain. The description of the role of an agent forms a part of the requirements 

document. The role of an agent is provided by the customers. Role is a way of 

categorising agents on the basis of what 'it' does. For example in an organisation 

we can identify two agents 'programmer' and 'manager'. Any agent can play the 

role of a programmer or a manager. The difference between the two agents is 

attributed to the roles they play, rather than to the agents. Thus the agents are 

characterised by the roles they play. Each role has a specific goal associated with 

it. The two questions that arise in this context are: 
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• Does the role of an agent consistent with the objectives of the 

system?, and 

• What steps are necessary for an agent to achieve a goal? 

Here we are making a subtle distinction between objective and goal. An objective 

refers to the overall system expectations. While a goal refers to the expectations of 

an agent in a role ascribed. For example, the objective of a nuclear reactor is to 

produce electricity, while the goal of a 'plant protection subsystem' is to shut off 

the system in abnormal situation. 

3.4.3 Agent Identification 

In the literature many approaches have been suggested that merits discussion. 

Abbott [Abbott 83] suggests, writing an English description of the problem (or a 

part of the problem) and then underlining the nouns and verbs. Nouns represent 

the 'candidates' and the verbs represent operations on them. Similar idea was also 

suggested by Booch [Booch 83]. Ward and Mellor [Ward 86] suggest that 

'candidates' may be derived from external entities, data stores, control stores, and 

control transformations. Coad and Y ourdon [Coad 90] suggest another source of 

information like, structure, locations, organisational units, events remembered, the 

different roles of users, devices, and other systems. 

In our case, the identification of agents is highly domain-specific. The agents are 

identified on the grounds of their utility rather than their approximation of the 

system behaviour. 
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For example as suggested by Booch [Booch 83], or Abbott [Abbott 83] we cannot 

rely on the descriptions provided by the customers. In the rail-road crossing 

example, a description may run like this, 'the cars, and vans move on the road'. 

This description may influence one to consider a van or a car as a 'candidate'. 

Similarly, it is too early to get trapped into the realm of DFDs. It is necessary to 

step back from the description of the system provided by the customer, and to think 

on the objectives of the proposed system. 

The identification of the agents begins from recognising the objective of the system. 

At this stage we are concerned with the objective of the system, and not the 

implementation issues like functional decomposition. The objective is firmly 

grounded in the environment. 

We need to know: 

(1) What is the environment? 

(2) In a real-time system, the environment acts as a source and a recipient. 

All the environment oriented activities are either the monitored activities, 

or the controlled activities. This raises an interesting question, what to 

monitor, and what to control. 

(3) This analysis makes us to understand, what the system is intended for? 

(4) What a system should do?, and 

(5) What a system should not do? 

Considering the example again, we have: 
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(1) The environment comprises of trains moving on the rail track, the cars and 

other vehicles moving on the road, and a gate in the crossing region to control 

the traffic. The gate stops the cars, and vans crossing the rail track. 

(2) Monitor the train entering and exiting the region of interest. 

(3) Control the operation of the gate. 

(4) The system is intended to allow for the smooth flow of traffic in both the 

directions, on the road, and on the rail track. 

(5) The system must close the gate while a train is in the crossing region. 

(6) The system must not open the gate, while a train is in the crossing region. 

(7) The system must not keep the gate closed unnecessarily (i.e., when a train is 

not in the crossing region) 

Thus in this example, we need a sensor to detect the arrival and exit of a train, a 

gate to stop the traffic on the road, and a controller to manage the system. 

We name the three agents as 'Train Monitor', 'Gate', and 'Controller'. The role of 

the 'Train Monitor' is (a) to monitor the arrival of a train, and (b) to monitor the exit 

of a train from the crossing region. The role of Controller is to co-ordinate the 

'Gate'. The role of a Gate is (a) to make the gate to go 'Up', or (b) to make the 

gate to go 'Down'. The vehicles that pass across the road, have no roles to play, 

i.e., no role can be assigned to the vehicles which pass across the road. Thus the 

agents of the system are as shown in Figure 3.4. 
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Controller 

~ 

Train Monitor Gate 

"""""'0 
Figure 3.4 Agents of railroad crossing system 

3.5 System as a Web of Agents 

A system cannot be modelled as a single agent that does everything. The focus 

here is to express the requirements of a system as a set of agents which interact 

with each other. Relationship pertains between agents. Agents communicate with 

other agents in a system in order to achieve its responsibilities. The two questions 

that interests are: 

• how the relationship evolves over time?, and 

• how an agent interacts with another agent? 

We model a system as an organisation of agents. Agents interact through shared 

information. We do not model the interaction of agents through requests 

transmitted by other agents. This approach is different from many object-oriented 

approaches like [Wirfs-Brock 90, Co ad 90, Shaler 88] where services are 

requested through messages. The models that use such features become more 
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solution-oriented, as the message that needs to be modelled is always a feature, that 

is outside the realm of conceptual model [ISO 87]. 

An agent keeps track of its user's focus of attention. Agent identification step 

involves two units of knowledge concerning the system: the purpose, and the 

function. An examination of these two units recognises the issues like: 

• what is the role of an agent? 

• what activities to be performed? 

• what causes these activities? 

• how these activities influence other activities? 

These questions reflect the pragmatic issues like what are the things we are talking 

about, and how do we provide explanations of these activities. To deal with such 

pragmatic issues we need a general approach, which bounds the problem space and 

aids in the efficient search of requirements. Such an approach is discussed below. 

3.6 Building the Real-World Model 

Brooks [Brooks 87] feels that: 'the most important function that the software 

builder performs for the client is the iterative extraction and refinement of the 

product requirements'. Simply asking users to state the requirements is not 

sufficient. Davis [Davis 82b] identifies four broad strategies for determining the 

requirements as: asking; deriving from an existing system; synthesis from 

characteristics of the current system; and, discovering from experimentation with an 

evolving system. In practice, all these approaches are used. A true understanding 
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of the system can emerge from understanding the needs of the individuals. Thus an 

approach used must have the following features. 

Simplicity. It must enable an efficient interaction with the stakeholders. It must 

attempt to involve the stakeholders. 

Informative. The approach used must encourage the user to reason on the 

requirements like, what slhe wants to do, why slhe wants to do, and when slhe 

wants to do. 

Flexibility. An objective is to provide a tool of thought for the user to navigate 

with the problems. The user must be able to experiment with what-if situations. 

Dealing with such situations must be easy and straightforward. 

Familiarity with the user's world. The vocabulary of the requirements 

document should be that of the application environment, not of the software 

engineer. The facts about the environment should follow the working rules of the 

user, and not the logic of the system. The information should be presented in the 

way the user handles it and not the way which is convenient to the software 

engineer. 

A real-time system evolves by reacting to the requests it receives from the 

environment. A system description through the observable effects on the domain -

as what happens to the environment makes the objectives clearer. Here we propose 

a scenario based approach to elicit the requirements. 
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3.6.1 Modular Scenario Based Approach (MSBA) 

A scenario is a sequence of situations a user would experience when operating the 

proposed system. A scenario is a frame for the description of a particular sub­

problem, which needs to be tackled by the system. Hooper et al. [Hooper 82] 

suggest that scenarios have the advantages of rapid prototyping without the 

overhead of actually building implemented prototypes. Scenarios provide natural 

ways of describing, how things behave in a system. Scenario based approach 

increases the communication between users and analysts. 

A real-time system has an ongoing relationship with the environment. In a real­

time system we can identify several patterns of reaction of behaviour. System 

evolution can be characterised by identifying several patterns of reaction as time 

progresses. These patterns are best understood by examining the change that 

occurs in the environment. A pattern of reaction can be referred as a scenario. 

Our approach (MSBA) is different from the approach suggested by [Holbrook 90, 

Jacobson 92, Carroll 92, Hsia 94,]. [Holbrook 90] suggests to create a task 

hierarchy, and then to create the scenarios. [Jacobson 92] suggests the descriptions 

of use-cases from users to identify requirements. [Carroll 92] suggests a scenario 

based approach in understanding the activities directed at design. While in 

[Hsia 94] scenarios are generated for the system from the point of view of different 

users. In general task decomposition may lead to a rigid structure of the system 

[Heitmeyer 83]. Also decomposing goals in a top-down way is possible only for 

toy problems17. Generating the scenarios for the whole system is a very difficult 

17 Ross [Ross 85] complains that there is a magic in such an approach. 
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task. The number of scenarios in any system grows out of hand, making it 

tedious, and difficult to analyse. Our approach views the system as a network of 

agents. Here the scenarios fall into groups. These groups are natural for the users 

to analyse and comment. A set of scenarios define the requirements for an agent. 

It is possible to capture the responsibility of an agent with a reasonable number of 

scenarios. 

An agent has a responsibility to the system. This responsibility sheds light on the 

expectations of an agent. This expectation symbolises a particular 'use' of the 

agent as conceived by the user. This 'use' provides a scenario. The concept of 

scenario generation is explained further in Section 3.6.3. Now consider an 

example. 

For example consider the 'Train Monitor' discussed in the Section 3.3. The role of 

the 'train monitor' is to monitor the train in the crossing region. Monitoring 

involves, monitoring the arrival of a train (a train approaching the crossing region), 

and monitoring the exit of a train from the crossing region. This provides two 

scenarios: 

(1) if a train is approaching the crossing region, then report 'train is entering'. 

(2) if train has left the crossing region, then report 'exit'. 
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Scenario 1 

Train Monitor 

'observe the train is entering 
the crossing region' 

'report that the train is 
entering the crossing region' 

Figure 3.5 Elaborating the role of train monitor 

3.6.2 Philosophy of MSBA 

Scenario 2 

Train Monitor 

'observe the train is exiting 
the crossing region' 

'report that the train is 
exiting the crossing region' 

The approach - MSBA conveys a sense of the purpose of an agent by elaborating 

its role. This approach emphasises the utility point of view as conceived by a user. 

An agent has a perceived utility to the system. Such a responsibility driven 

approach is also suggested by [Hsia 88]. In general the stakeholder's interest is in 

what gets done, not how it gets done. This suggests that we consider important 

non-data issues such as context and role. The primary focus of conceptual model is 

concepts. The approach does not depend on a model of data. This view is in line 

with the conceptualisation principle advocated by the ISO document [ISO 87]. The 

conceptualisation principle states: 

A conceptual schema should only include conceptually relevant aspects, 

both static and dynamic, of the universe of discourse, thus excluding all 
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aspects of (external or internal) data representation, physical data 

organisation and access as well as all aspects of particular external user 

representation such as message formats, data structures, etc. 

This approach is different from the traditional approach to problem solving that 

stems from the top-down approach, where the system functions are sub-divided 

into smaller and smaller problems. Such an approach tries to fit a problem into one 

mould at a very early stage. With complex systems the requirements modelling is 

rather an outside-jntS approach, which allows to add more detail to the model as 

we gain further insights to the system. Requirements modelling as indicated by 

Feather [Feather 91] consists of a series of incremental steps that converge in a 

model with the appropriate content. 

3.6.3 Characteristics of MSBA 

The identification of an agent recognises the responsibility it has for the system. 

An elaboration of the role (as we discussed above) makes one to recognise the use 

of an agent. A comprehensive description of the use provides a scenario. A 

scenario accomplishes a goal. Malhotra [Malhotra 80] in studying the dialogue 

between people involved in problem solving, noted that the dialogues were 

composed of cycles like (1) goal statement, (2) goal elaboration, (3) solution 

outline, (4) solution elaboration, (5) solution explication, and (6) agreement on 

solution. Conveniently we can summarise this structure (as shown in Figure 3.6) 

by the following stages of user activity: 

18 We are using the tenninology of [Ross 85]. 
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• Detennine the use, 

• Conceive the purpose, and 

• Specify the sequence of activities. 

Detennine 
the use 

..... _----tI.~ Conceive the 
purpose 

Figure 3.6 Notion of a scenario 

Environmentally 
Observed Activities 

! 
Specify the sequence 
of activities 

Goal 

Figure 3.7 Visualisation of a scenario 

A scenario bridges the gulf between environmentally observed activities and the 

intended purpose as shown in Figure 3.7. This brings out the relationship between 

the two. An activity can contribute to a requirement in three ways (as shown in 

Figure 3.8): 
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• An activity can cause a requirement. For example a person pressing a 

button, causes a requirement to be satisfied; 

• An activity can form part of a requirement. When a person presses 

a button, acknowledging this action forms a part of a requirement; 

• An activity can ful f i 1 a requirement. When a person presses a button, 

displaying the required information fulfils the requirement. 

Scenario 

Activity 1 - pressing a button 
causes a requirement to be fulfilled 

Activity2 - acknowledging the activity 1 
forms a part of the solution 

Activity3 - displaying the information 
f u 1 f i 1 s the requirement 

Figure 3.8 Association among the activities 

Thus the scenarios provide a suitable formalism in establishing the connections 

among the user perceived activities. Scenarios essentially involves something that 

the agent wants to accomplish. This accomplishment is described by activities. A 
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scenario is an encapsulated description of achieving a specific outcome under 

specified circumstances. In real-time systems the agents have to accomplish a 

particular purpose under specific restrictions. The restrictions are influenced by the 

environment as described in Chapter 1. Analysing the restrictions with the 

described scenarios is essential. The next Section discusses such an analysis. 

3.7 Modelling the Constraints 

Constraint is a restrictive condition [Oxford Dictionary]. In general while working 

in the real world some set of constraints can be observed. Real-time systems have 

some special kinds of constraints. Some of these constraints arise from the 

technical capabilities of the system itself, and others from the nature of the activity, 

that is appropriate to the application. Constraints are essentially conditions imposed 

on the goals. We classify the constraints as static and dynamic constraints as 

shown in Figure 3.9. These are explained below. 

Figure 3.9 Classification of constraints 
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3.7.1 Static Constraints 

Static constraints are constraints that are independent of time. They specify the 

static aspects of the application domain. Static constraints stem from two sources. 

Firstly, a system cannot be assumed to have infinite resources. Every system has a 

limited resource like memory, number of channels, and so on. For example, when 

a car arrives at the parking centre, car can be allowed inside only if a space is 

available. Secondly many of the system's action is conditional depending upon the 

circumstances. For example while monitoring the temperature, a requirement can 

be, to raise an alarm if the monitored temperature exceeds 100 degrees. Here the 

temperature read by the sensor causes an alarm to be raised, only if its value 

exceeds 100 degrees. Such conditional requirements reflect static constraints. 

Static constraints can be sub-divided into two types as shown in Figure 3.10; static 

constraints as constraints over a single parameter, or constraints over multiple 

parameters. 

a. Constraints on a single parameter: 

1. Temperature> 100 degree 

2. Temperature> 100 degree AND Temperature < 500 degree 

b. Constraints over multiple parameters: 

1. Temperature> 100 degree AND Pressure> 200 psi 

2. Total resource available exceeds the demanded resource. Here the 

resource may consist of more than one parameter. 
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a. Constraint on single parameter 

100 

Temp> 100 Temp> 100 AND Temp < 500 

b. Constraint on multiple parameters 

Temp> 100 Pressure> 200 

Total Resource Available 
Exceeds the Demanded 
Resource 

Figure 3.10 Static constraints 

3.7.2 Dynamic Constraints 

Dynamic constraints are perfonnance requirements. I agree with Zave [Zave 82] 

that performance requirements is what really characterises real-time systems. All 

perfonnance constraints are constraints concerning time or space [Smoliar 81]. 

Here we will be referring to constraints on time. Timing constraints are an essential 

part of real-time systems. We refer to timing constraints as timeliness constraints, 

as they dictate the response time of the system. Timing requirements in real-time 

systems arise because of the importance of the activities of the controller upon its 

environment. For example, in a manufacturing plant, if the computer controlling a 

robot does not command it to stop or turn on time, the effect can be disastrous. 

Timing constraint imposes a temporal restriction on the environment and on the 

controller. Timing constraints provide a temporal relationship between the 

activities. Two types of temporal relationships can be distinguished depending 

upon the causal relationship between the activities [Koymans 88]. 
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Qualitative: temporal relationships are concerned with only the order in time; 

and, 

Quantitative: temporal relationships are concerned with the order and the distance 

in time. Quantitative temporal relationship refers to the time of 

occurrence of an action. Here we refer to such relationships as 

timeliness constraints. Timeliness constraints refer to the moment 

of occurrence of an action. 

Requirements model for real-time systems must incorporate real-time features. An 

important real-time feature is the ability to measure time. For example, the data 

available from the sensor is time sensitive. After some time elapses, the data 

obtained from the sensor is of no value, as it may not reflect the true state of the 

environment. For such a reason a quantitative temporal reasoning is required. For 

example, in a rail-road crossing system it is required to state that the gate closes in a 

certain duration of time rather than to state that it eventually closes, in 

communication protocol, if message acknowledgement is not received within a 

certain time, then action is to be taken to re-transmit the same within a fixed time, 

and in a manufacturing system, a particular job like painting a car by robot may 

have to be started and completed at a particular time. These systems are time 

dependent, and require explicit quantitative temporal reasoning. 

In literature there is interesting discussion on how best to represent the quantitative 

timing requirements [Jahanian 86, Alur 92, Lamport 83]. Global clock paradigm is 

a well known paradigm used to represent quantitative timing requirements. Global 

clock paradigm is not suitable for real-time systems [Jahanian 86]. Real-time 

systems are often distributed. The clocks drift, and it is difficult to synchronise the 
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clocks. [Lamport 78] has argued that to avoid inaccuracies in timing only 

observable events should be used for timing other events in the system. 

Timing constraints are bound to the environment and to the controller. A 

generalisation of the timing constraints is needed to discuss the temporal 

requirements. Such a generalisation was provided by Dasarathy [Dasarathy 85] 19. 

Dasarathy [Dasarathy 85] categorises the timing constraints by three types of 

temporal restriction on the events in a system. 

maximum - no more than t time units must elapse between the occurrence of 

two events, 

minimum - no less than t time units must elapse between the occurrence of 

two events, and 

durational - event must last for t units of time. 

A slightly different approach to temporal requirements is employed in [Mok 84]. 

This classification derives its origin from the scheduling problems. It categorises 

timing constraints as sporadic (quasi-periodic) and periodic [Mok 83]. Dasarathy 

views temporal restrictions from the point of view of user. While Mok views the 

temporal requirements from the point of view of controller. In a controller view 

the realm of temporal restriction, falls with the scheduler. Sporadic timing 

constraint requires some action to be executed before a specified time. For example 

a sporadic requirement can be, to open the valve within 10 time units of pressing a 

19 We discuss the limitation of this classification in Chapter 5, and provide a very general 

classification. 
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button. On the other hand, a periodic timing constraint requires some action to be 

executed at fixed intervals. For some applications a periodic timing constraint may 

exist from system initialisation, like monitoring the temperature in a nuclear reactor 

control, and for others it may come into existence dynamically, like radar tracking 

an aircraft, this comes into existence when the aircraft enters the traffic control 

region and ceases to exist after aircraft leaves the region. 

In general, a model must reflect both types of timing requirements. In this Chapter 

we shall not reflect on the expressiveness of this classification of temporal 

requirements. We visit this aspect in Chapter 5. This study has presented the 

intricacies of timing requirements. 

3.7.3 Timeliness Requirements 

The fact that temporal properties naturally partition into two disjoint classes was 

first observed by Lamport [Lamport 77]. Thus timeliness requirements arise from 

two sources: 

(1) Safety requirement, and 

(2) Liveness requirement 

3.7.3.1 Safety Requirement 

Safety requirement depends upon the operational context. Safety requirement 

stipulates that 'bad things' do not happen during the operation of the system 

[Lamport 83]. For example in a railroad crossing system, the safety requirement 

may state that, accident should not happen. An analysis of what is an accident 
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makes us to investigate the possibilities of avoiding it. This examination introduces 

timing constraint. The timing constraint depends upon the environment, the 

maximum speed with which a train can travel, and so on. This analysis introduces 

a timing constraint to be incorporated into the requirement. 

Safety: The gate must be closed within 100 time units of detecting the 

arrival of a train. 

3.7.3.2 Liveness Requirement 

Liveness requirement, stipulates that 'good things' happen eventually 

[Lamport 83]. A system to be of use to its community must be live. For example a 

railroad crossing system, can achieve safety by closing the gate always. The 

system, to be of use must open the gate eventually, i.e., the gate must not remain 

closed for long. This requirement ensures that the system is live. The requirement 

that the gate eventually be raised, is only a qualitative requirement. If the system is 

to be of much service, then a quantitative requirement is needed, like that the gate 

be raised within 500 time units of the exit of the train. Thus real-time liveness 

criteria suggests temporal constraint. 

Real-Time Liveness : The gate is never closed for more than 500 time units, 

after the exit of the train 

It may be noted that Alpern et al. [Alpern 89] have proved that every property20 is 

the conjunction of a safety property and a liveness property. The safety and 

20 Examples of the properties are: partial correctness (if precondition is satisfied then eventually 

postcondition holds good); abortion freedom {if precondition holds good, then eventually system 
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liveness properties belong to the environment (to the problem model), while other 

properties (mentioned in the footnote) belong to the solution model. Thus the 

properties that are of interest to the solution model are a derivative of the properties 

of the problem model. 

Restrictions imposed by the safety and liveness requirement, refine the scenarios. 

Now we shall refer to the evaluation of our model. 

3.8 Validation of the Requirements 

So far the discussion surrounded the technique which provided a process of 

articulating the objectives and the needs of the system. After formulating the needs, 

the evaluation phase begins. The evaluation phase provides feedback on the user 

requirements. The scenario based technique discussed above, can be used both for 

generating the scenarios, and for validating it. The scenario-based technique is 

used to provide feedback on what the user thinks the focus is. This allows the user 

to change the focus if necessary. 

does not enter a state where the program aborts); total correctness (in a finite program, if a 

precondition holds good then it satisfies some postcondition, and the final value of the program 

counter denotes the end of program); normal termination (in a finite program, if precondition is 

satisfied then eventually the state where it ends the program, is not the one where program aborts); 

mutual exclusion (a condition such that, two processes are not inside a critical region); deadlock 

freedom (a condition, where a process has entered such a state, where it has no enabled action, and 

no other process can alter that); guaranteed service (a request is serviced eventually); first-come 

first-serve (receive the request in the order of arrival); starvation freedom (if a process is enabled 

frequently enough, it will progress eventually). 
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The evaluation phase involves the review of the conceptual model (which 

symbolises the provisional understanding of the system i.e., the user solution of 

the system). This review focuses on the goal set, and the user solution to achieve 

the goal. The user may explain hislher needs by giving a solution. Such a review 

along with the user can uncover the unstated requirements which are known as 

'mistakes' [Malhotra 80, Boehm 76]. Review of Malhotra's dialogue 

[Malhotra 80] suggests that a good portion concerns obtaining feedback from the 

customer - that the requirements engineer has understood some specific aspect of 

the problem. This study suggests that the problem definition and user solution are 

not independent activities, they are interrelated. This relationship between problem 

definition and the user solution is made clear with scenarios. 

The scenarios provide a list of actions for a specific situation. The scenarios are 

fragmentary in nature. The fragmentary nature of the scenarios suggest that they 

playa significant role in stimulating the acquisition process, rather than relying on 

the predetermined information. Scenario description is more concrete, and this 

helps to understand and resolve the conflicts more quickly. This approach of 

problem definition/user solution seems to match the prototype development 

strategy. This approach is radically different from the serialised life-cycle 

approach, where it is unrealistically assumed that all the requirements are captured 

at the very beginning. From Malhotra's study it is apparent that during the 

requirements definition activity, unless the provisions are made to capture such 

solution elements, important information may be lost. 
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3.9 Discussion 

The central activity during system development is requirements determination, 

whereby requirements are established. An analysis of the approaches suggested for 

requirements determination by Davis [Davis 82b] provides a central theme. The 

approaches are: 

(1) Asking the user 

(2) Derive them from the utilising system, that is, from an analysis of the 

needs of those who will use the system. This involves studying the 

work that users actually perform using interviews, observations, sample 

documents, etc. 

(3) Derive them from an existing system - one that was previously installed 

as developed. An understanding of system requirements is obtained by 

reverse engineering. 

(4) Evolve them through the process of prototyping. That is, by iterating 

through building -> use -> feedback -> modification of requirements -> 

building cycles of system development. Here the system itself is the 

requirement. This still evolves in the minds of the user and system 

developer as iteration progresses. 

All these approaches rely on asking the user for information, although steps 1 and 2 

are heavily dependent upon this. Rapid prototyping methods like PAISLey 

[Zave 82], or Gist [Balzer 82], allow the analyst to understand the system 

behaviour. Prototyping involves experimenting with problem solving. This means 
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that the person responsible for prototyping must have a solution in mind, before 

s/he starts prototyping. Prototyping postulates a solution. The prototyping 

language does not portray the intended or expected behaviour by the user. While 

the scenario based technique describes the external system behaviour from the 

user's point of view. Scenarios describe the proposed use of the system. Scenario 

description involves environment and the controller. 

Our approach is to analyse the objective and assign the role responsibilities to the 

objective. This helps in the identification of agents. An agent can be represented 

with twin views as shown in Figure 3.11. Responsibility view is the extrinsic 

view, it provides a description that stems from the use of an agent. While the 

behavioural view is the intrinsic view, it furnishes the behaviour that the agent is 

capable of producing. An agent has both an external representation, and an internal 

representation. Scenarios provide an interface between the two representations. 

This approach provides a tool of thought for both the requirements engineers, and 

specifiers. For stakeholders, an agent has a person view that accommodates a 

particular responsibility. While a specifier has a system view of an agent, that 

provides some functionality. For a customer the agents distribute responsibilities, 

while for a specifier the agents distribute functions. Thus agents support both 

responsibility, and functionality. This dual role helps to reveal any mismatch 

between customer's expectations, and requirements engineer's understanding. 
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Role 

Constraints 

Relation with other 
agents 

Agent 

i 

Scenarios 

Figure 3.11 Twin views of an agent 

Causes actions 
aI, a2, .. 

Participates in actions 
aI, a2, .. 

Depends upon actions 
aI, a2, .. 

In responsibility view the role is dominating. The role represents the mission of the 

agent. The mission of the agent is explained as scenarios by the users. The 

scenario characterises the responsibility as deemed by the user. While the 

behavioural view provides the functional view to achieve that mission. The 

functional view represents the behaviour to be portrayed by an agent. This 

distinction is outlined in Figure 3.11. 

Behaviour 

Observed Activities 

Information 

Figure 3.12 Dimensions of a scenario 

89 



In Figure 3.12, information represents the needs, objectives, and desires as 

regarded by the user. The behaviour is what the system adopts. Behaviour arises 

out of time ordered observed activities. The observed activities provide a 

qualitative description of how the agent behaves. This description is grounded in 

the real world. Requirements description based on the real world features are 

transparent and easy to understand. 

3.91 Summary 

Here we suggested a five layered approach during the requirements stage (seen in 

Figure 3.2), as its first purpose to develop an understanding of the problem 

domain, as its second purpose to develop a user understanding of the objectives 

that enter the overall system - which guides the identification of agents, as its third 

purpose to develop an understanding of the agents co-operation to provide the 

required objective, as its fourth purpose to develop an understanding of the specific 

use of the system, and as its last purpose to develop an understanding of the safety 

critical aspects of the system. The model is refined later with stakeholders. A 

formal view of the model is necessary to aid the analysis. A formalism specifies a 

class of objects under discussion in an unambiguous and general manner 

[Zeigler 84]. A formal view of the model will be discussed in the next chapter. 
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Chapter 4 

Time-Constrained Automata Model 

A system often consists of several agents, and these 

agents are time-constrained. We introduce 

time-constrained automata to model the dynamic 

nature of an agent, which needs to evolve over time. 

This is achieved by enriching the elements in the 

domain, with an explicit time component. This 

model describes both functional, and temporal 

restrictions using the same framework. A real-time 

system is viewed as a set of interacting automata, 

each automaton representing an agent in the system. 
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4.1 Introduction 

The objective of a model is to represent an abstract knowledge about a universe of 

discourse [ISO 87]. In the preceding chapter we discussed an approach to derive 

the conceptual model with dynamic properties. Real-time systems are time­

sensitive, and necessitates dynamic properties to be modelled. A real-time system 

often consists of several agents. An agent is characterised by the important 

incidents that occur. An incident is an abstract representation of the chunk of 

information handled by an agent. An incident provides a dynamic instance of the 

description and is called as an event. Thus an event is an assertion about some 

behaviour parameter of an agent. Now we can visualise a scenario as a sequence of 

events that accomplishes a mission. This style of description is oriented towards 

activities occurring in the user's world. Thus an event model provides a context in 

which the requirements are abstracted as observable effects on the domain. In the 

following sections, an event-based model is discussed. 

4.2 Characteristics of an Event 

Traditionally the behaviour of a system is captured by continuous variables 

modelled by differential equations [Kuo 67, Ogata 90]. A system can be modelled 

by symbolic changes of a system rather than as changes in the numerical values (as 

modelled by continuous variables). Such a model identifies the important events 

that occur in a system. We think of a system in terms of events. The notion of 

observation is crucial to the philosophy of event-based models. An event refers to 

observable information. A system is modelled by such discrete-events. The events 

are discrete in the sense that it is assumed to occur instantaneously. A discrete 

event system, is a dynamic system that evolves with discrete events which occur at 
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unknown irregular points of time. For such reason the model is also called as 

discrete event dynamic model. 

Events of a system are identified in principle by the independent observation of the 

system. An observer recognises the interactions that take place in the system. An 

observer cannot influence the system in any way. The dynamics of a system is 

understood by the events it is associated with. Event conveys different 

information, for example an event like 'temperature exceeds 50 degrees', defines a 

dynamic change in an ongoing process. While an event like 'temperature set point 

modified to 25 degrees' characterises an operation. An event may characterise an 

environmental operation, or controller operation. Events are fmnly associated with 

the evolution of the system. Events are instantaneous and mark a point in time. 

Continuous events which have a duration are represented by two atomic events like 

start of the event and the end of that event. By atomicity we mean that the events 

are indivisible. Each event has a unique name. Event model allows a system to be 

described without referring to its internal operations. As noted earlier, an event 

may refer to an operation from the environment or from the controller. To an 

observer ongoing activities are the flow of events from and to the environment. 

Event-based models are advocated by [Hoare 85], or in control systems by 

[lnan 88], and in hardware by [Snepsheut 85]. These models do not explicitly deal 

with functions of time. In our model, we explicitly deal with the function of time. 

We also consider non-terminating interaction of reactive systems. 
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4.3 Event-Based Model 

An event based model sets up the basic abstraction of a system. Event based model 

is a tuple < E , T > where E is the event set and T is the time base set. In an event 

based model the concept of event is central. 

4.3.1 Event set 

Event set represents the incidents that can take place in a system. These events are 

observed over a time base T. Time base T provides a chronological pattern to the 

events occurring in a system. Event based model consists of events and their 

relations [Lamport 78]. 

Definition: An event is an instantaneous atomic instance of the description in a 

system. 

----~-----------4----------4_----~ .. ~ time 

button pushed door closed door opened 

Figure 4.1 Ordering the events 

For example the incidents like button pushed, door closed, door opened are the 

events. These events can be ordered depending on the time of their occurrence as 

shown in Figure 4.1, where 'button pushed' happens before 'door closed' and so 

on, or in other words 'button pushed' precedes 'door closed' and so on. This 

precedence relation is a relation between two events and denoted by symbol <. 

Thus an event structure is represented by (E, <). 
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The distinctive property causality (that there is no effect without a cause) can be 

represented as 

tie 3 e' e' < e 

The binary relation < is irrefiexive, transitive, and anti symmetric21 • 

Events with duration are modelled using two atomic events marking the beginning 

and the end of the event (with duration). 0 

4.3.2 The Perspective of Time 

Time is thought in terms of points or intervals [Benthem 91]. We refer to time as a 

non-empty set T, consisting of objects called time-elements. With a point 

perspective, time consists of a series of time points, like bullets triggered 

continuously from a gun. These time points are duration-less. Traditionally time­

points are regarded as the basic elements, and time-interval a derived concept 

[Koymans 92]. An interval can be regarded as a series of time points. Relations 

between time intervals proposed by Allen [Allen 83] provide a useful mechanism to 

think in intervals. With intervals, it is very difficult to state complicated timing 

constraints that arise in an application [Alur 90, Stokes 91]. Also it is very difficult 

for the user to interpret the relations between the intervals. Time points provide a 

viable mechanism to represent any complicated timing constraints. The relation 

between the time points is straightforward. Both the environmental and controller 

dependent timing constraints can be clearly stated. For such a reason we make use 

of the point structure of time. 

21 These properties are explained below, with time set. 
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4.3.3 Point Structure of Time 

A point structure P is an ordered couple (T, <) where T is a non-empty set of 

ordered points, with a binary relation < on T. This ordering notion has the 

following properties. 

Irreflexivity (i.e., a time point cannot precede itself ) 

IRREF 'V x --, x < x and 

Transitivity 

TRANS 'V xyz (x < Y /\ Y < z ~ x < z). From these two conditions the 

condition of asymmetry follows. 

ASYM 'V xy (x < y ---+ -, Y < x) 

For any two time points, either one precedes the other or they are the same point. 

Thus linearity is 

LIN 'V xy (x < y v y < x v x = y) 

Each time point has a neighbouring point in past and future, and this implies a 

succession property 

SUCC 'V x 3 y, y < x (past), 'V x 3 y, x < y (future) 

96 



The point time structure gets classified into dense time structure or discrete time 

structure, depending on whether we assume an infinite divisibility between two 

points or not. 

Thus with infinite divisibility we have 

DENS 'V xy (x < y ~ 3 z, x < z < y ) 

and using a stepwise succession we have 

DISC 'V x (3 z ( x < z /\...,3 i x < i < z » , 

'Vy (3z(z<y /\...,3i z<i<y» 

A dense time structure observes IRREF, TRANS, LIN, SUCC, DENS and a 

discrete time structure observes IRREF, TRANS, LIN, SUCC, and DISC. 

The two types of models that originate from the point structure of time are discrete 

and dense time. In discrete time model, time increases in steps. This is familiar to 

the number system N (natural numbers). Dense time model is familiar to the 

number system R (non negative real numbers)22. 

22It may be noted that, the number system Q (the rational numbers) is dense, but not continuous, 

while R (the non-negative real numbers) is both dense and continuous. 
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4.3.4 Need for Dense Time 

Real time systems operate in intimate coordination with its associated physical 

systems. These operating domains progress at widely separated time scales. 

Independent events may appear arbitrarily close together in time. Such events 

cannot be faithfully modelled with discrete time. With discrete time, time increases 

in steps. When time increases in a stepwise succession, a prior commitment to a 

quantum of time is needed. If time quantum chosen is t then the time points (x) 

that can be studied are 

"if x :3 n E N, x = n t. 

After choosing a time quantum intermediate points cannot be studied. If time 

quantum is chosen as 1, then event sequence consisting of a, b, c, d can be 

represented as 

(a, 1) , (b , 2) , (c , 4) , (d , 5) 

In the above case if b occurs at 1.1 then it will be denoted as time(b) = 2, this limits 

the expressiveness. Also in modelling realm, explicit reference to discrete time can 

be made redundant, by adding null events (0) to mark the passage of time. The 

above timed sequence can be represented as { a , b , 0 , c , d }, where timing is 

implicit23. 

The argument for dense time can be summarised as below [Joseph 92] 

23Such an approach is used in linear time temporal logic. with the repetitive use of next operator. 
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1. The independent events in a distributed computation may appear arbitrarily 

close together in time, and so time must be represented in dense domain. 

2. Physical processes are modelled with time in a continuous (real) domain, so 

programs that interact with physical processes must represent time in a similar 

way. 

4.3.5 Timing Axioms 

A time sequence T consists of infinite sequence of time values, and satisfies the 

following constraints: 

Progress: time value strictly increases. 

This states that time never decreases. 

Non-Zeno Property: Between two time values, there is never an infinite 

number of time values. 0 

This rules out the possibility of representing an infinite number of computations in 

arbitrarily small time. Such machines which perform infinitely many computations 

in finite time are called as Zeno machines [Witrow 80]. Zeno machines are hyper 

arithmetical [Joseph 92, Kurki-Suonio 94]. As, such systems are non existent the 

above axiom rules out such behaviour. 
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4.3.6 Timed Event 

A timed event associates a time parameter with an event. It is expressed as 

(button_pressed, t1) where t1 is the timing parameter associated with the event 

button_pressed. Time parameter t1 marks the occurrence of event button_pressed. 

Definition: Given a set of events E and a totally ordered time set T, then a timed 

event is a pair of an event and a time point (ei, ti) E EXT where ei E E and 

ti E T. 0 

4.4 Abstract Model of a Real-Time System 

As noted earlier real-time systems are reactive systems, and in this respect differ 

from transformational systems. A transformational system accepts input, performs 

transformations on them to produce output as shown in Figure 4.2(a). 

Transformational systems prompt the environment for additional required inputs, 

while reactive systems are prompted by the outside world. Reactive systems are 

interactional systems, as shown in Figure 4.2(b). As Pnueli [Pnueli 86] expresses, 

"reactivity characterises the nature of interaction between the system and its 

environment. It states that this interaction is not restricted to accepting inputs on 

initiation and producing outputs on termination. In particular, it allows some of the 

inputs to depend on intermediate outputs". In this respect we can notice a subtle 

link between reactivity, and distributivity or concurrency. Concurrency or 

distributivity refers to an internal organisation of the system, and a component in a 

concurrent system should always be viewed as a reactive component. This is 

because typically a component in a concurrent system maintains a reactive 

interaction with other components in a system. Thus a component is studied in 
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terms of the interaction it maintains with the other components. In Chapter 3 we 

modelled a real-time system as a combination of a number of concurrently acting 

agents (components). In the following section we discuss an abstract view of this 

model. 

Transfonnational 
System 

output 

(a) 

input 

Figure 4.2 (a) Transformational system 

Environment 

output 

Reactive System 

(b) 

(b) Reactive system 

One of the often suggested approaches is the use of finite-state automata. Since the 

unique feature of real-time system, is its ability to deal with infinite computations, it 

is appropriate to consider automata over infinite sequences (0) - automata). 

4.4.1 0>. Automata 

The theory of automata is a foundation stone for computer science. We recall some 

of the well known concepts of classical automata [Hopcroft 79]. The concepts of 

ID-automata are not so well known, and are found in articles24 [Btichi 72, 

Choueka 74, Hoogeboom 86, Thomas 81]. The theory of ro-automata are based on 

24 The concepts of 0> - automata can also be found in [Eilenburg 74). 

101 



the theory of finite automata. We develop the theory of O)-automata with the 

classical automata. 

An alphabet 1: is a finite nonempty set. The elements of an alphabet 1: are called as 

letters or symbols. We refer to a finite sequence of letters as a word, and to an 

infinite sequence of letters as an infinite word, or (J)-word. As usual, e denotes the 

empty word, 1:* represents the set of all finite words over 1:, 1:+ denotes the set of 

all nonempty finite words (.I:,+ = :E* - {e}), and I,O) denotes the set of all infinite 

words. 

An O)-word u over 1:, is an infinite sequence over :E, written in the form 

(u = U1, U2, U3 .... ). The set of all O)-words over I, is denoted by :EO). 

Definition: If I, is an alphabet then an 0)- word over I, is a mapping from N into 

1:, where N denotes the set of nonnegative integers. 

Consider a word w. We use Iwl to define the length ofw. For a word WE :E*, we 

let wi be its component at the (i)th position, if 1 SiS Iwl. The concatenation of a 

word w E 1: *, with the symbol ~ E :E is represented by W· ~ E :E * . A word 

v E :E*, is a prefix of w, if Ivl S Iwl, and vi = Wi for 1 SiS Ivl. 

For a finite word cr E :E+ and an infinite word cr'E I,O), we denote by cr ( cr' the 

fact that cr is a proper finite prefix of cr', i.e., a prefix that differs from cr'. We can 

note the relation cr ( cr', requires cr to be finite. The word cr·cr' is obtained by 

concatenating cr' to the end of cr. The concatenation (cr·cr') is defined only if cr is 

finite. 0 
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For example, consider a sequence of even numbers. The property of even numbers 

defines a characteristic set, such that the elements of the sequence, s 

(x = 2), (x = 4), (x = 6), ... 

belongs to even numbers. 

While the sequence, r 

(x = 2), (x = 4), (x = 5), ... 

does not. 

Recalling the discussion in Chapter 3, a scenario defines a sequence of actions 

(events) for a particular situation. If events are modelled as symbols of the 

alphabet, then a scenario is a word. A system comprises of a set of scenarios, or a 

set of words. Another name for such a set is a language. A language is a set of 

words from an alphabet. An ro - language consists of co-words. Thus an ro -

language over an alphabet ~ is a subset of ~c.o. 

In the abstract model considered, a property judges some sequences to be 

acceptable (follow the property), and other sequences to be unacceptable (those that 

do not have the property). 

Afinite automaton is a five tuple A = (~, Q, Qa, a, F) where ~ is a finite alphabet, 

Q is a finite nonempty set of states, a ~ Q x ~ x Q is a set of transitions, Qo ~ Q is 

the set of initial states, and F !:: Q is the set of final states. A is said to be 

deterministic iff IQol = I, and for all q E Q and a E ~, I { q} x {a} x QI ~ 1. 
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If automaton is in state q, then it can move to q', while reading a symbol. Thus an 

automaton moves to various states while reading a word from its initial state. A 

word x is accepted by A iff there exists qQ E QQ, and qf E P, and a pathqo ~qf' 

A run is the sequence of states that an automaton occupies while reading a word. 

A run r of automaton A on a word x, is such that 

(a) r[l] E QQ, and 

(b) for all i, 1 ~ i ~ lxi, (r[i],x[i],r[i+ 1]) E a 

A run r on the word x is accepting iff 

( c) x is finite, and r[lxl] E F 

The automaton A that satisfies the condition (c) is the classical PSM (finite state 

machine). 

4.4.1.1 Acceptance of Infinite Words 

In the automata A considered above if x is infinite, then a run of A over x, consists 

of some state from the set P repeating infinitely often along r (BUchi acceptance25). 

In other words, a run r of A over a word x E ~Ol is an accepting run iff 

Inf(r) (J F"# 0 (BUchi acceptance). 

Thus a run r on the word x E ~ro is accepting iff 

25 In the literature various types of Ol-automata are studied. Here we consider only Biichi 

automaton. 
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(d) x is infinite, and Inf(r) n F * O. 

The automaton A that satisfies the condition (d) is the Btichl automaton. 

4.4.2 Biichi Automata 

Recalling the above discussion, in Btichi automata a run is accepted if the 

intersection of the infinite set of run with that of accepting states is not empty i.e., 

Inf(r) n F ~ 0. Inf(r) is the set of automaton states that appear infinitely often in 

a run of the automaton over a given word, and F c Q, is the set of accepting states. 

An co-language acceptable by Btichi automaton, can be constructed from the 

language acceptable by finite state machine. This is explained below. 

Infinite behaviour of the automaton A, denoted as Behoo (A) is the set of all the 

labels of the run starting in qO and going infinitely often through the set F. The 

family of all acceptable subsets of 1:(J) is denoted as R(1:oo). Similarly finite 

behaviour of automaton A is denoted by Beh. (A), and the family of recognisable 

subsets of 1:* by R(1:*). 

Theorem: An m-Ianguage L!:; 1:00 is Biichi recognisable iff L is a finite union of 

sets of u.yoo where U and Y ~ 1:*. 

Given U and Y E R(1:*) and W = U.yoo = L(A) 

The word W is a concatenation of two words U and V(J) 

or W = Behco (A) 
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The labels on the run of the automaton A consists of the word U followed infinitely 

by V. This exhibits the path of the automaton, which starts in initial state qO e Q, 

and then moves to a final state f e F, and then keeps looping back to the same 

state. 

The word U takes the automaton from the state qo to f, and this can be represented 

as Uq,f = (Q, qO, f ). After the automaton moves to the state f, the automaton is 

made to revisit the same state infinitely often by V, and this can be represented as 

Vf = (Q, f, f). 

w = u U Uq,fV~ 
qeQo fe F 

Conversely U and V e R(l: *) we can build an automaton A such that 

U.vro = Behro (A). 

4.4.3 Timed Scenarios 

In the above discussion, we considered untimed language i.e., set of untimed 

words. The above formalism is sufficient to consider the untimed scenarios. In the 

earlier chapter, we argued the need for a temporal reasoning. For example, in a cat 

and mouse problem, the cat after observing the mouse, must catch it within a 

couple of seconds, if not the mouse will vanish. This is a real-time scenario. To 

incorporate the temporal reasoning, we introduced the notion of a timed event (an 

event associated with a time element). In essence a real-time scenario is a sequence 

of timed events, i.e., a timed word. 

Definition: A finite timed word is a finite sequence of timed events. 
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In the earlier section, we discussed the need for a dense-time domain. In this 

section, we shall see how temporal reasoning can be incorporated. 

4.4.4 Technique to Represent the Timing Constraint 

Most of the temporal representations suggested in the literature fall into one of the 

two forms: 

(1) delaying a transition for a finite time (same as the one suggested by 

Ramchandani74);or 

(2) constraining a transition for a lower bound time, and an upper bound 

time. Here a transition is delayed for a lower bound time 1, and constrained 

to occur within an upper bound time u. (This is the same as the one 

suggested by Merlin 76). 

Both these formalisms consider a temporal constraint as a restriction over one 

symbol. This concept arises from the inherent stimulus-response mechanism, 

where response is considered as a symbol. In practice, as we argued earlier26, 

timing constraint may involve temporal restriction over several events. For 

example, in the Figure 4.3, the time of occurrence of symbol d, is constrained not 

only by the time of occurrence of symbol a, but also by the time of occurrence of 

symbol c. Such temporal constraints cannot be stated in the formalisms mentioned 

earlier. For such a reason we make use of the concept of multiple clocks mentioned 

in [Alur 92]. 

26 We argue this further in Chapter 5, and present an alternative tool for stimulus-response 

mechanism. 
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y=O 

Figure 4.3 Timing constraint over many events 

4.4.5 Multiple Clock Paradigm 

Here a finite number of clocks are used to represent the temporal requirements. 

Each clock is initialised (set to zero) before it is used. These clocks are fictitious 

clocks which are used like stop watches. 

Timing constraints are stated, as a constraint over the clock. The reading of a clock 

at any instant equals the time elapsed since the clock was initialised. A clock can be 

initialised over a transition, and timing constraint is stated over transition. For 

example in Figure 4.3, automaton A starts in state p, and moves to state q with the 

Occurrence of symbol a. The clock x gets initialised along with this transition. The 

value of a clock always reads the time elapsed since it was reset. When the 

automaton is in state q, the clock x reads the time elapsed since the symbol a 

occurred. The transition from state q to state r occurs if symbol b occurs while the 

value of this clock x is within (an upper bound 00 two units of time and a lower 

bound of one unit of time. The transition from state r to s occurs with the arrival of 

symbol c. The clock y is initialised to zero along with the transition from state r to 

state s. Similarly the transition from state s to state p occurs, if symbol d occurs 
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while the value of clock x is less than five units of time, and the value of clock y is 

greater than or equal to one unit of time. 

The automaton can make a transition if the values of associated clocks satisfy the 

enabling condition. The transitions are instantaneous i.e., transitions between 

states take zero time. A state in a timed automaton represents the state of the 

automaton and the values of all its associated clocks. Thus state is a pair (q, x) 

where q E Q is a location of the automaton and x E IRn is the value of its 

associated clocks. For time values di E IR the transition can be represented as 

(q,x) (a,d) )(q',X') . A run r for a timed automaton is an infinite sequence of 

states qi E Q , clock vectors X E IRn and time values di E IR . 

The runs of timed automaton is in correspondence with the runs of the normal 

automaton. For example, sayan observer is watching the transitions that take place 

in Figure 4.3. According to the observer, if timed word is (a, 4), (b, 5.5), (c, 6), 

(d, 8) then with the values of clock it can be denoted as 

(p,[O,O]) (a,4) • (q,[0,4]) .. (r,[1.5,5.5]) 
(b,5.5) (c,6) .. 

(s, [2,0]) (d,S)" (p, [4,2]) 

The automaton A makes use of two clocks x, and y. All the states associated with 

A (Le., state p, q, r, and s) is associated with two clocks. Initially at p, the value of 

both the clocks is zero, and is represented as p[O,O]. The first transition is noticed 

as (a,4). This increases both the clocks by 4 units of time (Le., x = 4, Y = 4), but 

the clock x is initialised to zero over the transition, so the value of clocks at location 

q, is (x = 0, y = 4) and represented as q[0,4]. Similarly all the other transitions 

modify the clock values as shown above. 
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Formalism of Clock Constraints 

As shown above, the clock constraint is allowed on the transition. A simple clock 

constraint compares a clock value with a time constant. A clock constraint is such 

Boolean combinations of simple clock constraints. 

Definition: If X is a set of clocks, the set <I>(X) of clock constraints 1 is defined 

inductively as follows (c is a time constant, and x is a clock in X) : 

Y= x S; c I x ~ c I x < c 1 x > c 1 x = c 1-.1111 A. Y2 0 

4.4.6 Timed Biichi Automata 

The formalism of timed Btichl automata is as given below [AIur 92]. Timed Btichi 

automata (TBA), provides a temporal reasoning with dense-time domain. The 

formalism can incorporate aU the temporal representations. A timed Btichi 

automaton (TBA) is a 6-tuple A = (!., Q, Qo ,C, 0, F), where!. is an alphabet, Q 

is a finite set of states, C is a set of clocks (for example {xO ... xn}), Qo is a set of 

start states and Qo c Q, 0 gives the set of transitions, denoting 0 ~ Q x!. x 2C 

x <I>(C) x Q, and F is a set of acceptance states F ~ Q. Each transition might 

reset a clock and has an enabling condition expressed as a constraint on the values 

of associated clocks. 

4.4.7 Related Information 

Btichi automata are popular in temporal logic also. Given a formula in linear 

temporal logic, it is possible to construct a BUchi automaton that accepts those 

infinite sequences that are models of that formula [Clarke 86]. This relationship 
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has been exploited in temporal logic for verification purposes, to show that an 

implementation meets the specification. This is termed as temporal logic model 

checking. Model checking is an effective method to prove that a concurrent 

program satisfies a temporal logic formula [Vardi 86]. In this approach the 

specification of a system is defined in temporal logic formula. Then the BUchi 

automaton extracted from this formula is checked for containment with BUchi 

automaton obtained from the implemented system. The automata are tested for 

containment by checking their languages [Kurshan 87]. If automaton A accepts the 

language L(A) and B the language L(B) then to test L(A) c L(B), the complement 

of automaton B i.e., B', is constructed, and the language produced by the product 

automata is tested for emptiness i.e. L(A * B') = 0. The complexity of this 

approach is atleast as complicated as finding the complement of the automaton and 

is commonly known as emptiness of the complement problem. The 

complementation construction is presented in [Sistla 87]. 

4.5 Modelling an Agent 

In the above sections we discussed the formalism of timed scenarios, and the timed 

automata that is capable of representing such properties. As discussed earlier, an 

agent is characterised by scenarios. Thus each agent is represented by a timed 

automaton. In terms of the event model discussed, each symbol refers to an event. 

As discussed above the behaviour of an automaton is set of timed event sequence. 

We shall consider an example. 

Example: Consider an agent performing a communication by sending and 

receiving the messages in an environment. We assume that the agent sends a next 

message, only if the previous message had been received. The sending and 
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receiving of the message is abstracted by events 'send', and 'receive' respectively. 

Then the possible behaviour is 

(send, t1), (receive, t2), (send, t3), (receive, t4)· .. 

To discuss the event model at the right granularity, we consider the concept of 

process27• We can characterise the behaviour of an agent as a process. A process 

is defined in terms of a set of timed events, and a set of traces. A trace is a finite 

sequence of timed events. In the concrete model a trace refers to a scenario. 

Definition: A trace is a fmite sequence of timed events. 0 

For example, If events a and b are in A, then the trace (a,t1), (b, t2) is a sequence 

of two timed events. An empty trace, that is a sequence of no events is denoted by 

<>. 

In the following section we formalise the definition of a process. 

Definition: A process essentially has two meanings (1) to define all possible 

events, and (2) to define the behaviour of a process. Thus, 

a process P is a pair (aP, traces(P)) 

where aP is the set of events that the process P is characterised by, and traces(P) is 

the set of all traces that P can engage. 0 

27 Further discussed in Chapter 5. 
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In chapter 3, we regarded a real-time system as a web of concurrently acting 

agents. Here we fonnalise the composition of agents. 

4.5.1 Composition of Agents 

A real-time system is an arrangement of agents. Processes are used to describe the 

behaviour of the agents. The behaviour of an agent is asserted by defining a 

process. A process consists of sequence of timed events that the real system may 

engage. As we studied in the previous chapter these agents are reactive by 

themselves. Thus system behaviour is described as a parallel composition of 

agents. Here we define the parallel composition of two processes. 

4.5.1.1 Modelling the Composition 

The parallel composition ( II ) of a set of processes describes the joint behaviour of 

all the processes running concurrently. The rendezvous between the two processes 

can be modelled either by means of shared action, or by means of communicating 

action (as in the case of CSP). In CSP two processes are connected by a channel. 

If a process say, Ml wants to communicate with M2, then Ml perfonns a 'send 

action'. This 'send action' will not be executed, until M2 performs a 'receive 

action'. The concept of channel, message transmission, and reception mechanism, 

can influence the implementation process. A conceptual model must represent 

abstractions. We do not make use of the concept of communicating action. The 

synchronisation between the two processes is achieved by means of shared event -

i.e., the two processes share the same event label. Such a rendezvous is called 

shared action. 
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Here processes synchronise via common events, and concurrency is modelled by 

all possible interleaving of the events. For example in a manufacturing plant, 

consider a situation where a robot bends a pipe, and places it on the conveyor belt. 

The robot, and the conveyor belt are two independent processes. The robot can 

place the 'bent pipe' on the conveyor belt, only if it is ready to do so, and the belt 

is ready to receive the 'bent pipe'. Thus the event 'bent pipe' requires simultaneous 

involvement of both the processes. This suggests that the event 'bent pipe' is in the 

event set of both the processes. In other words, the event 'bent pipe' is a possible 

event in the independent behaviour of both the processes. 

4.5.1.2 Formalising the Composition 

The parallel composition of two processes P and Q is denoted as P II Q. To help us 

in the definition of parallel composition, we define an operator i such that, an 

expression (t i B) denotes the restriction of traces t, to the set of events B, and 

is equal to the trace t with all events outside B omitted. 

Given the process P and Q, the parallel composition of the two processes, denoted 

as P II Q is defined by 

a (P 1/ Q) = aP u aQ 

traces(P II Q) = {t I (t i aP) E traces(P) ,,(t i aQ) E traces(Q) " 

a{t } ~ (aP u aQ)CO } 

Processes P and Q execute in parallel and synchronise on common events. For 

example, P II Q can execute an event a, if process P and Q simultaneously execute 

a, or if one of these processes, say P executes a, and a is not in the event set of Q. 

114 



An Example of Parallel Composition 

Consider a process P with its behaviour as alternating the events a, and b 

respectively, such that symbol b arrives after one time unit of the occurrence of 

symbol a, and the alternating a arrives at a fixed length of 3 time units. The trace 

representing this behaviour is 

(a, t) (b, (t+l» (a, (t+3» (b, (t+4» .... 

Now consider another process Q connected to the above process P. Process Q 

sends symbol c after receiving the symbol b. The time delay between the symbol b 

and c, is one time unit. The trace representing this behaviour is 

(b, (t+l» (c, (t+2» .... 

Then the parallel composition of two process P and Q has a unique timed trace: 

(a, t) (b, (t+l» (c, (t+2» (a, (t+3» (b, (t+4» (c, (t+5» ... .• 

We think of two processes, as two automata Ml and M2. Then the parallel 

composition of M 1 and M2, denoted as MIll M2 is given as follows. 

As we noted in the earlier section, here a symbol is a timed symbol, i.e., a symbol 

associated with its time of occurrence. (The notation P - Q is used to represent the 

set of elements in P, but not in Q) 

MIll M2 = (Ql x Q2, Al u A2, CI u C2, f, (qOl, q02» 

where f«ql, q2), (a, t» = (fl (qt. (a, t», f2(q2, (a, t») if a E Al r'I A2 
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= (fl(qI, (a, t», q2) if a E Al - A2 

= (qt, f2(q2, (a, t») if a E A2 - Al 

= undefined otherwise. 

Here Al - A2 is the set of elements in A 1 that are not in A2. Thus M I II M2 can 

execute an event a E Al n A2, if both M t and M2 execute a at the same time, or 

if only one of the machines executes a, and a is not in the event set of the other 

machine, or the time of occurrence of a is different. 

The parallel composition ( " ) of a set of processes describes the joint behaviour of 

all the processes running concurrently. Here processes synchronise via common 

events. The serial product of automata is used for a long time to formalise the 

parallel composition [Lamport 89, Merlin 83, Arnold 94, Lustman 94]. It can be 

noticed that the binary operator II is associative and commutative, 

Le., MIll M2 = M2 "MI, and (MIll M2) "M3 = MIll (M211 M3) 

4.7 Summary 

The purpose of our model is to capture the user model of the ongoing activities of a 

system. User model of a system is narrated in principle by the independent 

observation of the system. Event model provides a succinct approach to model the 

dynamic nature of the systems. The notion of event covers all the incidents that are 

of interest. As our interest is in discrete systems, we assumed that the event 

occurrences have no duration, i.e., it marks a point in time. 
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Real-time systems often consist of several agents. A system is regarded as a 

composition of concurrently acting agents. We discussed the formalism for the 

parallel composition. The model accommodates both the functional and temporal 

aspects in the same framework. In the next chapter, we discuss the language to 

allow for the easy expression of the requirements. 
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Chapter 5 

Timed Requirements Language - TRL 

During requirements, active participation by the 

users is essential. Active participation by the users is 

possible only if the requirements descriptions are 

understandable. TRL has simple constructs, and 

promotes a descriptive method. TRL has a number 

of novel features including the treatment of causality, 

and the description of static, and dynamic constraints 

all integrated into one uniform framework. An 

approach to model the controller, and environmental 

actions is discussed. A generalised classification of 

the timing constraints is provided. 
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5.1 Introduction 

According to Freeman [Freeman 87, Chapter 5] the main teething problems that 

arise during the development of complex system are: gathering of the information 

about problem domain, and its representation. These problems are interdependent, 

in the sense that the way in which we try to represent the requirements, influences 

our ability to gather the requirements. As Guinan and Bostrom [Guinan 86] 

express: 

The process of information requirement determination requires effective 

communication between system analysts and users of the system to be 

developed. The analysts ability to discover user requirements is partially 

determined by the analyst's familiarity with and ability to communicate in 

the user's domain of knowledge and discourse. 

In this statement, the first part concerns acquiring the information, and the latter 

part on its representation. Both these aspects stress the involvement of users. The 

approach developed in Chapter 3 focused on the acquisition of requirements, and 

involved the users. In this chapter, we discuss the representational aspects, and 

introduce the language - TRL to represent the requirements. 

In TRL, requirements are represented in the terminology of the user. As we 

discussed in Chapter 3, requirements of a system evolve over time. We learn more 

about the requirements, as our understanding of the environment improves. This 

understanding is further refined or put to test in discussion with the stakeholders. 

The requirements undergo refinement, before it approaches towards agreement. 

For such a reason, the stated requirements must involve the active participation by 
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the users. Active participation by the users is possible only if the descriptions are 

understandable by the users. Understandable descriptions also help in the 

modification of the requirements. TRL promotes a descriptive method. TRL 

emphasises understanding what takes place and when it takes place in the system. 

Here a system is modelled in the terminology of the user. Such a model provides a 

description of the operational behaviour of the system. An operational explication 

is a problem oriented system description. Requirements description based on real 

world models are transparent and easy to understand. TRL is designed to facilitate 

the easy description of operational behaviour of systems. TRL is event driven, and 

provides constructs for the determination of timing constraints. 

Leveson [Leveson 86] observes that, the greatest problems associated in software 

engineering, are due to the computer system being treated merely as stimulus­

response system. We describe an approach to describe the real-time systems by 

their intended goals (missions). The approach discussed here, describes the 

mission of the system as conceived by the user. The missions are the features that 

the customer envisages. We also notice the limitations of the temporal classification 

provided in [Dasarathy 85], and provide a general classification of timing 

constraints of real-time systems. It is very well known that the temporal 

requirements cannot always be guaranteed. We emphasise the need for timing 

exception handlers in the representational languages, and provide suitable 

constructs in TRL. 

5.2 Basic Premises 

The descriptions of the requirements of a system is defined in terms of the 

observable events. The observable events include, electro-mechanical signals to 

120 



control the apparatus, the actions taken by humans, and the environmental actions. 

The system requirement is expressed through such observable events. These 

observable events are ideally described through some enumeration of a list of 

events that achieve some mission. The temporal requirement of the mission can be 

provided over this flow of events, like at what time a particular event has to occur, 

and so on. This flow of events furnishes the system behaviour to achieve a desired 

mission in-time. Such a flow is depicted in Figure 5.1. An event is significant for 

describing the required behaviour of the system. As remarked earlier an event may 

refer to the controller, or the embedding environment, or to the interactions among 

them. 

EJexpresse<l.. Information through .... Event 

embodi edin 

~, 

Behaviour 
Jurnishes Event 
...... Sequence 

4~ 

Constr . runs 

Temporal 
Requirements 

Figure 5.1 Behaviour in TRL 

However a list of events alone could not provide a comprehensive description of 

the system. A system description is naturally done at the right granularity. The 

granularity of events is too fine. In order to make the requirements description 

comprehensive, the overall description, corresponds to the description of the 
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processes. A process provides the behaviour of an agent that constitute the 

system. As shown in Figure 5.2, a process simply consists of sequence of related 

events. A process is composed of activities. An activity incorporates a set of tasks 

to be completed. Tasks are the smallest units of work, and consists of events. 

Process 
consists of ... Activity consists of ... ... .... 

consists of ... ... Task 

Figure 5.2 Process in TRL 

5.2.1 Conception of Requirements 

Functional requirements originates from a sense of causation. For example, a 

message cannot be received unless it is sent, or in a restaurant a customer gets the 

food after slhe orders, similarly in a tank controller, opening a valve causes the 

liquid level to be raised. The requirement is a chain that mirrors this causal 

relationship among several events occurring in a system. Real-time systems 

interact with physical devices which are monitored and controlled. A complex 

system is a combination of interacting components. In all these systems one 

device triggers another. The behaviour of a system is this causal relationship 

among real world events. Requirements evolve from this simple set of reasoning. 

Requirement of a system involves the order of occurrence of events and the 

constraints on the time of occurrence. As Bubenko [Bubenko 80] observes a 

conceptual model represents abstractions, and constraints about an application 

122 



domain. An event model provides such features for the narration of a conceptual 

model. 

We make use of event based model to capture the behaviour of the system. In 

event model, one is interested in the ongoing process involving real world entities 

(i.e., how an event is caused, how an event affects other events, and which event is 

dependent on other events). Description of behaviour produces a chronological 

relationships between corresponding events. With real-time systems we are 

interested in the precise sequencing of operations and the detailed timing and 

control characteristics of devices. Event model provides such details. 

5.2.2 Timed Requirements 

Event based model provides the basis to express the real time requirements of a 

system. A real-time system requires temporal reasoning. For such a reason in 

TRL every event is a timed event. An event associates a time parameter with an 

event name. It is expressed as (button_pressed, tl) where t1 is timing parameter 

associated with event 'button pressed'. The syntax diagram of event is shown in 

Figure 5.3. The syntax diagrams make use of standard notation, non-terminals are 

shown in rectangular boxes, and reserved words in bold letters. 

<event> ::= "(" <event parameter> "," <time parameter> ")" 

<event parameter> ::= <identifier> 

<time parameter> ::= <identifier> 
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I event I 
• ( - I event parameter I - , 

~ 

C 
• .-J 

I time parameter I- ) • 

Figure 5.3(a) Syntax diagram of event 

I event parameter 

----t··w • 
I time parameter 

---t··W • 

Figure 5.3 (b) Syntax diagram of event and time parameter 

----t.. letter 

Figure 5.3 (c) Identifier 
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5.2.3 Description of Requirements 

As discussed in the earlier chapters (Chapter 3, and Chapter 4) a system can be 

deemed to be made of a number of concurrently acting processes28• Thus, a 

system can be modelled as a set of processes (Figure 5.4), i.e., 

<system> ::= "requirements" <irl> {<processes>} 

<processes> ::= <process> { " " " <process> } 

system 

---I. a. requirements --I id 
( " . ~'I -p-ro-c-es-s-es-I.~ 

Figure 5.4(a) Syntax diagram of system 

I processes 

-+ I process 
( "' . 
~Ir--pr-o-ce-ss-es--',- II -.~ 

Figure 5.4(b) Syntax diagram of processes 

28 In Chapter 3, we referred it as 'agents', and in Chapter 2, before introducing the concept of 

agents, we referred it by the generic name 'components of the system'. 
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The formalisation of the parallel composition (II) has been discussed in Chapter 4. 

The parallel composition of a set of processes describes the joint behaviour of all 

the processes running concurrently. 

A process consists of events that must be executed in a prescribed order. As we 

discussed in Chapter 2, a real-time system is characterised by mainly two types of 

processes: periodic and aperiodic. A periodic process consists of events that is 

executed repeatedly, once in a fixed period of time. The common example of 

periodic process is to read the sensor information, or update the calendar time. 

Aperiodic processes29 (or also called as asynchronous processes) consists of 

events that correspond to internal or externally motivated events. A common 

example of aperiodic process is to respond to operator requests. 

System activity is asserted by defining bodies of processes. Processes are used to 

describe the dynamics of the system. Process consists of a set of behaviour 

definitions, where each behaviour definition is justified by the behaviour definition 

previous in the sequence. 

In TRL a behaviour definition is of the form 

29 For the purpose of scheduling analysis, Mok [Mok 83, Mok 84J suggests to translate an 

aperiodic process into a quasiperiodic process (or sporadic process), by providing a minimum 

separation time between the motivating events. Polling is an example of this. In this scheme, a 

polling task checks to see if an aperiodic event has occurred, if it has occurred then processing 

begins, if not then nothing is done till the beginning of the next polling period. 
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where beh_id is the language construct that relates events (e 1 , e2, . . en). 

A process P is a set of behaviour definitions of the form 

<process> ::= "process" <identifier> "begin" <named behaviour> 

{ <named behaviour>} "end" 

Each behaviour definition is regarded as a behaviour expression, which is named 

with an unique identifier. 

<named behaviour> ::= <behaviour name> ":" <behaviour> <endstmt> 

<endstmt> is the statement separator. We call such an expression as a named 

behaviour. A named behaviour can be abstracted as: 

s 1: e 1 --7 e2 --7 e3 <endstmt> 

process 

--.. process - OU - begin -I body of proc 1- end --.. 

Figure S.S(a) Process definition 
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I body of proc I 

--1 •• 1 named behaviour I-"'?~~-----------:\:::----'. 

~ 1 named behaviour I ----.....J 

Figure S.S(b) The body of a process 

I named behaviour I 

----t •• 0--: -- I behaviour 1- I endstmt • 

Figure S.S(c) Behaviour definition 

In an event based model, a behaviour is regarded as the manipulation of events, 

within the specified timing constraints. 

<behaviour> ::= "do" <event sequence> ["where" <timing constraint>] 

[next behaviour name] I <special behaviOUr> 
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I behaviour I 

,----I •• do -- event sequence 

~---------------------------------~ 

where -I timmg constraInt 1 ~ I next beh. name I ~~ 

'---------~.. special behaviour 1----------.. 
Figure 5.6(a) Behaviour expression 

At present we shall ignore the non-terminal 'timing constraint'. We deal with 

timing constraints exclusively in later sections. The non-terminal 'next behaviour 

name' provides an approach to relate various scenarios 30. 

I next beh. name I 

--I.~ & - DLJ • 

Figure 5.6(b) Next behaviour definition 

Let's consider a simple example. When a person visits a restaurant, he is seated, 

and then if he orders for the food, then he is served with food. This can be 

abstracted by behaviour expressions as described earlier. 

30 Scenarios are fragmentary in nature. Thus there is a need to relate the scenarios to get the 

whole story about a particular agent. 
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s 1: visits ~ seated & s2 

s2: orders ~ food served 

The statements (s1, and s2) in the language is tenninated with a statement separator 

as mentioned earlier. 

The behaviour that is of much interest are periodic and aperiodic behaviour. 

Aperiodic behaviour occurs at irregular points of time. Aperiodic behaviour is 

normally the result of an environmentally triggered event. On the other hand, a 

periodic behaviour is characterised by an event that has to occur at regular intervals 

of time. These two types of behaviour is further discussed in the following 

sections. Now it is sufficient for us to mention of their importance in the study of 

real-time systems. 

<special behaviOUr> ::= <periodic behaviOUr> I <aperiodic behaviOUr> 

I special behaviour 

..-----.... 1 aperiodic behaviour 

-------.1 periodic behaviour 

Figure 5.7 Syntax diagram of special behaviour 
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5.3 Conceptual Analysis 

The objective of conceptual analysis is to produce statements on the aim and 

purpose of the system. This high level activity identifies the needs, i.e., what is to 

be accomplished, and what is to be avoided. This structure of thinking of a system 

is based on the purpose-driven framework. This purpose-driven framework 

emphasises goal specifications. Taylor [Taylor 82] observes that goal 

specifications have advantages for error and safety analysis. In event model, the 

purpose driven framework is postulated in terms of what happens, and how the 

things that happen can interact. In a reactive system, environment regularly 

invokes the controller. This behaviour is essentially asynchronous. These events 

are not controlled by the software system, and depends only on the environment. 

This behaviour can be analysed with cause-effect analysis. 

5.3.1 Cause - Effect Analysis 

Cause - effect study describes the external behaviour of a system [Elmendorf 74]. 

Cause is an event, and the effect is a sequence of events directly triggered by the 

causal event. An inherent property of this reaction is it being driven by some event 

happening in the system. This is what happens with reactive systems. It captures 

the causality in the system. Causality asserts that one event triggers another event. 

This triggering notion is fundamental to reactive systems. For example, consider a 

simple system a water tank controller. In a water tank controller, say a requirement 

is, when a switch is pressed (FILL) the tank is to be filled with water. This 

behaviour involves activating event which triggers an effect. The effect specifies 

the goal to be achieved. Effect can consist of more than one event, in essence it 

consists of an event sequence. Thus an effect may be primitive or composite. In 
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the above example, the effect, fill the tank (Ff) is a composite one. The primitive 

events that constitute (Ff) are open the valve (OV), and turn the motor on (TM) 

and is given by OV ; TM. In general if event el causes event e2, then 

el = initiator(e2), or e2 = effect(el). Where effect(e) is a set of (possibly empty) 

events created by the event e, and effect(e) defines an event sequence. 

Thus an effect characterises an event sequence, and can be represented as 

(Figure 5.8): 

<event sequence> ::= <event> { ";" <event> } 

event sequence 

Figure 5.8 Event sequence 

In some situations, an intended effect may be to ignore the activating event i.e., to 

'do nothing'. Such an effect may be considered as 'defunct effect'. A defunct 

effect does not engage in any events, and is built into TRL. A defunct effect is 

denoted by 'nil'. 

Let's reconsider the water tank controller discussed above. In this example, it is 

necessary to check whether water is available to pump in to the tank, before starting 

pumping the water. This requirement associates a condition, which can be either 

true or false. The condition is associated with the causal event pressing the switch. 

This event triggers a required effect only if the condition is true i.e., water is 
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available. Thus the cause-effect analysis is essentially a cause - condition - effect 

analysis. The condition, models the static constraints discussed in Chapter 3. 

5.3.1.1 Condition 

Condition models the physical status of the system. The physical status of a 

system varies. For example, a person can be booked in a flight only if a seat is 

available. We model the conditions by their names. A primitive condition name 

c E C, where C is the condition name set. Condition name c is a variable which is 

characterised by a pair (value(c), assignment(c», where: 

value( c) E {true, false}, the value true or false is assigned to c; 

assignment(c) i.e., assignment to c is an event so as c takes the value, 

value(c) at the instant time (assignment (c» . 

Examples of such conditions are "water is hot", "seat is available" and, etc. These 

conditions describe the dynamics of the system. 

5.3.1.2 Effect 

Requirements, as discussed in Chapter 3, are described as a set of scenarios, 

describing the changes in the system operation. Example of such scenarios are, 

when you press this switch, then the system resets. The words like 'press', 

'cause', 'affect', 'pull', 'turn', and so on, provide a narration of cause and effect. 

The notion of effect plays a vital role in the analysis of requirements. This 

description starts with a description of the causal event, followed by the sequence 

of events representing the effect. This description provides credibility to the 
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observed or postulated behaviour. This description provides information on how 

the things actually happen. In real-time systems the effect is time dependent. This 

time dependency is discussed a little later. Let's study some illustrative examples to 

reflect on the causal analysis in requirements definition. 

Example 5.1: If an aircraft is approaching, and not identified as a friend then 

activate threat analysis with a deadline less than 2 sec. 

In this example, approaching aircraft triggers 'threat analysis' only if it is not 

identified as a friend. This condition is modelled as a constraint on the causal event 

'aircraft approaching'. The timing constraint is associated with the event 'initiate 

threat analysis'. 

Example 5.2: If letters are keyed without selecting a window, then display an 

error message 'nobody is hearing'. 

The event 'keying the letter' causes an error message 'error report' only if a 

window is not selected. 

Example 5.3: If the temperature read by the sensor is less than 273 degrees or 

greater than 500 degrees, then initiate alann of type 2. 

Here the condition can be expressed as follows, 

InvalidTemp = (temperature < 273) or (temperature> 5(0) 

The event 'temperature' causes an alarm of type 2, only if it is of 'InvalidTemp'. 
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In these examples, the activating event triggers an effect, if a condition holds during 

that moment. Triggering event can be guarded by conditions. Requirements can be 

elicited by stepping through scenario in which triggering an event initiates a 

particular behaviour pattern. A triggering mechanism provides the basis for 

describing these events and appropriate reactions. 

Following the above analysis we can define the types in TRL. 

5.3.2 Types in TRL 

Following Martin-Lofs constructive type theory [Nordstrom 84] we define types 

as predicates that state the properties of system or its components. For example it 

may be an expression that a certain variable has a positive value, or that a certain 

resource is available. This mechanism provides a natural way of representing the 

dynamics of the system. It may be expressed as 

valid_temperature = 15 < temp < 25 

registecavailable = a register is available for processing 

We use the predicate names such as "valid temperature", or "registecavailable" to 

represent system properties. We assume that these have been suitably defined. 

5.4 Aperiodic Behaviour 

Let's recall that aperiodic behaviour deals with events which occur at irregular time. 

Aperiodic behaviour arises due to dynamically triggered events. For example in 

telephony, a subscriber going off-hook (lifting the handset) causes an aperiodic 

behaviour. Aperiodic behaviour generally has complex timing constraints 
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associated with it. Aperiodic behaviour can be analysed with cause-effect analysis 

discussed above. Aperiodic behaviour deals with complex situations. We discuss 

these situations, and then generalise the syntax of aperiodic behaviour in Section 

5.4.3 (Figure 5.18). 

As discussed above, a simple scenario of aperiodic behaviour is as shown in Figure 

5.9, and its syntax in Figure 5.10. 

Initiating 
event 

Trigger 

Figure 5.9 Scenario of aperiodic operation 

participating 
event(s) to 
achieve goal • 

The syntax of aperiodic behaviour can be expressed as: 

<aperiodic behaviour> ::= "if' <initiator> "then" <participator> 

I aperiodic behaviour I 

--. if - initiator I - then participator 1--' 

Figure 5.lO(a) Syntax of aperiodic expression 
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I initiator 

~ I event I ~~ .. 
---l~"1 ~I -ev-en-t-I- and _I condition I----.J 

Figure 5.1 O(b) Syntax of 'initiator' 

I condition 

id 

Figure 5.1O(c) Syntax of 'condition' 

I particIpator 

---I"~ - LI ~effi~ec~t~.-r---------~"~ c: 1 next behaviour name I .. ) 

Figure 5.1 O( d) Syntax of 'participator' 

At present (as discussed in the above section) we shall assume that the effect 

consists of an event sequence (including an empty sequence). The syntax of effect 

is summarised in section 5.4.3. 

Consider a simple aperiodic behaviour of the form 

if event 'e' occurs, execute 'f 
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In this example event 'e' is the motivating event, while the event 'f represents the 

effect. The above behaviour can be expressed in TRL as follows: 

if (e, tl) then (f, t2) 

As discussed earlier, the effect depends upon the causal event. This means that a 

system can have different effects, at a given moment depending on the causal event. 

This is discussed below. 

5.4.1 Situation Dependent Effects 

A system at a given moment may be expected to behave differently, depending on 

the input. For example consider a simple help system, in which if Hotel is pressed 

the information regarding the nearby hotels is displayed, if Bus is pressed then 

information regarding bus transportation is displayed, and if Taxi is pressed then 

information regarding taxi service is displayed. 

if initiator
l 

then participator 1 

elsif initiator2 then participator 2 

elsif initiator3 then participator 3 

elsif initiatorn then participatorn 

I 
Figure 5.11 Syntax of modelling the situation dependent effects 

In this system the resultant effect depends upon the type of motivating event. 

Alternative effects depending on the triggering event can naturally be expressed by 
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elsif clause. Such a situation is as shown in Figure 5.11. The syntax of 'effect' is 

provided in Figure 5.19 after introducing some concepts involving time. 

The above mentioned syntax of aperiodic behaviour is extended to include the 

selection as: 

<aperiodic behaviour> .. -.. - "if" <initiator> "then" <participator> 

{ <alternative event sequence> } 

<alternative event sequence> ::= "elsif' <initiatOr> "then" <participator> 

I aperiodic behaviour I 

initiator -- then -- participator I ~ 
~~.~------------------------------_/ 

C _____ ~--_--------------~_r. 
c;= I alternative event sequence I ... J 

Figure S.12(a) Syntax diagram of aperiodic behaviour 

I alternative event sequence 

------. elsif initiator -- then -- participator 1------' 

Figure 5. 12(b) Syntax diagram of alternative event sequence 

Aperiodic behaviour may be associated with timing constraints such as deadline. 

Here we infonnally used the word 'deadline'. By the way what is deadline? Is this 
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the only type of timing constraint that arises in a system? Can we generalise the 

timing constraints at a conceptual level, and provide suitable mechanisms to discuss 

such timing requirements? These issues will be discussed in detail below. 

5.4.2 Timing Constraints in a Conceptual Model 

A model is conceptual in the sense that the requirements manifest at an application 

level. Timeliness requirements are expressed at a higher level of abstraction. At 

the highest level of abstraction, an event cuts the timeline at the point of occurrence. 

The timing constraints are expressed as a restriction on the moment of occurrence 

of event(s). These timing constraints may be expressed through the timing 

relationships involving the time points denoting the occurrence of events. The 

temporal requirements are an important aspect of real-time systems. We discuss the 

temporal requirements at the user level. Recalling the classification of temporal 

requirements provided by [Dasarathy 85] we have: 

minimum - no less than t units of time must elapse between the occurrence 

of events; 

maximum - no more than t units of time must elapse between the 

occurrence of events; 

durational - exactly t units of time must elapse between two events. 

In [Dasarathy 85] the end points of the intervals, between the pairs of events are 

classified as one of the following types: (1) stimulus - response, (2) stimulus -

stimulus, (3) response - stimulus, and (4) response - response. This framework 

though provides a general classification of timing constraints from the user point of 
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view, it suffers from an implicit assumption, that every timing constraint involves 

just a single pair of events. Let's consider an example, to describe a timing 

constraint. 

Example 5.4: Consider the Figure 5.13, where the event a, causes further events 

b, c, and d. If the timing constraint on event d is such that, event d must occur 

within six time units of event a and three time units of event c. 

a b c 

I 
~ 

d 

Figure 5.13 Time constrained events 

A timing constraint of this sort falls outside the framework of [Dasarathy 85]. 

Also this framework does not consider timing constraint on periodic processes. In 

real-time systems periodic processes are predominant. In the following sections, 

we generalise the framework to describe the various types of timing constraints that 

may arise in a system. Our framework does not treat the timing constraint as a 

temporal restriction between two events. We recognise that a temporal constraint 

can involve many events. All the timing constraints are discussed in a single 

formalism. 
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5.4.2.1 Timeliness Requirements 

At the lower level of requirements, timeliness requirements can be expressed, by 

considering the usefulness of an action in a time period. Jensen et al [Jensen 85] 

define value function as a way to express the timing constraints of real-time 

systems. The value function also provides a natural means to classify the real-time 

systems viz. hard, and soft [Burns 91, Abbott 88]. For example con ider an event 

"close the door (CD)" as shown in Figure 5.14 (a). This event has a duration, and 

as explained in Chapter 4 we represent it by two instantaneous events starteD, and 

endeD. 

.T 
t 

Figure 5.14 (a) Representation of a continuou event 

The utility of the event 'close the door', can be explained with four attributes a 

shown in Figure 5.14(b). The four attributes are: 

T 

Figure 5.14 (b) Attributes of timing constraint con idering value function 
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Earliest starting time (tesv - the earliest time point during which the event 

sta.rtco can occur; 

Latest starting time (tlst) - the latest time point during which the event 

starteD can occur; 

Earliest finishing time (teft) - the earliest time point during which the event 

endeD can occur; 

Latest finishing time (tIft) - the latest time point during which the event 

endeD can occur. 

The time period (tlst - test) is the latency, the time period (tIft - teft) is the delay, 

and the time point (tIft) is the deadline. All the four timing attributes are naturally 

present in soft real time systems. In a hard real-time system, the above four 

attributes may get reduced to two attributes viz. tstart and tfinish, where tstart 

denotes the time point at which the start event (say starteD) can occur, and tfinish 

denotes the time point at which the end event (say endeD) can occur. 

As discussed earlier in Chapter 3, timing constraints in a system may arise as a 

result of the safety requirement. The safety requirement may arise as a result of the 

physical laws and rules of operation. Leveson [Leveson 86) classifies system 

requirements as requirements related to mission, and those related to safety while 

the mission is being accomplished. Many of these safety requirements are time­

dependent. For example, Leveson and Harvey [Leveson 83) have mentioned a 

case where a NASA satellite could have been damaged had the time interval 

between the occurrence of two events been short. Real-time systems have different 
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timing constraints associated with them, and such timing constraints are discussed 

below. 

5.4.2.2 Representation of Timing Constraints 

A timing constraint restricts the moment of occurrence of an event. Lamport 

[Lamport 78] has argued that to avoid any inaccuracies in timing only observable 

events should be used for timing other events31 . In our model, we use observable 

events for timing other events. 

The syntax of timing constraint in TRL is as given below, and in diagrammatic 

form in Figure 5.15(a) 

<timing constraint> ::= <timing factor> {"and" <timing factor> } 

timing constraint 

timing factor T 
and----

y 

Figure 5.15(a), Syntax of 'timing constraint' 

<timing factor> ::= "(" <time parameter> <relation operator> <time parameter> 

II + II <timing duration> ")" 

31 This advice is in line with the philosophical observation made by Leibniz, "time and space are 

not the things, they are the order of the things". 
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timing factor 

[
< >,<~ I ' - 1 time parameter 1-,""" -. ( -!timeparameter 1- >=, =.. ., 

~----~======~----------•• ~ 
C; + - I timing duration /-) • 

Figure 5.15 (b), Syntax of 'timing factor' 

<timing duration> ::= <integer> I <real> 

timing duration 

! Integer 1-.... -)I-_----i.P 
Real .. 

Figure 5.15 (c), Syntax of 'timing duration' 

<integer> ::= <digit> {<digit>} 

Integer 

---1.~ digit 

L digit -* 
Figure 5.15 (d), Syntax of 'integer' 

<real> ::= <integer> "." <integer> 
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Real I 

--~. I Integer 1- Integer 

Figure 5.15 (e), Syntax of 'real' 

Let's describe the various timing constraints with an illustrating example. 

Example 5.5: Consider a requirement such that when a switch is pressed, the 

controller must start the job of closing the door within 10 time units, and must 

complete the job within 6 time units of having started the job. 

The events of interest are switch pressed, start closing the door (startCD), and door 

closed (endCD). The above requirement can be expressed as follows: 

if (switchpressed, i) then (starteD, j) ; (endeD, k) where (j < i + 10) and 

(k < j + 6) endstmt 

With this example, we shall explain all the types of timing constraints that can arise 

in a system. These timing constraints are described in TRL. Following Jensen 

[Jensen 85] the timing constraint, in essence describes the utility of a task with 

respect to time. These systems may be hard or soft. The language employed must 

be capable of expressing all types of timing constraints. 

A timing constraint can constrain, earliest starting time (!est), latest starting time 

(tlst), earliest finishing time (!eft), latest finishing time (tift). or any combinations of 

these as shown in Figure 5.16. The example given below describes in TRL the 

timing restriction on all these parameters. 
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Example 5.6: Timing Restriction on earliest starting time (test), latest starting 

time (tlst), earliest finishing time (teft), and latest finishing time (tIft) 

if (switchpressed, i) then (starteD, j) ; (endeD, k) where G >= i + 5) and 

G <= i + 10) and (k >= j + 4) and (k <= j + 6) endstmt 

The timing constraints discussed in Figure 5.16 includes the types of timing 

constraints discussed by [Dasarathy 85], and are more general. All class of timing 

constraints are expressed in a single formalism. The types of timing constraints 

expressed by [Dasarathy 85] can be expressed as below: 

Minimum: if (el, tl) then (e2, t2) where (t2 > t1 + 5) endstmt 

Maximum: if (el, t1) then (e2, t2) where (t2 < t1+5) endstmt 

Durational: if (el, tl) then (e2, t2) where (t2 = t1+5) endstmt 

As noted above this classification does not deal with timing constraint over several 

events. 
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/ 

Possible Types of Timing Constraints 

Constraints on 

test test - tIst test - tlst - teft 

test - tlst - tift 

test - tlst - teft - tIft 

test 
- teft test - t -

eft tift 

test 
-

tIft 

tlst t lst 
-

teft tlst 
- t - tift eft 

t lst 
-

tift 

teft teft - tIft 

tIft 
'-

Figure 5.16 Classification of timing constraints 

5.4.3 Addressing What if Situations 

For a real-time system to be robust, it must use a mechanism that can cope with 

system failures. Exception handling deals with such failures. Exception handling 

are of two types, general exceptions, and time-related exceptions. The former deals 

with functional errors. For example, a functional exception handler deals with 

situations such as, division by zero, or finding the square root of a negative 
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number. On the other hand time-related exception, endeavours to take evasive 

action when a particular timing constraint cannot be guaranteed. This section looks 

at exception handling, to deal with timing constraint violations. 

The representation language must have provisions, to state what actions to take, 

when a timing constraint cannot be guaranteed. These exceptions enable a real-time 

system to fail gracefully. In this way a real-time system is consistent, as it is aware 

of the timing constraints that are not satisfied. If the syntax of the representational 

language provides an exception handler with any time constrained construct, then 

the analyst is forced to consider alternative actions at every possible situation, 

where a timing failure could occur. In the author's opinion such a provision is 

essential. It is difficult to deal with timing constraint failures at later stages. 

Suitable actions in these situations can only be determined, in concurrence with the 

users. 

Real time systems are required to behave properly under all circumstances. Real 

time requirements involve constraints related to time in the real world. Complete 

and correct action within the timing constraint specified, could never be guaranteed. 

In managing the real world environments, an action simply cannot be ensured even 

by increasing the speed of processors [Stankovic 88b]. This reflects the reality of 

real time system that we must be able to accept the deviations from the desired goals 

and settle for the weaker goals. This involves making trade-offs between different 

goals in a reasonable manner. Goal abandonment and substitution are important 

means by which graceful degradation of the behaviour can be achieved 

[Chandrasekaran 91]. In practice the notion of goal abandonment and substitution 

is important. It also provides a mechanism to denote the safe behaviour of the 

system. Whether the control system offers the desired goal or the weaker one 
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depends upon the real-time behaviour of the system. The time at which the system 

responds to the request determines whether the goal will be abandoned in lieu of the 

weaker one. 

This means that when a task is not guaranteed within the required timing constraint, 

then a timing fault can occur. In this situation, an alternative task which has a 

shorter computation time can be invoked. If the latter is done, then timing fault is 

masked. As shown in Figure 5.17 the temporal switch determines the choice 

between the two goals. 

triggering 
o~ration <

O~~red 
temporal 

'7 Goal 
substitution 

Figure 5.17 Modelling the temporal behaviour 

Incorporating this temporal behaviour mechanism, the triggering mechanism of 

Figure 5.9 gets modified to as shown in Figure 5.18. 

participating 
event to 

,-----, 
Goal , 
abandonment I 

achieve , (goal 
Initiating weaker goal __ I substitution) 

I [ - - - ~ events 
_e_v_en_t ___ -I •• L_T_n_·g_g_er_...J----:-:---:-:----1.~L- - - -' 

participating 
event to 
achieve 
desired goal 

Figure 5.18 Aperiodic behaviour with time-related exceptions 
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Figure 5.18 describes tasks with fault tolerance requirements. In a system, a 

higher level activity, can decide which activity should be performed. This notion 

acknowledges that the tasks have different levels of temporal needs, and 

importance. 

We shall illustrate a situation through an example. In this example, a timing 

constraint has a corresponding time-related exception handler. The example shows 

that, if the temperature measured is greater than 50, then switch on the cooling 

system within 30 milliseconds. If this timing constraint cannot be adhered, then the 

time-related exception handler is activated. This example is of a hard real-time, and 

takes a drastic action of shutting down the controller. 

Temperature Controller 

if temperature measured> 50 

then switch on cooling system within 30 milliseconds 

endif 

Time-related exception handler 

Issue immediate shut-down 

Consider a situation where, 

Initiating event: Temperature measured (temperature) 

Condition: over_the_limit = (temperature> 50) 
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Responding event: Switch on cooling system (switch300l) 

Timing constraint: Respond within 30 milliseconds 

This can be expressed as 

if (temperature, i) and (ovecthe_limit) then (switch3001, j) where 

(j < i + 30) else (shucoff, k) endstmt 

Now having worked out the various features required in an aperiodic behaviour, 

we can provide the generalised syntax diagram (as shown in Figure 5.18): 

<aperiodic behaviour> ::= "if' < initiator> "then" < participator> 

{ <alternative event sequence> } 

<alternative event sequence> ::= "elsif' <initiator> "then" <participator> 

<initiator> ::= <event> I <event> "and" <condition> 

<participator> ::= <effect> [<next behaviour name>] 

<effect> ::= "nil" I <event sequence> I <event sequence> "where" 

<timing constraint> [<timed exception> ] 

<timed exception>::= "else" <event sequence> I "else" < event sequence> 

"where" <timing constraint> 
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effect 

nil ------------------------------------~ 

-. I----t.,. event sequence 
'---------~------' 

~ / event sequence 1- where --I timing constraint ~\ 

/ timed exception / ~ 

Figure 5. 19(a) Syntax diagram of 'effect' 

I timed exception I 

,------I.,. else--- event sequence 

event sequence I - where .,,,, 
~~--------------~ 
'---_____ --1.,. / timing constraint / -------.. 

Figure 5 . 19(b) Syntax diagram of 'timed exception' 

5.5 Periodic Behaviour 

Contrary to aperiodic requirements, periodic requirements need to be repeated over 

an interval of time. Some typical examples of periodic behaviour are, monitoring 

the sensors in a process controlled application, or monitoring an aircraft in a radar 

application. A periodic behaviour may come into existence dynamically, or be 

present from the time the system is put into service. A task like 'monitoring the 

sensor' comes into existence, from the time the system is put into service, and 

ceases to exist when the system is put off. A task like 'monitoring an aircraft' is an 

153 



example of a dynamically created task, the task comes into existence when the 

aircraft enters the control region of the radar, and ceases to exist when the aircraft 

leaves the region. Similarly, in a telephone exchange, a periodic task is 

dynamically created, once a subscriber goes off-hook, and this task ceases to exist 

after the subscriber completes the 'dialling of the digits'. The responsibility of this 

periodic task is to collect the digits dialled by the subscriber. Periodic tasks exist 

for reasonably long intervals of time. 

A periodic timing constraint requires some task to be executed at fixed intervals, in 

the time-region of interest. This time region is delimited by two events, the one 

which initiates the task, and another event which terminates the task. The timing 

constraint on periodic behaviour is simple. A periodic behaviour is one in which 

the timing constraint has the form "if i E {3 .. n}, ti - t i-I = t2 - t1. 

The syntax of a periodic behaviour is (Figure 5.20): 

<periodic behaviOUr> ::= "from" <event> "repeat" <event sequence> "every" 

<timing duration> "until" <event>. 

I Periodic Behaviour I 
---i.. from - 1 event 1- repeat -I event sequence 1 ~ 

~ 

C-. e:ry -I timing duration 1- until -I event I ----i •• 

Figure 5.20 Syntax of periodic behaviour 
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An example of the above syntax is: 

from einitiate repeat ebody every 0 until eterminate. 

5.6 Summarising the BNF 

Items enclosed in [square brackets ] may appear zero or one time, and items 

enclosed in { braces } may appear zero or more times. Terminal symbols appear in 

" double quotes ". 

<system> ::= "requirements" <head> {<processes>} 

<processes> ::= <process> { " " " <process> } 

<process> ::= "process" <identifier> "begin" <named behaviOUr> 

{ <named behaviour>} "end" 

<named behaviOUr> ::= <identifier> ";" <behaviour> <endstmt> 

<behaviour> ::= "do" < event sequence> ["where" <timing constraint>] 

[ <next behaviour name>] I <special behaviOUr> 

<next behaviour name> ::= "&" <identifier> 

<special behaviOUr> ::= <periodic behaviOUr> I <aperiodic behaviOUr> 

<periodic behaviOUr> ::= "from" <event> "repeat" <event sequence> "every" 

<timing duration> "until" < event> 
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<aperiodic behaviour> ::= "if' <initiator> "then" <participator> 

{ <alternative event sequence> } 

<alternative event sequence> ::= "elsif' <initiator> "then" <participator> 

<initiator> ::= <event> I <event> "and" <condition> 

<participator> ::= <effect> [ <next behaviour name> ] 

<effect> ::= "nil" I < event sequence> I <event sequence> "where" 

<timing constraint> [<timed exception> ] 

<timed exception> ::= "else" <event sequence> I "else" <event sequence> 

"where " <timing constraint> 

<event> ::= "(" <event parameter> "," <time parameter> ")" 

<event sequence> ::= <event> {";" <event> } 

<time parameter> ::= <time parameter name> I <don't care> 

<timing constraint> ::= <timing factor> { "and" <timing factor> } 

<timing factor> ::= "(" <time parameter> <relation operator> <time parameter> 

"+" <timing duration> ")" 

<time constant> ::= <integer> I <real> 

<event name> :;= <identifier> 
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<time parameter> ::= <identifier> 

<condition> ::= <identifier> 

<head> ::= <identifier> <endstmt> 

<identifier> ::= <letter> {<letter> I <digit> } 

<relation operator> ::= "<" I ">" I "<=" I ">=" I "=" 

<integer> ::= <digit> {<digit>} 

<real> ::= <integer> "" <integer> 

<endstmt> ::= "$" 

5.7 Summary 

Real-time systems include electronic gadgets, power plants, aircraft and railroad 

control. These systems are highly interactive, and usually require complex 

temporal behaviour. Real-time systems are often constructed from many 

concurrent components. As Leveson [Leveson 86] observes, the greatest problems 

associated in software engineering, are due to the computer system being treated 

merely as stimulus-response system (for example see [Alford 85], [Davis 82]). 

Real-time systems are described by their intended goals (missions). The approach 

discussed here, described the mission of the system as conceived by the user. 

These descriptions encapsulated the static and dynamic constraints. 

157 



The development of requirements for real time systems is a difficult task. The 

process of requirements development is incremental in nature. For such a reason 

we observe a system as a collection of components, which co-operate with each 

other to achieve a desired result. A TRL description can be checked to reveal its 

lexical, syntactic, and semantic errors. A TRL description undergoes three phases 

of analysis like: Phase 0: Lexical analysis; Phase 1: Syntax analysis; and Phase 2: 

Semantic analysis. The general treatment of the techniques employed in Phase 0, 

Phase 1, and Phase 2 can be found in the standard compiler literature 

(e.g. Abo 86), and is not discussed here. 

Description of a system requires the identification of events contained in the 

system. As this method is parametrized with respect to events in a system, it 

allows to treat different systems in a uniform way. TRL is primarily intended for 

representing the conceptual model of a system. Conceptual model of a system 

controls the complexity of large systems by identifying the various components of 

the system. System behaviour is then the composition of the behaviour of the 

various components. The language has a simple underlying model. It proposes a 

system at a simple abstract level. 
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Chapter 6 

Case Study 

The various aspects of the technique discussed so 

far is illustrated with two examples. The examples 

reflect the essentialfeatures of real-time systems. 
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6.1 Introduction 

In the previous chapters, we discussed the modelling approach, and the language -

TRL to represent the system. To illustrate the use of the techniques derived in the 

previous chapters, we demonstrate two real world examples. 

We chose these example for the reason that: 

(1) The applications are realistic, and significant. The applications 

demonstrate the essential feature of real-time system, and provide 

effective means of demonstrating the problems and deficiencies in the 

definition of requirements. In many circumstances these problems are 

revealed only when carrying out the task in a timed language. 

(2) These systems involve timing constraints, which are intrinsic, i.e., 

timing constraints arise while understanding the intended operation of the 

system. This is typical of many real-time systems. Timing constraints 

arise because of the nature of work, not because of the need to do the job 

fast32• 

6.2 The Railroad Crossing Example 

The railroad crossing problem has been proposed as a benchmark for the study of 

real-time system by the Naval Research Laboratory [Heitmeyer 93]. We briefly 

introduced this example in Chapter 3, to discuss the modelling approach. We 

32 This means that, Real-Time System is not same as 'Be Quick as a Bunny'. 
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reiterate the basic needs of this system. The basic requirement is whenever the train 

is in the crossing region, the gate must be down. 

The system has two basic properties, the safety property - whenever the train is in 

the crossing, the gate must be down, and the utility property - the gate must be up, 

when no train is in the crossing region. The utility property avoids a lazy solution 

to the problem. In a lazy solution, once the gate is lowered, the system can keep it 

lowered. 

6.2.1 Requirements . First Level 

This system operates a gate at a railroad crossing. The crossing region (say X) lies 

in the region of interest (say R), where X < R. The region of interest is greater 

than that of X, so that the gate is lowered before the train enters the region X. 

6.2.1.1 Environment Analysis and Modelling 

The objective of this phase is to describe the existing world for the application. 

This analysis is an abstract description of the agents that are useful for the problem. 

As explained in earlier chapters, the agents are initially identified by recognising the 

influence they bear on the system. This brings out the factors such as, purpose, 

and function. The 'purpose' involves the determination of what the objective 

should be. This basically answers the question, is this of use to the system? 

Similarly, the function involves the determination of accomplishing this purpose. 

This is elaborated with scenarios as discussed in Chapter 3. 
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6.2.1.2 Modelling Agents 

In Chapter 3, we discussed modelling the requirements of a real-time system. In 

the initial steps we identify the agents, and rewrite the requirements as a set of 

scenarios. 

By considering each agent, we can list all the functional elements of this agent. The 

functional elements are abstracted by the events it is associated with. 

6.2.1.3 Train Monitor 

We need a train monitor to detect the train approaching the region of interest, and 

the absence of train in the region of interest. The train monitor reports the same to 

the controller (another agent). The controller, in turn takes a decision depending on 

the report by the train monitor, and informs the gate (another agent) either to raise 

the gate, or close the gate. Thus effectively, we have three agents, the train 

monitor, the gate, and the controller. 

The train monitor essentially detects whether the trains are in the region of interest, 

or not. The function, and the purpose can be analysed with scenarios. 

It is difficult to generate the scenarios for the whole system. The number of 

scenarios not only grows out of hand, but it becomes tedious and difficult to 

analyse the situation. For such a reason we consider the scenarios of each agent. 

When we consider the scenarios of each agent, the scenarios fall into groups, 

making it easier to analyse. 
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The purpose of train monitor is to watch the region of interest. The train monitor 

reports the same to the controller. If we abstract this information as events, then 

The signature of the train monitor is: 

Train monitor detects that the train is approaching the region of interest -

denoted by event 'Arriving' 

Train monitor reports that the train is approaching the region - denoted by 

event 'Approach' 

Train monitor detects that no train is in the region of interest - denoted by 

event 'Out' 

Train monitor reports the absence of train - denoted by event 'Exit' 

This is summarised in Figure 6.1, by means of scenarios. 

'Arriving' 

'Approach' 

Scenario 1, when crossing 
region is idle 

'Out' 

'Exit' 

Scenario 2, when crossing 
region is busy 

Figure 6.1 Scenarios with train monitor as an agent 
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6.2.1.4 Controller 

The controller, essentially manages the operation of the gate, in co-operation with 

the train monitor, and the gate. When the train monitor informs about the arrival of 

a train, the controller actuates the gate to be closed, and similarly when no train is in 

the region of interest, the controller actuates the gate to be raised. 

Thus the signature of the controller is: 

Controller is informed by the train monitor that the train is entering the 

region of interest - denoted by the event 'Approach' 

Controller actuates the gate to be lowered - denoted by the event 'Lower' 

Controller is informed by the train monitor that no train is in the region of 

interest - denoted by the event 'Exit' 

Controller actuates the gate to be raised - denoted by the event 'Raise' 

This can be summarised as in Figure 6.2. 
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'Approach' 

'Lower' 

Scenario 1, when the gate 
is up 

'Exit' 

'Raise' 

Scenario 2, when the gate 
is down 

Figure 6.2 Scenarios with controller as an agent 

6.2.1.5 Gate 

The Gate accomplishes the task of closing and opening the gate. 

The signature of the gate is: 

Gate is being requested by the controller to lower the gate - denoted by the 

event 'Lower' 

Action taken to move the gate down - denoted by the event 'Gate_Down' 

Gate is being requested by the controller to raise the gate - denoted by the 

event 'Raise' 

Action taken to move the gate up - denoted by the event 'Gate_Up' 

This can be summarised as in Figure 6.3. 
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~ 
'Lower' 

~ 
'Gate_Down' 

Scenario 1, when the gate 
is raised 

Figure 6.3 Scenarios with gate as an agent 

~ 
'Raise' 

~ 
'Gate_Up' 

Scenario 2, when the gate 
is lowered 

Thus the railroad crossing system consists of three agents, the train monitor, the 

controller, and the gate. 

6.2.2 Higher Level Requirements 

The higher level requirements involve obtaining additional information from the 

customers. Additional information is needed to describe the constraints in the 

operation of the agents. 

6.2.2.1 Train Monitor 

In the scenario of Figure 6.1, the train monitor must report the controller about the 

arrival of a train at the earliest. This restriction is a temporal constraint on the train 

monitor. The scenario of Figure 6.1 is modified in the Figure 6.4 to describe the 

timing restriction. 
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'Arriving' 
x=O 

'Approach' 
x<l 

Scenario 1, when crossing 
region is idle 

'Out' 

'Exit' 

Scenario 2, when crossing 
region is busy 

Figure 6.4 Scenario of train monitor with timing constraint 

We can translate the behaviour of train monitor, as a TRL process as shown below. 

Process Sensor 
begin 

sl : if (Arriving, i) then (Approach,j) where (j < i+l) & s2 $ 

s2 : if (Out, k) then (Exit, 1) $ 

end 

6.2.2.2 Controller 

Recall the scenarios described in Figure 6.2. The controller must operate in-time 

for the safe operation. This places temporal restriction on the controller. For 

example, when the controller receives the signal 'Approach' from the train monitor, 

it responds with the signal 'Lower' say within two time units. This is a safety 

167 



requirement. Similarly, the controller must open the gate at the earliest possible 

time. This is a liveness requirement. This requirement restricts the operation of 

controller, such that, the controller responds with the signal 'Raise' the gate say 

within two time units of having received the signal 'Exit' from the train monitor. 

This is shown in Figure 6.5. 

+ 
'Approach' 

y=O 

+ 
'Lower' 

y<2 

Scenario 1, when the gate 
is up 

+ 
'Exit' 

y=O 

+ 
'Raise' 

y<2 

Scenario 2, when the gate 
is down 

Figure 6.5 Scenario of controller with constraints 

Translating this behaviour in TRL we have, 

Process Controller 
begin 

s 1 : if (Approach, i) then (Lower, j) where (j < i +2) & s2 $ 

s2 : if (Exit, k) then (Raise, 1) where (l < k+2) $ 

end 
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6.2.2.3 Gate 

For the safe operation of the system, the gate must accomplish the job in-time. The 

gate must lower the gate, say within one time unit of receiving the request from the 

controller. Similarly the gate must be up say within 2 time units, but after one time 

unit of receiving the request 'raise' from the controller. This scenario is shown in 

Figure 6.6. 

+ 
'Lower' 

z=o 

+ 
'Gate_Down' 

z<1 

Scenario 1, when the gate 
is raised 

Figure 6.6 Scenario of gate with constraints 

Translating this behaviour in TRL we have, 

+ 
'Raise' 

z=o 

+ 
'Gate_Up' 

(z> 1) and (z < 2) 

Scenario 2, when the gate 
is lowered 
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Process Gate 
begin 

sl : if (Lower, i) then (Gate_Down,j) where (j < i +1) & s2 $ 

s2 : if (Raise, k) then (Gate_Up, 1) where (1 > k+l) and (1 < k+2) $ 

end 

As shown in Figure 6.7, the entire system is then the composition of the agents, 

Train Monitor II Controller II Gate 

Railroad Crossing System 

lfrain Monito~ 

( Controller 

Gate 

Figure 6.7 Railway crossing system as a composition of agents 

The event set of the system is the union of the event set of all three agents. As we 

discussed in Chapter 3, real-time system, are characterised by real-time liveness, 

and safety. The liveness property only states that the gate once closed must 

eventually open. This is not sufficient to provide any information either for the 
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customers. or for designers. Where as real-time liveness, constraints the system 

temporally. Thus, 

Safety Property: The gate must be closed. before the train arrives at the 

crossing region. 

Real-Time Liveness Property: The gate is never closed at a stretch for more 

than 10 time units. 

The safety property states that the gate must be closed, before the train arrives at the 

crossing region. This ensures that the train can be inside the crossing region, only 

when the gate is down. 

if (Arriving. w) then (Gate_Down, x) endstmt 

Similarly, the real-time liveness property states that, once the gate is closed, it 

should be followed by a gate up within ten time units. 

if (Gate_Down, y) then (Gate_Up, z) where (z < y + 10) endstmt 

With this example we can observe an interesting property of the 'safety 

requirement'. Safety is a global requirement of the system. Safety requirement is 

normally a pure qualitative property. like robot must not crash a person, and so on. 

It may be noted that the safety requirement cannot be achieved without temporal 

restriction in a real-time system, as we observed in this example. 
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6.3 Another Example 

Truck Loading System 

This case study is adapted from [David and AlIa 92]. The problem statement is 

expressed as below, and described with Figure 6.8. 

A truck may move between points A and B. At A the operator may ask for 

the truck to be loaded. The truck proceeds up to point B. Upon arrival, it 

is loaded by opening a hopper. When loading is complete, the hopper is 

closed and the truck returns to A where its load is made use of. It will set 

off again when the operator asks for a fresh loading. In the initial state, the 

truck is in stand-by position at point A . 

~ 

I 
I 

A 

( ~ () 

Figure 6.8 A truck loading System 

I 
I 
B 

As we show, the problem description is far from complete. This illustrate pecific 

lapses with the system description and the need to employ a timed description 

Janguage to comprehend many of the requirements which are lurking behind. Now 

let's consider the basic operations of the system. 
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6.3.1 Basic operations of system 

System operation is initiated by the operator. An operation cycle consists of 

following moves: 

• move from platform A to B; 

• wait for the truck to be loaded, at platform B; 

• after loading is over, start moving back to platfonn A; 

• at platfonn A the load is to be utilised 

6.3.2 Resource Structures 

Requirements analysis begins by considering the environment. In the environment 

we can readily identify an operator, and a truck. To control the movement of truck, 

we should know about the position of truck. For such a reason we need to monitor 

the position of truck. Thus the system consists of four agents, an operator, truck, 

monitor, and controller. 

6.3.3 Modelling Agents 

Requirements is elicited by classifying the features perceived with each agent 

individually. System behaviour is then the composition of the behaviour of the 

agents. 
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6.3.3.1 Operator 

We consider that an operator presses a switch to initiate the system operation. We 

assume that it is a snap-action switch. A snap action switch is normally open and 

makes a non-maintained contact when pressed. When a switch is operated, a 

request is sent to the controller, to operate the system. Thus the scenario of 

operator is: (shown in Figure 6.9) 

'Switch_pressed' 

'Operate' 

Figure 6.9 Scenario of operator 

The signature of Operator is: 

The switch is pressed - denoted by the event 'Switch_pressed' 

Request sent to controller - 'Operate' 

6.3.3.2 Truck 

Truck moves in both the directions, this means the objective of a truck is to move 

towards platform B (forward) or towards A (reverse). Thus at a given time the 

truck is either stationary, or moving forward, or reverse. 
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The truck movement is managed by the controller. The three scenarios that arise 

with the truck are: to move forward, to move reverse, or to stop. Let's consider 

each individually. 

To move towards platform B 

I I 
I 

W () o () • 0 0 
A Rl R2 B 

Figure 6.1O(a) Truck moving in forward direction 

The truck can start moving forward, only with the request from the controller. 

Let's say initially the truck is at position Rl, and starts moving towards B with the 

request, 'Move forward'. Initially the truck moves at a slow pace, and then 

increases the speed at R2. The scenario of this is shown in Figure 6.1O(a) and 

Figure 6.1 O(b). 

'Gojorward' 

Figure 6.1 O(b) Scenario representing the truck moving towards platform B 
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To move towards platform A 

TI I 
[2 ): 0 Q Q ... 

A ~ 4 B 

Figure 6.11(a) Truck moving in reverse direction 

The truck can start moving towards platform A, only with the request from the 

controller. Let's say initially the truck is at position L1, and starts moving towards 

A with the request, 'Move reverse'. Initially the truck moves at a slow pace, and 

then increases the speed at L2. Such a scenario is shown in Figure 6.11 (a) and 

Figure 6.11(b). 

'Move_reverse' 

'Increase_speed' 

Figure 6.11 (b) Scenario representing the truck moving towards platform A 
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To stop the truck 

The moving truck requires to be stopped at Platform B, and A. The moving truck 

cannot be brought to halt suddenly. This activity involves two sub activities viz. 

making the truck to decrease the speed, and then to halt. The two scenarios are as 

shown in Figure 6.12 

+ + 
'Go_slow' 'Stop' 

+ + 
'Decrease_speed' 'Halt' 

Step 1 Decrease the speed Step 2 Halt the moving truck 

Figure 6.12 Scenario while stopping the truck 

Thus the signature of the truck is: 

The controller requests the truck to move towards 

platform B - 'Movejorward' 

The truck starts to move towards platform B - 'Gojorward' 

The truck increases the speed - 'Increase_speed' 
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The controller requests the truck to move towards 

platform A - 'Move_reverse' 

The truck starts to move towards platform A - 'Go_back' 

The controller requests the truck to move slow - 'Go_slow' 

The truck decreases the speed - 'Decrease_speed' 

The controller requests the truck to stop - 'Stop' 

The truck stops - 'Halt' 

6.3.3.3 Monitor 

The truck must stop at Platform B, during loading operation, and at Platform A 

during unloading. To stop the truck at a platform, the position of truck relative to 

the platform must be known. The monitor reports the position of truck with respect 

to the platform. We assume that the monitor also watches the loading of truck at 

Platform B, and reports the same to the controller. 

As remarked above truck is halted in two steps, first by decreasing the speed, and 

then after a while the vehicle is halted. For such a reason, the monitor first reports, 

that the truck is approaching towards the platform, and then the truck's arrival at a 

platform. 

Thus the monitoring operation is as shown in Figure 6.13. 
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~ ~ ~ 
'T_closer' 'T-enter' 'Loadin~done' 

+ + ~ 
'Approach' 'Arrived' 'Load_over' 

Figure 6.13 Scenarios representing the purpose of 'monitor' 

The signature of Monitor is: 

The monitor observes the truck approaching a platform - 'T _closer' 

The monitor reports to the controller that the truck is arriving at a 

platform - 'Approach' 

The monitor observes the truck is entering a platform - 'T _enter' 

The monitor reports to the controller that the truck has arrived at a 

platform - 'Arrived' 

The monitor observes that the loading in to the truck is 

completed - 'Loading_done' 

The monitor reports to the controller that the loading is 

completed - 'Load_over' 
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6.3.3.4 Controller 

Controller manages the movement of truck in co-operation with the monitor, and 

the operator. We assume that the loading, and unloading operations are not 

dependent on the controller. The scenarios with the controller are: 

(1) to move the truck from A to B (with operator request); 

(2) to move the truck from B to A (when loading is completed); and 

(3) to stop the truck at a platform 

The controller initiates the loading operation, with the request from the operator. 

The controller similarly starts the unloading operation (i.e., moving the truck from 

B to A) after the loading is done at platform B. Thus the scenario of controller 

pertaining to this operation is as shown in Figure 6. 14(a). 

~ 
'Operate' 

~ 
'Move_forward' 

Scenario 1 Initiate the 
loading operation 

~ 
'Load_over' 

~ 
'Move_reverse' 

Scenario 2 Initiate the 
unloading operation 

Figure 6.14(a) Scenarios of 'controller' for moving the truck 
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A truck is stopped by knowing its position with respect to the platform. The 

position of truck is reported by the monitor. The controller commands the truck to 

decrease the speed, and then to stop as shown in Figure 6.14(b). This operation is 

done in two steps for the reason of safety. 

'Approach' 

Scenario 3 Reduce the 
speed of the Truck 

'Arrived' 

'Stop' 

Scenario 4 Stop the Truck 

Figure 6. 14(b ) Scenarios of 'controller' for stopping the truck 

Thus the signature of the controller is: 

The operator signals the controller to start the operation - 'Operate' 

The controller requests the truck to move towards 

platform B - 'Movejorward' 

The monitor reports to the controller that the loading is 

completed - 'Load_over' 

The controller requests the truck to move towards 

platform A - 'Move_reverse' 
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The monitor reports to the controller that the truck is approaching the 

platform - 'Approach' 

The controller requests the truck to go slow - 'Go_slow' 

The monitor informs the controller that the truck has arrived at a 

platform - 'Arrived' 

The controller requests the truck to stop - 'Stop' 

6.3.4 Higher Level Requirements 

At this stage the requirements described above are refined in consultation with the 

users. We may not need any refinement at the function of operator, as it is very 

simple. 

6.3.4.1 Operator 

Translating the behaviour of operator in TRL we have: 

Process Operator 

begin 

sl : if (Switch_pressed, i) then (Operate, j) $ 

end 

Let's consider the operation of the agent 'truck'. 
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6.3.4.2 Truck 

As indicated in Figure 6.1 O(b), and Figure 6.11 (b), the speed of the vehicle has to 

be increased after some time since it started to move. A timing constraint of this 

sort has both a minimum, and a maximum timing constraint33 associated with it. 

In Figure 6. lO(b) , and Figure 6. 11 (b), we indicated that the speed of the truck can 

be increased after some time elapses, since starting the vehicle. The refined 

scenarios with the temporal constraint is shown in Figure 6.15(a). 

'Move_reverse' 

'Increase_speed' 'Increase_speed' 

i> 2 and i< 5 j > 2 andj < 5 

Figure 6.15(a) Scenarios of 'truck' with constraints, while in motion 

33 A minimum timing constraint, restricts an event to occur after a stipulated delay, and a 

maximum timing constraint enforces an event to occur within a maximum time. 
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Recall the scenario considered in Figure 6.12. In this scenario the truck is required 

to stop at a platform. The truck has to be stopped within some time. This is 

shown in Figure 6.15(b) 

k=O 

'Decrease_speed' 

k<4 

Step 1 Decrease the speed 

'Stop' 
1=0 

'Halt' 
I < 2 

Step 2 Halt the moving truck 

Figure 6.15(b) Scenarios of 'truck' while stopping at a platform with the stipulated 

constraints 

Translating the behaviour of truck in TRL we have: 
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Process Truck 

begin 

end 

6.3.4.3 

sl : if (Movejorward, il) then (Gojorward, i2) ; (Increase_speed, i3) 

where (i3 > i2 + 2) and (i3 < i2 + 5) & s2 

elsif (Move_reverse, j 1) then (Go_back, j2) ; (Increase_speed, j3) 

where 03 > j2 + 2) and 03 <j2 + 5) & s2 $ 

s2 : if (Go_slow, kl) then (Decrease_speed, k2) 

where (k2<kl +4) & s3 $ 

s3 : if (Stop, 11) then (Halt,12) where (12 < 11 + 2) $ 

Monitor 

Considering the scenario discussed in Figure 6.13, there are not any vital 

constraints on this. This behaviour in TRL is expressed as below. 
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Process Monitor 

begin 

sl: if (T_closer, il) then (Approach, i2) 

elsif (T _enter, j 1) then (Arrived, j2) 

elsif (Loadin~done, kl) then (Load_over, k2) $ 

end 

6.3.4.4 Controller 

The scenarios concerned with the controller is discussed in Figure 6.14(a) and 

Figure 6. 14(b). The controller actions are time constrained. In Figure 6. 16(a) the 

temporal requirements for initiating the loading and unloading operations are 

shown. 
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'Operate' 
i=O 

'Move_forward' 

i<2 

Scenario 1 Initiating 
the loading operation 

'Load_over' 

j=O 

'Move_reverse' 
j<2 

Scenario 2 Initiating 
the unloading operation 

Figure 6.16(a) Temporal requirements while moving the truck 

Similarly Figure 6. 16(b) describes the temporal requirements while stopping the 

truck at a platform. 

'Approach' 

k=O 

k<4 

Scenario 3 Reduce the 
speed of the Truck 

'Arrived' 

1 = 0 

'Stop' 
1<2 

Scenario 4 Stop the Truck 

Figure 6.16(b) Temporal requirements while stopping the truck 

187 



These scenario of the controller are described in TRL as below. 

Process Controller 

begin 

sl : if (Operate, il) then (Movejorward, i2) 

where (i2 < il + 2) & s2 

elsif (Load_over,jl) then (Move_reverse,j2) 

where (j2 < j 1 + 2) & s2 $ 

s2 : if (Approach, kl) then (Go_slow, k2) 

where (k2 < kl + 4) & s3 $ 

s3 : if (Arrived, 11) then (Stop, 12) where (12 < 11 + 2) $ 

end 

Here we have assumed that the material (to load into the truck) is always available 

at platform B, or the operator will have gathered that information before starting the 

operation. The entire system is then a composition of the agents discussed above. 

Thus the truck loading system as shown in Figure 6.17 is Operator II Truck II 

Monitor II Controller 
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Truck Loading system 

( Operator I 
(Truck I 

Monitor 

Controller 

Figure 6.17 Representing the truck operating system 

6.4 Observations 

In the light of the arguments presented in the earlier chapters, and the case studies 

advanced here, we can deduce the following observations. 

An understanding of the system can spring from concentrating on the needs, rather 

than concentrating on the finer points (the desires). The needs are the requirements 

that must be met under all circumstances. The desires are the requirements that 

must be taken into consideration. If we classify the desires, depending on their 

importance such as major, medium, and minor, then it may be of help to negotiate 

these requirements at a later stage. 

Real-time systems control the physical processes. The needs can be better 

understood by understanding the domain of the controller, as the characteristics of 

the controller depends upon its domain. 

189 



The technical tasks are performed with the help of many technical artefacts, such as 

machines, and components. These artefacts have unique use in the system. The 

tasks of these components are normally too varied and complex. Depending on 

their use, the requirements engineer has to establish the particular purposes of these 

components. This helps to identify the agents in the system. The requirements 

determine the relationship between the agents. The functional relationship can be 

identified based on the needs. The combination of the agents results in a structure 

representing the overall needs. 

This identification of agents allows a clear definition of the subsystems, so that they 

can be dealt separately. An agent has a purpose to the system. This purpose is 

perceived as a feature envisaged by the user. The feature is reported as a scenario. 

A scenario describes a purpose of an agent in a particular situation. This scenario 

can be abstracted as a sequence of events. Scenarios emphasise the important 

properties. The tasks of an agent can have task-specific constraints. These 

constraints are defined in the clearest possible terms. 

The requirements model provides a platform, on which further discussions with the 

users can evolve. Such a discussion increases one's understanding of the system. 

A model described in the terminology of the users, helps in the validation of the 

model. Validation of the model is to determine the usefulness of the model with 

respect to the needs. 

The requirements model addresses the abstraction. Some of the examples of this 

abstraction are: 

* Do not design a rail-road crossing system, but look for the means of 

describing the objective of the system. 
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* Do not design a rail-road crossing system, but look for the means of 

describing the properties of the system. 

From such formulations, the requirements can be derived in such a way that it does 

not prejudice the solution, and at the same time turns it into a function. 

6.5 Summary 

A well defmed model provides a basis for formal communication among developers 

and the stakeholders. TRL provides such a model. The use of TRL permits the 

system to be described intuitively. TRL provides an approach for stating the 

requirements without the inclusion of unwarranted design details, ensures 

unambiguous communication of intent, and is responsive to the invariable changes 

of requirements. 

191 



Chapter 7 

Evaluation 

The approach is evaluated with other representative 

approaches discussed in Chapter 2. The evaluation 

of the approaches is driven through a case study. 
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7.1 Introduction 

In the earlier chapter we studied the usefulness of the language TRL with case 

studies. The main impetus to the introduction of TRL arose from the awkwardness 

and poor readability of requirements caused by languages with arcane mathematical 

symbols, and by languages that included design level descriptions. We provided a 

rough genealogy of requirements and specification languages in Chapter 2. 

Requirements language must be chosen depending on the application in hand. The 

language should match the application as closely as possible. Real-time systems 

have specific requirements as studied in earlier chapters. Since requirements 

"maintainability" is often the largest desirable factor, the language must supplement 

the requirements without causing a sea of change in the whole of requirements 

document. 

In the following sections we evaluate our approach with some of the other 

approaches with the help of a case study. 

7.2 Cruise Control System 

7.2.1 History 

The problem was first posed by Ward (cf. Booch 86) and described in [Booch 86, 

Ward 85]. Booch uses the problem as a vehicle to explain object oriented concepts, 

while Ward Mellor 85 describe the problem with the Ward-Mellor approach. 

7.2.2 Informal Problem Description 

The input-output list as explained in [Booch 86] is as follows. 
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Inputs: 

Engine on/off 

System on/off 

Wheel pulse 

Accelerator 

Brake 

Increase/decrease 

Resume 

Output: 

Throttle 

System on/off 

Engine on/off 

Pulses from wheel 

Accelerator 

Brake 

Increase/decrease speed 

Resume~ 

Clock 

If on, denotes that car engine is on 

If on, denotes that cruise-control is on if engine is on 

A pulse is sent for every revolution of the wheel 

Digital indicator of how far accelerator has been depressed 

When brake is pressed, cruise-control reverts to manual 

control 

Increase or decrease the maintained speed if cruise-control is 

on, and acts as initial set function for cruise-control 

Resume the last maintained speed if cruise-control is on 

Digital value for engine throttle setting 

.. .. .. .. .. .. 
Throttle • Cruise- ... 

Control 
.. .. System .. .. .. .. .. . 

The problem description following the above input-output list is as follows. and is 

adapted from [Ward 85]. 
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A cruise control system relieves the driver of the responsibility for maintaining 

speed. The speed is maintained by monitoring the speed, and depressing, or 

accelerating to keep the actual speed close to the desired speed. 

The Cruise Control System operates only when the engine is running, and is 

automatically reset to its "off' status when the engine is stopped. When the driver 

turns the system on, the speed at which the car is travelling at that instant is 

maintained. The system monitors the car's speed by sensing the rate at which the 

wheels are turning and maintains desired speed by monitoring and controlling the 

throttle position. The monitoring is accomplished by a sensor that produces a 

signal proportional to the throttle's position. The control is exercised by changing 

the degree of openness of a valve, which in turn controls a suction apparatus that 

draws on a chain to open the throttle. The throttle closes itself when not being 

actively controlled. After the system has been turned on, the driver may tell it to 

"start increasing speed", which causes the system to increase the speed at a fixed 

rate. When the driver tells the system to "stop increasing speed", it will maintain 

the speed reached at that point. Similarly, the driver may tell it to "start decreasing 

speed", which causes the system to decrease the speed at a fixed rate. When the 

driver tells the system to "stop decreasing speed", it will maintain the speed reached 

at that point. 

Of course, the driver may turn the system off at any time. In addition, the driver 

can override the system to increase speed simply by depressing the accelerator 

pedal. This causes the chain controlling the throttle to go limp. During the period 

of greater speed, the system continues to attempt to maintain the speed previously 

set, and the system will return to the car to the previous speed when the driver 

releases the pedal. If the system is on and senses that the brake pedal has been 
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depressed, it will cease maintaining speed but will not tum off. The driver may 

subsequently tell the system to resume speed (provided it hasn't been turned off in 

the interim), whereupon it will return at a fixed rate to the speed it was maintaining 

before braking and resume maintenance of that speed. 

7.3 Application of Case Study 

In the following sections we provide solution to the cruise control system in 

SREM, RTRL, PAISLey, and TRL. 

7.3.1 SREM 

As discussed in earlier chapters (see Chapter 2) SREM provides a set of tools to 

support the system development during the initial phase [Bell 77, Alford 77]. RSL 

is the base language of SREM. SREM approach is based on analysis of the data 

exchanged at the interfaces between the processing system and its peripheral 

hardware. Here it is assumed that each processing step involves receiving an input 

and transforming into an output. RSL expresses requirements in terms of 

processing paths. The processing path represents the sequence of data processing 

required to operate on an input stimulus and produce an output response. RSL 

provides information on the specification of requirements through the use of flow 

graphs. The flows through the system are specified by means of R-nets or 

requirements networks. The primary descriptive component of RSL is R-net 

(requirements network). Each R-net specifies the transformation of an input 

message to an output message. Each R-net is a graph with nodes representing 

structural and logical nodes. Subnets are used to shorten the length of an R-net. 

Each input message interface provides input to a distinct R-net, and the presence of 

data at that interface serves as an enabling condition for the R-net. An R-net can 
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tenninate producing an output message. The actual activity of an R-net is described 

in terms of processing tasks (called ALPHAs) and events (E-nodes), which 

describe the enabling of other R-nets. 

R-net makes use of many symbolic representations. For example, the triangular 

nodes represent initiation and tennination points. The hexagonal nodes are external 

input and output interfaces. The rectangular nodes represent the ALPHAs, and the 

circular nodes are the E-nodes. The graph structure on the R-net uses OR nodes to 

specify the conditions of processing. The AND nodes represent the paths that must 

be executed in any order. 

7.3.1.1 Use of the Technique 

The technique starts from identifying the stimulus-response, then creating R-nets 

and ALPHAs. RSL provides textual description of R -net. The system is thought 

of as a net that consumes the input and produces the output. The net can consist of 

sub-nets to allow for the expression of large requirements. 

The SREM method follows the following phases for the production of 

specification: 

identification of the interface between controller and environment, and 

data description and processing; 

produce an initial deSCription using R-nets.; 

specify data and behaviour of ALPHA functions in RSL; 

validate the specification using validation points; 
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identify perfonnance specifications like timing constraints. 

Figure 7.1 shows how the network might look for the cruise control system. The 

circled plus indicates a condition for which the process may branch. In the 

example, either the left or the right branch may be taken. The circled ampersand 

indicates that processes must be followed in parallel, and in any order. The main 

tasks of cruise control system are to find the current speed, to calculate the desired 

speed, to get the brake status, and to calculate the throttle setting. To make the net 

readable we have used the sub-nets as shown in Figure 7.2, Figure 7.3, and Figure 

7.4. 
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RNET: CRUISE CONTROL SYSTEM 

Figure 7.1 R-Net de cription of the ystem 
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SUBNET: FIND_CURRENT PEED 

Figure 7.2 Subnet Description of getting the current peed 
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SUBNET: GETJJRAKE TATUS 

OTHERWISE BRAKE=.PRESSED 

Figure 7.3 Subnet De cription of setting the brake tatu 
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DECREASE ~PEED 

GET_COMMAND 
YROM~DRIVER 

INCREASE_SPEED 

Figure 7.4 Subnet Description of getting the de ired peed 

7.3.1.2 RSL Description 

After the R-net diagrams are written, then the component of a h diagram at' 

translated into their con'esponding RSL tatement . For exampl the R-n t depi t d 

in Figure 7.1 is written in RSL language a hown in igut' 7.5. Simi larly th R­

net in Figure 7.2 is depicted in Figure 7.6, Figur 7. in igur 7.7, and igur 

7.4 in Figure 7.8. 
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R_NEf: CRUISE CONlROL SYS1EM 

S1RUCfURE: 

INPUT_INTERFACE GE'CMESSAGE_FROMJ)RIVER 

DE'IERMINE_nIE_MESSAGE 

DO (MESSAGE = ON) 

DETERMINE_IF _ENGINE_ON 

DO (STATUS = ON) 

DO (GE'CBRAKE_STATUS AND CALCULA TE_DESIRED_SPEED AND 

FIND_CURRENT_SPEED AND FIND_ACCELLERA TOR-VALUE 

AND DE1ERMINE_SYSTEM_STATUS) 

FND 

DO (BRAKE_STATUS = SUSPENDED OR SYS1EM_STA TUS = OFF) 

IDlE 

1ERMINATE 

FND 

O1llliRWISE 

DO (CALCULATE_THROITLE_SE'J11NG_ VALUE) 

STORE_nIE_ VALUE 

PUT_THR<YI1LE_ VALUE 

TERMINATE 

FND 

aJ'HERWISE 

IDLE 

TERMINATE 

FND 

O1HERWISE 

IDLE 

TERMINATE 

FND 

FND 

Figure 7.5 RSL description of R-net shown in Figure 7.1 
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SUBNEr: CALCUlAlE_DESIRED_SPEED 

SlRUCfURE 

INPUT INIERFACE GE'CCOMMAND_FROM_DRIVER 

EX1RACCTHE_COMMAND 

DO (COMMAND = INCREASE SPEED) 

INCREASE_THE_SPEED_IN_SlEP _TILL_ABORTED 

DO (COMMAND = DECREASE_SPEED) 

DECREASE_SPEED_IN_S1EPS_TlLL_ABORlED 

arnERWiSE 

EQUA lE_DESIRED_SPEED_AS_CURRENT_SPEED 

fND 

STORE_THE_DESIRED_SPEED 

OUTPUT INTERFACE REfURN_THE_DESIRED_SPEED 

1ERMINAlE 

fND 

Figure 7.6 RSL description of R-net shown in Figure 7.2 

SUBNEr: FIND_CURRENT_SPEED 

STRUCfURE 

ACCUMULAlE_ WHEEL_ROTATIOIN 

GET_CONVERSION_FACTOR 

CALCULAlE_THE_CURREN'f_SPEED 

STORE_THE_ V ALUE_IN_DAT ABASE 

OUTPUT INIERFACE REPORT_CURRENT_SPEED 

1ERMINAlE 

fND 

Figure 7.7 RSL description of R-net shown in Figure 7.3 
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SOONEr: GECBRAKE_STATUS 

S1RUCfURE 

INPUT INIERFACE EX1RACCTHE_BRAKE_STATUS 

DO (BRAKE = PRESSED) 

EQUA1E3HE_BRAKE_STATUS 

CYmERWISE 

DE1ERMINE_IF _THE_OPERATION_ W AS_SUSPENDED_EARLIER 

DO (STATUS = YES) 

DETERMINE_IF _RESUMPTION_OF _SERVICE_REQUESTED_FROM_DRIVER 

DO (STATUS = YES) 

EQUATE_STATUS_AS_RBSUMB_OPERA TION 

CYmERWISE 

EQUA TE_STA TUS_AS_SUSPEND_OPERATION 

arnERWISE 

EQUA TE_STATUS_AS_BRAKE_NOT_PRESSED 

FND 

FND 

FND 

STORE3HB_BRAKE_STATUS 

OUTPUT INIERFACE REPORT_BRAKE_STATUS 

TERMINATE 

FND 

Figure 7.8 RSL description of R-net shown in Figure 7.4 

7.3.2 RTRL 

RTRL was developed by GTE Laboratories for expressing the requirements of 

telecommunication systems [Taylor 83, Dasaratby 85, Chandrasekharan 85, Casey 

82]. RTRL provides the textual description of finite-state machine (FSM). RTRL 

makes use of explicit use of states, transitions, and decision points (check points). 

Like RSL the system is analysed by stimulus-response sequences. The system 

after receiving a stimulus moves to a new state while providing a response. RTRL 
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SYSTEM_OFF 

ENGINE_OFF 

10 IDLE 

ENGINE_OFF 
I 

SYSTEM_OFF TOIDLE ~ oJ I oJ I L..d."I_1J1I 

BRAKE_PRESSfD 

ENGINE OFF 

10 IDlE ~ SYSTEM OFF 
I 

INC_SPEfD/ST ART_INC 
_SPEEl)_IN_STEPS 

ENGINE OFF 

RESUME 

BRAKE_ 
PRESSfD 

STOP _INC_SPEEl)/cEASE_ 

MAINT A1N_SAME_SPEED 

10IDLE .~.~._ .• ~ .. 10 IDLE SYSTEM_OFF 

10 ~ BRAKE_PRESSfD 
SUSPEND 

Fig.7.9 RTRL Description of the System 

TO OJRRENT ~ I.AA'UO 

SPEED 

10 
SUSPEND 

GET _ACCFLERA TI()!IC V AWE 
IOUfPUf_THROTTLE_ V 4 

10 IDlE 

FGINE_OFF 

SYSTEM OFF 



provides a transition block to describe the transition. The stimuli names are 

enclosed in parentheses in TRANSITION blocks. The transition block is delimited 

by the present state and next state. State names are described by the keywords 

INSTATE and NEXTST ATE. INSTATE is the name of the state at which the 

system is residing and NEXTSTATE is the state the system moves upon receiving 

the stimulus. Each INSTATE block defines the behaviour for a single system state. 

The system's behaviour that defines the next state can depend on internal data. To 

describe such situations a new element called decision nodes are defined. The 

decision nodes are analogous to GOTO in FORTRAN. Whenever a possible result 

is selected FSM follows that particular path defining a next state. 

7.3.2.1 RTRL Description 

In RTRL the FSM is first constructed for the problem, and then the FSM network 

is translated into RTRL code. In this sense both RSL, and RTRL share the same 

view of developing the requirements. The cruise control system in RTRL is as 

shown in Figure 7.9, and the code in RTRL for the Figure 7.9 is shown in 

Figure 7.10. 

%FEATURE idle_to_active; 

%FEA TURE tum_system_on; 

INSTATE idle; 

SEND system_on; 

TRANSmON; 

(system_on): 

DECISION iS3ngine_on; 

(engine_on): NEWSTATE currenUpeed; 

(engine_off): idle; 

ENDDECISION; 

(system_off): idle; 

ENDTRANSmON; 
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INSTATE currenLspeed; 

SEND request joe wheeLrotations; 

TRANSmON; 

(wheeLrotation): 

SEND caIcu]ate_the_currenupeed; 

NEWSTA TE vehicle_data; 

(system_off): NEWSTATE idle; 

(engine_off): NEWSTATE idle; 

ENDTRANSmON; 

INSTATE vehicle_data; 

TRANSmON; 

(brake_pressed): NEWSTA TE suspended; 

(increase_speed): 

SEND starUncreasing_speed_in_steps; 

NEWSTA TE: increase_speed; 

(maintain_same_speed): NEWSTATE (desire<Upeed); 

(decrease_speed): 

SEND starLdecreasing...speed_in_steps; 

NEWSTA TE: decrease_speed; 

(system_off): NEWSTATE idle; 

(engine_oft): NEWSTATE idle; 

ENDTRANSmON; 

INSTATE increase_speed; 

TRANSmON; 

( stop_increasing...speed): 

SEND cease_increase_speed; 

NEWSTA TE: desired_speed; 

(brake...,pressed): NEWSTA TE suspended; 

(system_oft): NEWST ATE idle; 

(engine_oft): NEWSTATE idle; 

ENDTRASmON; 

INSTATE decrease_speed; 

TRASITION; 

(stop_decreasing...speed): 

SEND cease_decraese_speed; 

NEWSTA TE: desired_speed; 

(brake_pressed): NEWSTATE suspend; 
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(system_off): NEWSTATE idle; 

(engine_off): NEWSTATE idle; 

ENDTRANSmON 

INSTATE desired_speed; 

SEND requesCfocacceleration_ value; 

TRANSmON; 

(gecacc_value): 

SEND outpuUhrottle_ value; 

NEWSTA TE: issue_throttle_ value; 

(brake-pressed): NEWSTATE suspend; 

(system_off): NEWST A TE idle; 

(engine_off): NEWSTATE idle; 

ENDTRANSmON; 

INSTATE suspend; 

TRANSmON; 

(resume): NEWSTATE desired_speed; 

(system_off): NEWSTATE idle; 

(engine_off): NEWSTATE idle; 

ENDTRANSmON; 

INSTATE issue_throttle_setting; 

TRANSmON; 

(brake_pressed): NEWSTATE suspend; 

(engine_off) NEWSTATE idle; 

(system_off) NEWST A TE idle; 

(done) NEWSTATE currenCspeed; 

ENDTRANSmON; 

Figure 7.10 RTRL description of the system shown in Figure 7.9 

7 .3.3 PAISLey 

The Process-oriented Applicative and Interpretable Specification Language was 

developed by Zave [Zave 82]. PAISley was targeted towards the specification of 

embedded systems. The detailed design description feature of the language was 
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described as an operational approach to the system specification [Zave 84]. The 

requirements is specified by the interacting model of system and its environment 

processes. The specification in PAISLey involves writing the code for the 

processes. Understanding of the system's behaviour is achieved by executing the 

code. A system is a structure of cyclic processes. Some of the real-time features 

like sequencing and control flow is difficult to specify [Zave 91 b]. 

As shown in Figure 7.11 the system and its environment is decomposed into sets 

of interacting processes. The processes are further defined by defining the state 

space of the process, and by declaring and defining the successor function (the 

function that defines how process changes the state), and exchange function (the 

function that defines how process interact). Figure 7.12 the definition of processes 

is shown. In figure 7.12: 

• The overall speed controlling process is defined as a function mapping the 

controller state into controller state; for example, it is capable of changing the 

state from "idle" to "output the throttle value to control the speed". To take any 

action the system depends upon the driver command, the engine status, the 

current speed data, the desired speed data, the accelerator data, and the brake 

state. 

• The update of the current speed data base depends upon the speed data 

measured from the wheel. The wheel speed measuring function reads 

hardware sensors attached to the wheel and converts into actual speed data. 

This data is stored in the database. 
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Fig 7.11 Primary Processors for the System and its Environment 



• The update of the required speed data base depends upon the command 

from the driver. The driver can set the required (desired) speed either above or 

below the current speed. 

• The update of the brake status depends upon the command (actions) from the 

driver. The brake status can be either idle, or pressed. The state changes 

depending on the driver action. 

• The engine state is independent of controller. Engine state can change from on 

to off. The system is operative only when the engine is on. 

Controller Cycle: 

Current Speed Update: 

CONTROLLER STATE '" DRIVER COMMAND DATA", CURRENT 

SPEED DATABASE", REQUIRED SPEED DATABASE", BRAKE 

STATE • ACCELERATOR DATA '" ENGINE STATUS -l 

CONTROLLER STATE 

CURRENT SPEED DATABASE", WHEEL DATA ~ CURRENT SPEEI 

DATABASE 

Required Speed Update: DESIRED SPEED DATABASE. DRIVER SPEED DATA ~ DESIREI 

Brake Status Update: 

Monitor Engine state: 

SPEED DATABASE 

BRAKE STATE '" DRIVER COMMAND DATA -+ BRAKE STATE 

ENGINE STATE ~ ENGINE STATE 

Figure 7.12 Declaration of PAISLey processes 

7.3.4 TRL 

TRL is aimed at the conceptualisation of real-time systems. In the literature, 

extensive studies have pointed out that most of the eventual system errors could be 

traced to problems in the requirements definition, due largely to the complexity of 
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extracting the requirements from volumes of narrative system description. TRL 

focuses on the needs and objectives of the system, and provides a framework in 

which the descriptions are expressed with the much needed simplicity. 

Framework for Modelling the System 

TRL establishes a framework by analysing and identifying the agents relevant to the 

system. As we begin to analyse a system, we find many parts that interact. These 

parts involve details of inescapable complexity. The fundamental task of 

requirements engineer is to mask this complexity while focusing on the aims of the 

system. TRL identifies agents that help us to make intelligent decisions regarding 

the separation of concerns, and provides an economy of expression. 

Modelling Agents 

In this section, we briefly describe the role played by each agent. An agent has a 

specific responsibility to the system. This responsibility defines its use. The 

detailed narration of the use of an agent is provided by scenarios. As explained in 

earlier chapters, the scenarios are characterised by events. 

Driver 

The main function of the driver can be abstracted by following scenarios. The 

driver can bring the system into operation by pressing a switch, and similarly can 

take the system out of operation by pressing another switch. While system is on, 

the driver can ask the system either to increase or decrease the speed in steps, and 

later aborts the process of varying the speed. 

213 



The scenarios are abstracted by events, and are as shown below. 

+ + 
'Activate' 'Deactivate' 

+ • 'System_start' 'System_putoff 

Figure 7. 13(a) Scenario of driver activating/deactivating the system 

Similarly the driver can increase or decrease the speed in steps. The corresponding 

scenarios are as shown below. 

'Start_reduce_speed' 

Figure 7 .13(b) Scenario of driver initiating the process of varying the speed 

Figure 7.13(c) Scenario of driver terminating the process of varying the speed 
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'Brake_pressed' 'Resume' 

'Brake_operated' 'Continue_operation' 

Figure 7 .13( d) Scenario of driver operating the brake 

The signature of the Driver is: 

Driver initiates the system to operate - Activate 

System status turned on - System_on 

Driver instructs the system to shut-down - Deactivate 

System status turned off - System_putoff 

Driver instructs the system to increase the speed in steps - Inc_speed 

Message sent to increase the speed in steps - Start_raise_speed 

Driver instructs the system to decrease the speed in steps - Dec_speed 

Message sent to decrease the speed in steps - Start_reduce_speed 

Driver instructs the system to stop increasing the speed - Stop_inc_speed 

Message sent to stop increasing the speed in steps - Stop_raise_speed 

Driver instructs the system to stop decreasing the speed - Stop_dee_speed 

Message sent to stop decreasing the speed in steps - Stop_reduce_speed 

Driver presses the brake - Brake_pressed 

Message sent to denote that the brake is operated - Brake_operated 

Driver requests for the resumption of service - Resume 

Message sent to resume the operation - Continue_operation 

Static Constraints associated are: 
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Engine is on - engine_on 

Translating the above scenarios in TRL we have: 

Process Driver 

begin 

sl: if (Activate, il) and (engine_on) then (Sys_on, i2) & s2 % 

s2: if (Deactivate, j 1) then (Sys_putoff, j2) 

elsif (Inc_speed, kl) then (Starcraise_speed, k2) & s3 

elsif (Dec_speed, 11) then (Start_reduce_speed, 12) & s4 

elsif (Brake_pressed, ml) then (Brake_operated, m2) & s5 % 

s3: if (Stop_inc_speed, nl) then (Stop_raise_speed, n2) % 

s4: if (Stop_dec_speed, pI) then (Stop_reduce_speed, p2) % 

s5: if (Resume, q 1) then (Continue_operation, q2) % 

end 

Speed Sensor 

The Speed sensor, measures the current speed by monitoring the wheel rotations. 

A conversion factor is used to calculate the current speed with the accumulated 

wheel rotations. 

The scenario is as shown in Figure 7.14. 

The signature of Speed_Sensor is: 

System status turned on - System_on 

Wheel rotations are collected to measure the current speed - GeL wheeCrotations 

Conversion factor is recalled to calculate current speed - Get_conversion_factor 
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Current speed is calculated with the help of conversion factor - Cal3urrencspeed 

'Gee wheeCrotations' 

'Geeconversion_factor' 

'Cal3urrenCspeed' 

Figure 7.14 Scenario of 'speed_sensor' monitoring the current speed 

Expressing the behaviour in TRL we have: 

Process Speed_Sensor 

begin 

s1: if (System_on, tl) and (engine_on) then (Geewheel_rotations, t2) ; 

(GeCconversion_factor, t3) ; (Cal_currenespeed, t4) % 

end 
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Monitor 

The monitor, monitors the operator command to vary the speed. The desired speed 

varies, when the driver wishes either to increase or decrease the current speed. The 

speed is varied in steps till aborted. 

'Start_reduce_speed' 

Figure 7.15 (a) Scenario of 'monitor' start varying the speed 

'Stop_ varyin~speed' 'Stop_ varyin~speed' 

Figure 7.15 (b) Scenario of 'monitor' stop varying the speed 

The signature of Monitor is: 

Monitor recognises the request to start increase speed - Start_raise_speed 

Monitor takes action to raise the speed in step - Raise_speed_in_step 

Monitor recognises the request to start decrease speed - Start_reduce_speed 

Monitor takes action to decrease the speed in step - Reduce_speed_in_step 

Monitor recognises the request to stop increasing speed - Stop_raise_speed 
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Monitor recognises the request to stop decreasing speed - Stop_reduce_speed 

Monitor takes action to stop varying the speed in step - Stop_ varyin~speed 

The above scenarios are translated in TRL as below. 

Process Monitor 

begin 

sl: if (Start_raise_speed, el) and (engine_on) then 

(Raise_speed_in_step, e2) & s2 

elsif (Start_reduce_speed, fl) and (engine_on) then 

(Reduce_speed_in_step, f2) & s3 % 

s2: if (Stop_raise_speed, gl) then (Stop_varyin!Lspeed, g2) % 

s3: if (Stop_reduce_speed, hI) then (Stop_varyin~speed, h2) % 

end 

Controller 

Controller controls the vehicle speed by issuing the value for the throttle position. 

The throttle value is decided depending on the current speed, the desired speed, and 

the accelerator value. 

The scenario is as shown in Figure 7.16. 
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+ ~ ~ 
'Brake_idle' 'Brake_operated' 'Continue_operation' 

+ + + 
calculate_throttle_ value 'Suspend_operation' calculate_throttle_ value 

Figure 7.16 Scenario of 'controller' as an agent 

The signature of Controller is: 

Controller recognises that the break is idle - Break_idle 

Controller recognises that the break. is operated - Break_operated 

Controller recognises the continue operation request - Continue_operation 

Controller suspends the operation - Suspend_operation 

Controller collects the current speed data - GeCcs 

Controller collects the desired speed data - GeCds 

Controller collects the accelerator value - Gecacc_ value 

Calculate and output throttle value - Issue_th_ value 

The static constraint associated can be expressed as: 

system live == (sytem_active) and (engine_on) 

Translating the behaviour in TRL we have, 
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Process Controller 

begin 

sl: if (Brake_idle, al) and (system_live) then (Geccs, a2) ; (GeCds, a3) ; 

(GeCacc_value, a4) ; (Issue_th_value, as) 

elsif (Brake_operated, bl) and (system_live) then 

(Suspend_operation, b2) & s2 % 

s2: if (Continue_operation, c1) and (system_live) then (Get_cs, c2) ; 

(GeCds, c3) ; (GeCacc_ value, c4) ; (Issue_th_ value, c5) % 

end 

The entire system is then a composition of the agents discussed above. Thus the 

entire system is as shown in Figure 7.17 

Cruise Control System 

Driver 

(Speed_Sensor) 

Monitor) 

Controller 

Figure 7.17 Representing cruise control system 

7.4 Evaluation of What and for What? 

An evaluation is meant to determine the usefulness of a solution with respect to a 

given objective. An objective is fundamental here. The importance of a solution 
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must be gauged in terms of these objectives. Here we recall the evaluation criteria 

discussed in Chapter 2. 

The main criterion of requirements modelling is to promote the circumstances, in 

which requirements engineers can develop a clear understanding of the system. If 

this is achieved a requirements engineer is more likely to develop an accurate 

representation of the system. Identification of user's overall perception of the 

system helps to promote the requirements engineers' and users' understanding of 

how the system works. It is essential that the requirements engineer builds an 

accurate conceptual representation of the system. This is essential as the end 

product should meet expectations - the customer likely to assert. 

This conveys the factors such as: 

• is it possible to take this representation back to the users, in order for 

them to usefully comment and further explain, if necessary? 

• is this representation able to provide a generic description of the system? 

As discussed in Chapter 3, timing constraints involve both safety and temporal 

requirements. As explained in Chapter 5, it is necessary for the fonnalism to state 

all types of timing constraints that may arise in a system. Also it is necessary that 

the timing requirements be described easily, as these requirements are used by 

various parties including users. This conveys the factors such as: 

• how easy it is to reason about time in the formalism? and 

• is it possible to state all types of timing properties? 
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The problems with requirements (as explained in earlier chapters) are: 

• 

• 

• 

• 

ill-disciplined requirements; 

disassociation of validation from users; 

bulk of information; and 

inappropriateness of description languages. 

As computer controlled systems are expanding unabatedly, the systems become 

more specific, and the requirements language plays an increasingly significant role. 

Conceptual models are the abstract representations of the system which omit the 

fine details of the system, and faithfully reflect its externally observable 

characteristics. In this representation, whatever is represented is done so to the 

level of rigour and accuracy that there is an adequate basis for suitability 

assessment. Also, the representations are required to be in a medium, in which 

alterations can be more easily investigated. The representation medium must 

include: 

• 

• 

• 

ability to mirror real-time systems requirements, and to support a mechanism 

for formal communication of requirements within the structure identified by 

the model; 

ability to capture the realities of real-time system, with emphasis on dynamic 

constraints; and 

ability to describe the performance implications of timing constraints. The 

description of timing constraint must recognise not only the importance of the 

time with which the job has to be done, but also the hidden fact of what if the 

job could not be completed within the prescribed time. Temporal 
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requirements describe the constraints to be observed in a system. To consider 

the temporal issue seriously, the formalism must also incorporate a 

mechanism to describe the timing exceptions in the syntax of the language. 

7.4.1 Comparison of the Approaches 

Every technique is likely to have some kind of framework for rationalising concepts 

and requirements in order to allow clarity and professional communication. The 

same system can have different types of descriptions as shown above (with the 

cruise control system). We discussed the salient features of the techniques above. 

The example discussed above, highlights differences in philosophy and the 

approach taken by each of the techniques. 

As explained in Chapter 2. the requirements language has at least three goals: as an 

analysis tool; as a vehicle for human communication; and as a vehicle towards 

automation. In the following sections we drive our discussion of the techniques 

through these goals. Here we recall our earlier discussion of the approaches. and 

also the solution of the case study to comment on these characteristics. 

7.4.1.1 Analysis Tool 

Analysis comprises of descriptive representations that depict the motivation of the 

model. The basic motivation of the model is to describe the objectives. The 

objectives are achieved by strategies, the kind of descriptions that achieve the 

conceived goal. Traditional approaches have a bias towards functional 

decomposition. Such an approach normally results in a system that is rigid. and 

often unmaintainable [Heitmeyer 83]. 
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As explained in Chapter 2, a model can represent different perspectives. The three 

perspectives provide a representation for each class of player involved in the 

development of the system: requirements engineer, specifier, and designer. The 

requirements engineer has a conceptual representation of the product that serves 

some purpose. The specifier transcribes this perception of product into the 

operational model. Next the designer translates this representation into a solution 

model. 

As each perspective reflects a different set of constraints, the meaning or definition 

of the modelling language changes depending upon the emphasis of the 

perspective. For example, the RSL statements provide meaning for the specifier, 

while the constructs of PAISLey have a meaning for the designer. Since the 

emphasis of each perspective is different, the structure and the objective of the 

model is likely to be different. Since each language has a unique basic model, the 

meaning (and thus its usefulness) of the model is unique. 

In the following section we describe the approaches with dimensions of analysis, 

such as abstraction, localisation, uniformity, and temporal reasoning. The notation 

has to provide facilities that makes it easier to model the essential properties without 

getting into its details. Such a notation allows the important properties to be 

expressed and distinguished. 

As observed by many researchers (for example Luqi 88) SREM does not support 

abstractions very well. When a modeller tries to understand a system, the way the 

system is to be designed, then the computing aspects become more important than 

the conceptual understanding of the requirements. Commenting on the practical use 

of SREM, Scheffer et al [Scheffer 85] observe that the description of the system 
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takes the form of initial system specification. They express that, "it was developed 

to specify software requirements after the system requirements analysis phase has 

been completed, but before any detailed processing algorithms have been formed". 

As shown in the example, R-net provides a mechanism to decompose the 

requirements, in terms of ALPHAs. The RSL notation is used to define data access 

properties. The structures in RSL consists of primitives whose meaning may be 

unclear [Bell 77]. SREM does not provide a unified approach to define 

requirements. With any change in requirements more than one document needs 

modification. 

The abstraction level in RTRL depends on stimulus-response sequence. In large 

systems, it is difficult to think of a system's features in terms of stimulus-response 

[Davis 88]. Also as Taylor observes [Taylor 82] many of the system failures can 

be attributed to the system being viewed merely as a transformation of stimulus to 

response. RTRL does not provide any mechanism to decompose the requirements. 

The descriptions in RTRL follows the FSM description. Without the FSM drawing 

it is difficult to understand the description. RTRL as a modelling language is very 

inefficient. It is difficult to express the requirements of large systems as a 

monolithic state machine. Also such a description is difficult for the user and 

requirements engineer to visualise the activities in a system. 

PAISLey needs complete description of the way the functions are achieved. Zave 

[Zave 84] defends the criticism by stating the approach as operational. Zave [Zave 

91b] considers the three major activities in software development process as 

construction, validation, and implementation. A PAISLey specification is written 

as a set of function definitions. The activities like sequencing, or control flow is 
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difficult to specify [Zave 91b]. PAISLey provides a unified approach to specify the 

requirements. 

TRL stresses that requirements elicitation is not a design of the system, it is rather a 

statement of the need. (Here we recall some of the salient features of our approach 

discussed in earlier chapters). TRL consists of a defined approach to requirements 

elicitation. TRL provides a description of the real-world model. The system 

structure provided by the recognition of agents assists in evaluating the 

explanations obtained by the customers. Explanations obtained by the customers 

are in the form of scenarios. Scenarios comprise of events. The following 

descriptive elements provide an objective manner to determine how events interact: 

(1) What event occurred? 

(2) Who performed an event? 

(3) With what aim was an event performed? 

(4) What caused an event to occur? 

(5) Under what circumstances did an event occur? 

(6) By what means was an event performed? 

(7) When (at what time) was an event performed? 

Interpreting the explanations of an event with the above criteria provides an 

excellent understanding of the events occurring in the system. The above list of 

criteria is further explained below. 

What event occurred; is answered by the event name. An event name symbolises 

the unit of work performed. 
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Who performed an event; is answered by the name of an agent. The list of events 

performed by an agent provides the signature of an agent. 

With what aim was an event performed; is answered by the reason in performing 

this event. It provides an explanation on the importance of this event. 

What caused an event to occur; provides a reasonable explanation on the reactivity 

of the system. 

Under what circumstances did an event occur; provides explanation on the 

static constraints. For example, an event 'e' can occur only if the water temperature 

exceeds twenty five degrees. 

By what means was an event performed; provides explanation on the mechanics 

of the system. This provides details of 'how the event was performed'. 

When was an event performed; provides explanation on the temporal constraint of 

the event. Temporal requirement must be described at the application level as a 

requirement. A timing constraint described at the application level (as a 

requirement) makes one to think of the implications of satisfying or not satisfying a 

timing constraint, and this is the focal issue of referring to a timing constraint. 

Temporal Requirements: Rationale and Description 

Temporal requirements are the primary determinants of the functional correctness 

with real-time systems. In the earlier chapters we categorised and explained the 

influences of temporal requirements. The impact of timing constraints is felt in 

various stages of the system development cycle. Well defined timing constraints do 
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not influence a solution method, and provide more information about the desirable 

solution. Leveson [Leveson 90] points out that, simple primitives for timing, such 

as a time-out, do not adequately capture the complexities of time and therefore are 

inadequate for fully specifying and modelling timing requirements. 

In SREM the timing constraints are described over R-nets. A timing constraint is 

described with the help of validation points. Validation points are drawn as circles 

and inserted over R-nets. Validation points are labelled. A validation path is a 

series of validation points. A timing constraint is described over a validation path. 

For example in Figure 7.2 consider a timing constraint such that, the current speed 

is calculated within 2 seconds of accumulating the wheel rotations. To define a 

timing constraint over this path, a validation point is inserted after the alpha 

'accumulate wheel rotations' and after the alpha 'calculate current speed'. Then our 

2 second requirement is a descriptor of the path from one validation point to 

another. Description of timing constraint in R-net can span over several R-nets. 

and thus becomes difficult to visualise the requirement. 

Timing constraints in RTRL are expressed as a timer alarm. When the alarm 

expires, it causes a transition. This is similar to SOL way of defining timing 

constraints. The time-out (timer alarm) feature can describe the timing constraint 

between two events, and cannot describe timing constraints over several events. 

The description of timing constraint over several events in RTRL is similar to the 

description in SREM. For example. refer to the diagram described below 

(Figure 7.18). If the timing constraint over the path ABCD is 2 seconds, then it is 

described as 

LATENCY ABCD 2 
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s 

Figure 7.18 Timing Constraint on several events in RTRL 

The temporal requirements in PAISLey is again a time-out feature. There is no 

mechanism to state timing constraints over several events [Zave 82]. When the 

specification is executed, the simulator prints the timing of each event. The timing 

constraints, like time-out can be expressed. It is not possible to describe other 

complex timing constraints. As explained in Chapter 2, a timing constraint in 

PAISLey is described as a comment. 

TRL framework provides a means to better plan and integrate the real-time 

considerations. As demonstrated in Chapter 5 TRL handles all types of 

complicated timing constraints, and are stated very easily. For example, the two 

second timing requirement we discussed in this section, is a timing relation between 

the two events accumulate wheel rotations, and calculate current speed. TRL 

provides a concise notation for defining all complicated timing constraints. The 

description of temporal requirements is handled at a high level. The rigorous and 

extensive ability to handle all types of timing constraints is of particular concern to 

the requirements engineers. Real-time systems are often safety critical systems. 

Safety concerns the implication of timing constraints. The language as a tool of 

thought provides means to think in these aspects. 
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Criterion RSL RTRL PAISLey TRL 

Primary Real-time Telecommunicati Embedded Real-time 
application systems on systems. Can systems systems 
emphasis be used with all 

real-time 
systems. 

Perspecti ve Specifier User level Designer level User level 

Abstraction Detailed Stimulus- Design A the right 
description. response sequence orientation. granularity for 
Description Complete code users and 
oriented towards must be written. engineers. 
specification. 

Localisation Hierarchies of No localisation Process described Agents 
ALPHAs at characterised by 

implementation scenarios 
level 

Uniformity Makes use of Descriptions are Unified approach See PAISLey 
variety of at least two level: 
descriptions. like the FSM 
R-net, and RSL. diagram. and the 

code. 

Temporal Time values can Informal Restricted Can describe all 
reasoning be represented extension of temporal types of timing 

over ALPHA. timer facility to requirements constraints 
Timing FSM. 
description can 
span several 
R-nets 

Representation of Not addreSsed Not addressed Not addressed Addressed 
timing exception 

Table 7.1 Comparison highlighting the differences in the approaches 

7.4.1.2 Human Communication Tool 

Various people are involved during system development. This means that the 

requirements document has to be communicated explicitly among a number of 

231 



people. As pointed out in earlier chapters (see Chapter 1 and Chapter 2) the 

primary purpose of requirements document is to promote effective communication 

among developers and stakeholders. Given the various roles different people play t 

it is essential to communicate in order to ensure a common understanding of the 

desired system. Communication is needed among users, requirements engineers, 

specifiers, and developers in order to obtain a system that will reflect users' 

requirements. 

Constructing a large software system is not merely a matter of technical capability, 

but also a matter of communication. Problems arise because many people are 

involved in this phase from marketing, technical, financial, and the user group. 

The simplicity of the language aided with the absence of arcane mathematical 

symbols assists the persons in communication. People communicate but not very 

effectively. As described in Chapter 2, human communication improves with two 

vital characteristics: understandability, and modifiability. 

Understandability 

Understandability is an important but a difficult criterion to measure. 

Understandability is a subjective connotation. However understandability is often 

related with complexity. This means that anything that is highly complex is 

difficult to understand. If the complexity is simplified, it is made more accessible 

to a wider community, and more easily understood. The term 'complexity' is used 

in an informal way. As we are referring to the representation technique, simplicity 

(the absence of complexity) means that the technique must be both easy and fast to 

use. For the users, and acceptance testers the representation formalism must be 

easy to recall. Understandability is a means to achieve a clear idea of the concepts. 
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As described in Chapter 2, understandability is related to a number of 

characteristics, like structuredness, conciseness, self-descriptiveness, and 

readability. The stakeholders, and acceptance testers read the document for the 

purpose of evaluation, and these factors are important for them. 

Self-Descriptiveness: This quality is directly related the syntactic aspects of the 

language. Requirements document must use the terminology of the environment, 

the way the users interact with the system. The requirements document is 

descriptive, rather than prescriptive. The requirements language must provide 

suitable constructs for defining various constraints that the system must satisfy, and 

these constructs must reflect the nature of the environment. This results in a close 

correspondence between reality and notation. 

As expressed by Bell [Bell 77] the constructs in RSL may be unclear. The same is 

true for RTRL, as it is a description of FSM. PAISLey is very cryptic. As 

commented by many persons the descriptions in PAISLey is difficult to read and 

understand (for example, Davis 90, Stokes 91). The constructs in TRL follow the 

working rules of the user, and are meaningful and realistic in the context of real­

time system and its environment. 

Conciseness: The representation of the model influences the way in which different 

people perceive the system. A well chosen representation technique induces a clear 

conceptual understanding of the system for all concerned persons. When 

modelling complex systems, it is necessary to avoid detailed design descriptions. as 

it may be obtrusive to understanding the objectives of the system. 

Descriptions in RSL are detailed, and provides specification of the system 

[Scheffer 85]. Descriptions in RTRL provide a description of monolithic finite 
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state machine. PAISLey statements provide explicit design details. The framework 

in TRL acknowledges that the entities in real-time systems are reactive, and 

descriptions in TRL contain details relevant to that level. 

Structuredness: Human learning, and problem solving are greatly facilitated by 

meaningful structure. Meaningful structure is beneficial for representing 

environmental and computer concepts. A structure is meaningful if the users can 

relate the concepts with the components they work in every day life. A system 

represented as an organised set of components is in harmony with the mechanism 

the users can relate to, and (such a structure) is meaningful to assimilate advanced 

features. 

The structuring mechanism in SREM is by means of R-net and subnets. Each net 

or sub net describe a function or sub function. RTRL lacks any modularity. 

PAISLey provides modularity by defining the processes. TRL provides a structure 

of agents, a structure that the users can identify with the environment. 

Readability: As pointed out in Chapter 2, the ability to read a fragment of 

requirements is more important than the ability to write the same piece of fragment. 

Requirements document is likely to be read by many persons, and must be 

comprehensible. It is difficult to expect people to agree to a document if they 

cannot read the same. 

Both in SREM, and RTRL the requirements are described with the help of the 

diagrams: R-net in case of SREM, and FSM in the case of RTRL. PAISley code 

is difficult to read. The descriptions in TRL mimic the causal nature of reactive 

systems, and is easy to read in the absence of any cryptic declarations. 
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Modifiability 

It is simplistic to assume that all the requirements of a system can be captured at 

once, and then be described in the requirements document. In fact requirements are 

not captured, requirements are negotiated and agreed upon after a number of 

meetings and discussions. Requirements document like the development of a 

system follows an evolutionary process. Requirements evolve, changes must be 

made to the requirements document. As noted earlier (in Chapter 2) modifiability is 

associated with features such as structuredness, self-descriptiveness, extendability. 

and writeability. Modifiability provides means whereby changes in requirements 

are controlled. 

Extendability: As pointed out earlier, changes do occur in requirements, and needs 

to be accommodated in the document. Extendability ensures that the resulting 

changes are managed. With the associated features such as structuredness, and 

self-descriptiveness extendability simplifies the evolution. 

For example, consider a change to the requirements of cruise-control system 

described above. In the above description, when the driver presses the accelerator 

pedal (while the system is on) the system continues to attempt to maintain the 

previous speed. This requirement may later be recognised as a hindrance to the 

intentions of the driver, and a change may occur. The changed requirement, 

suggests that whenever the driver presses the accelerator pedal (while the system is 

on) the operation of the system must be suspended, and the system be brought to 

service, with the request (resume) from the driver. 

In SREM the changes occur in R-net, the R-net has to be changed to introduce the 

check the status of the accelerator alpha, and then decision be taken depending on 
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the accelerator status. RSL requires detailed information, and requires suitable 

modification in RSL. The data description in RSL requires modification. 

In RTRL the change is difficult to implement, as it lacks the notion of modularity. 

The FSM has to be re-written creating new states, and this distorts the FSM. 

Changes have to be incorporated in to the textual description of RTRL also. The 

error may creep in while changing the requirement, as the unchanged states may not 

reflect the belief held earlier. 

The changes to the requirements occur on the basis of discussion with the 

stakeholders. With descriptions in PAISLey the possibility of such a discussion 

may not be possible, as the descriptions are difficult to understand. Once the 

changes are identified, the detailed instructions in PAISLey needs to be modified. 

TRL approach identifies the agents, and its documentation is readable and localised. 

The description of agents has a high level of visibility, and is self-contained. An 

agent cooperates with other agents to achieve the desired goal. Modifications to the 

function of agent, makes change only in one part of the document and needs no 

change in the other parts of the document. Even if totally new functions are to be 

added, then a new agent may be created to achieve the desired goal. The structure 

of TRL advocates adaptability. 

For example, the change that we mentioned in the requirements of cruise control 

system can be incorporated in the description of 'controller' agent. The 

descriptions of 'controller' agent needs only another statement to be added to it. 

stating that if the 'accelerator pedal' is pressed then the system operation is 

suspended. 
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An important problem in large projects is the changes occurring in requirements. 

With our technique these changes can be incorporated easily without changing the 

whole organisation of the requirements document. The advantage comes from the 

localisation of the information. While in RSL and RTRL the information is 

processed in sequence, and any change is reflected in disturbing the whole 

organisation of the requirements document. With our technique the changes have 

to be determined with only the affected agents. While in other approaches the 

changes may have to be carefully determined as it can affect the whole definition of 

the system. 

Writeability: The information that is captured and documented is likely to change 

with the increased knowledge about the environment and the intended system. The 

requirements document must be easily updatable. The writeability dimension 

denotes how easy it is to create and update the document. Writeability improves 

with computer understandable languages. All the approaches considered here 

provide writeability. Once the requirements or change in the requirements are 

identified, the information can easily be documented. 

The above discussion is summarised in table 7.2. 
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Criterion RSL RTRL PAISLey TRL 

Self descriptive- Descriptions in Descriptions Descriptions are Descriptions by 
ness RSLmay be follow the FSM not intuitive and means of user 

unclear structure difficult to defined scenarios 
understand 

Conciseness Detailed design Monolithic finite Complete code Concise scenario 
description state machine must be written description. 

Structuredness R-netand Not addressed Processes Structure of 
ALPHAs described at agents categories 

implementation scenarios into 
level groups 

Readability Like FSM See RSL Concepts are not Scenario 
diagrams intuitive, and description with 

constructs are readable 
difficult to read constructs 

Extendability A small change Monolithic The hierarchies of Scenarios thai 
may disturb the nature of the process fall into groups 
whole net. document is description cope make the 
Hierarchies of difficult to with changes evolution easier 
ALPHA provide extend. A small 
some control. change can 

disturb the whole 
net. 

Writeability Document can See RSL See RSL See RSL 
easily be updated 

Table 7.2 Comparison highlighting the differences in the approaches 

7.4.1.3 Vehicle towards Automation 

System development is regarded as a series of model building activities. A good 

conceptual modelling approach accommodates the evolution of the model. As 

pointed out earlier in Chapter 2, the computer understandable language helps in 

propagating the changes, that occur in requirements. The issue of representing the 

requirements document is complicated by the frequent changes that occur in 
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requirements. Automated tools can be of help in propagating the changes. because 

of their ability to handle volume of data. Automated tools help in supporting the 

evolution of the model in few steps, like supporting the creation of test data. In 

general automated tool can support in the following functions: 

• 

• 

• 

• 

capturing new requirements; 

updating the requirements; 

inquiring the requirements (to check whether a requirement has been 

considered); and 

evaluating the requirements. 

Such a language helps in document creation. document polishing. and document 

production. Such a document can also be used to create test data automatically. 

The modelling approaches like SREM. RTRL. PAISley. and TRL are a suitable 

approach to use it as a vehicle towards automation. In these approaches 

requirements can be checked against a validation criteria. for example timing 

violations, or syntax errors. 

7.5 An Overview of TRL 

Requirements modelling roughly deals with the following activities: 

• grasp of the problem; 

• familiarisation with the problem; 

• presentation of the problem, and 

• validation of the problem. 
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Requirements modelling as seen by the above activities, is a user centred activity. 

During the system development a gulf arises between the users and system 

developers. The vocabulary of the two is entirely different. In the design of TRL, 

requirements modelling is projected as a bridge between the two different worlds, 

the world of customer, and the world of developers. 

The conceptual modelling process discussed earlier (see Chapter 3), provides an 

engineering approach to problem understanding. In this approach, when we use an 

agent, we use a representation. The power of an agent comes from the concept of a 

representational device. In fact I define an agent as an artificial device that serves a 

representational function. Agents are mediators between the customers, and the 

developers. A set of scenarios provides a concrete representation of the use to 

which the agent will be put. Our approach enumerates critical and typical scenarios 

that users want to do and need to do, to achieve the desired goal. The scenario 

description helps to reveal any mismatch. Scenarios are descriptive stories about 

the intended use of the system. Scenarios is a valuable tool for vaJidating the 

requirements. The scenario concept is a powerful one. It allows the user to know 

in advance whether the 'requirements engineer' has understood their needs. The 

importance of such a step cannot be over emphasised. Bubenko [Bubenko 86] 

terms the trend in system development as 'You Don't See What You Get'. In 

traditional system development phase, a user does often not have a reasonable 

understanding and feeling of what kind of a system he/she will get until the system 

is operational. Such a situation is mitigated here. Scenarios are used as a 

mechanism for mental prototyping. The various facets of this modelling approach 

is reported in [Sateesh 95a, Sateesh 95b, Sateesh 95c, and Sateesh 95d). 
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This concept is a well suited tool for constructing descriptions, and abstractions 

about the system. It is particularly well suited for the iterative nature of the 

conceptual modelling process. The description language TRL is used with a variety 

of problems. The use of TRL in MMI (Man-Machine Interaction) is reported in 

[Sateesh 94a], and the practicality of the language is also reported in [Sateesh 94b, 

Sateesh 94c, and Sateesh 94d]. 

7.6 Summary 

The point is not that one representation is superior to another, but that the different 

approaches have different properties, and priorities. We are of the opinion that the 

users must be able to comment on the proposed description of what the system 

does. This aspect of representation is of prime importance because requirements 

description is of constructing, analysing and documenting the description. After 

all, the primary purpose of the document is a description of the system that fulfils 

the client's needs. The document must be easily maintainable to take care of the 

changes occurring in the requirements. 

The TRL modelling technique is an effective approach. The technique allows the 

modeller to focus hislher attention on the needs and objectives of the system. The 

concept of agent provides better understanding of the requirements without any 

influence on the implementable aspect of the system. The means of description 

serve for describing the agents as well as for analysing, and documenting the 

specific use of them. 

Requirements description is intellectually tough. A requirements language can at 

most, alleviate the difficulty of the task. The important aspects of a system can 

only be discussed effectively by defining the use of a system. The use of a system 
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is captured through scenarios. Users can become frustrated, and confused if they 

are not able to visualise the proposed use of the system, which they expect. This is 

necessary to comment usefully and in detail, on specific features. This analysis 

provides a sound understanding of the work to be carried out by the system. These 

are the basic underlying viewpoints in our approach. 
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Chapter 8 

Summary and Conclusions 

A system has a well defined use to its community. 

The requirements must reflect those needs. A 

requirements model of a system must rely on the 

user level activities, and aid the human 

understanding and communication. In this thesis we 

proposed a novel approach suitable for the 

description of requirements of real-time systems. 
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Engineering in general is directed to build things according to the requirements -

with needed functional capability. Requirements of real-time systems are becoming 

increasingly complex. This increase in complexity is partly due to the increasing 

capability of microprocessors. Real-time systems are penetrating a wide range of 

applications like, industrial applications, military applications, and health care 

systems. Requirements of these systems are difficult to understand. This thesis 

has described the results of research into the problems of modelling the 

requirements of real-time systems. 

8.1 Thesis Summary 

Chapter 1 argued that the future systems are likely to be characterised by the 

desirable property of real-time systems. Real-time systems are time critical and 

reactive. These systems interact with physical devices, and perform complex 

functions. The requirements description of these systems must encompass these 

characteristics. Requirements is different from specification. Requirements 

description produces the conceptual model of a system, while specification 

produces the empirical model of a system. A requirements description must include 

the facilities to describe the dynamic nature of real-time systems. We contend that 

the requirements engineers must be provided with an approach that supports the 

description, analysis, and validation of the requirements. 

Chapter 2 reviews the requirements modelling area, that is of primary interest to 

this thesis. It gave an insight into the position of requirements modelling 

languages, and into the common ancestry of these languages. We examined the 

research efforts in the area, and noted that there is an issue to be addressed. With 

the traditional approach of modelling, it is difficult to visualise the application's 
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requirements. A conceptual model must describe both the static and dynamic 

aspects of the system. A conceptual model must reflect the collective (stakeholders. 

and requirements engineer) perception of the system. It is important that the 

requirements description reflects the stakeholders perception of the problem to 

validate the understanding of the problem. 

In chapter 3 a real-time system is viewed within a broad operational environment. 

with user as an integral part of the system. We present an engineering approach to 

derive the conceptual model of real-time system. Each phase is associated with an 

objective. This analysis suggests what infonnation to look for. and what analysis 

to be performed during each phase. The aim of this approach is the clear 

formulation of the system needs. The splitting of the conceptual modelling process 

into steps ensures that the essential links between problem definition, and 

objectives are maintained. The goals provide important criteria for the exploration 

of requirements. The important aspects of a system can be discussed effectively by 

defining the use of a system. Such an approach provides fonnal expression to the 

goals of the system. A systematic approach avoids time consuming errors due to 

the lack of information or bias. The purpose of an agent is to accomplish 

something. Scenarios include a simple elaboration of the wayan agent 

accomplishes a goal. Scenarios describe the use of agents, and reflect a user's 

belief about the system. 

Real-time systems are event-driven. and requires explicit description of temporal 

properties. Chapter 4 discussed a formal event model of a system. In this model 

we make use of dense time. The model describes the functional and temporal 

restrictions, using the same framework. This is done by enriching the elements in 

the domain, with an explicit time component. 
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The events are regarded as atomic. The events that overlap in time (continuous 

events) are represented by treating their initiation and termination as distinct atomic 

events. We associate an event symbol to each event. In our model the following 

phenomena can be noted: 

- events trigger the operations, 

- operations modify the state of the agents, and 

- agents are characterised by scenarios. 

Real-world systems often consist of several agents. The behaviour of an agent is 

then a possible event sequence, over the alphabet of event symbols. A system is 

regarded as a combination of concurrently acting agents. 

Chapter 5 discusses the description language TRL. A problem associated with 

requirements elicitation is the communication barrier between the two parties. the 

stakeholders and system engineers. Every one is aware how difficult it is to 

understand the description of a well known system, with complex descriptions. It 

is even more difficult to understand a non-existent system. with a complex 

description. There is a fair amount of evidence that the specification languages 

create more harm than good during requirements [Fraser 94]. The user level 

requirements are not readily recognisable when confined into such a structure. To 

alleviate such problems, we present TRL. Real-time systems are time sensitive. 

Qualitative approaches such as Allen's interval relations [Allen 83] face difficulties 

in representing and reasoning about metric constraints (restricting the distance 

between temporal events). Our model allows the representation of all types of 

timing constraints that may arise in a system. We also present a general 

classification of timing constraints, noting the limitation of classification provided 
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by Dasarathy [Dasarathy 85]. Our formalism conveniently handles all forms of 

temporal constraints. The syntax of the language also provides features to describe 

the time-related exception scenario. 

Chapter 6 demonstrates the practical use of our approach. TRL has been used for a 

number of problems discussed in the literature. In this chapter two standard case 

studies are reported. 

Chapter 7 discusses evaluation of our approach with the representative techniques 

discussed in Chapter 2. Evaluation is driven with the help of another standard case 

study. 

Chapter 8 is the conclusion and summarises the thesis. It also explores avenues 

for further research. 

8.2 Contributions 

A new approach to describe the requirements of real-time systems was presented. 

Among the salient features of the TRL model, is a fundamental notion of time, and 

compositionality. The payoff for this dual treatment is manifold. Requirements 

become more structured since they can constrain the system events. This model 

allows the representation of external environment and the controller along with the 

available resources, in a unique framework making it possible to study the 

properties of the system. The description language - TRL is small and simple. As 

Hoare [Hoare 81] observes, if the basic tool, the language is itself complicated, 

then it becomes part of the problem, rather than part of its solution. As Wirth 

[Wirth 95] expresses 'increasingly, people seem to misinterpret complexity as 

sophistication, which is baffling - the incomprehensible should cause suspicion 
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rather than admiration'. The simplicity reduces the number of errors made by the 

requirements engineer. As noted by Parnas [Parnas 94] a common error found in 

formal specifications is that the specifiers write down something that does not 

correspond to their intent. It is simple to describe the structure of a system and its 

properties in TRL, as it allows a requirements engineer to express the real world 

scenarios easily. TRL formalism helps to organise and understand a complex 

system, as it supports abstractions, and hierarchical decompositions. The 

constructs and abstractions provided by TRL are useful for modelling real-time 

systems, and controlling the complexity of large systems. 

A real-time system is viewed within a broad operational environment. An 

engineering approach is presented to derive the conceptual model of real-time 

systems. This layered approach ensures that the essential links between problem 

definition, and objectives are maintained. The approach enables an efficient 

interaction with the users. It encourages the user to reason on the requirements. 

The important aspects of real-time systems are the static and dynamic constraints. 

TRL handles both of these aspects well. TRL also provides a natural facility to 

describe the time related exception scenarios. This increases confidence in the 

users, and requirements engineer, as such decisions are not left alone to the 

imagination of designers. 

In process controlled systems the failures of computing system is often due to 

unexpected scenarios that arise between the environment and controller 

[Leveson 86]. The main difficulty in studying the interactions between controller 

and environment, is the lack of an approach, that provides a graceful transition 

from real world (non-computing) to concrete world (computing). The TRL 

formalism bridges this gap. Requirements engineer works between two worlds, 
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the world of user, and the world of system developers. Gougen [Gougen 92J 

terms the two worlds as 'the dry' and 'the wet' aspects. Gougen argues that 

reconciling the two worlds has a strong practical need, and this reconciliation may 

be the essence of requirements engineering. TRL as summarised in Chapter 7 

essentially achieves this. 

In TRL the information is presented in a way the user handles it. The benefits of 

the approach discussed allows the requirements engineer to speak in the users' 

language, and to view the interaction from the users' perspective. The advantages 

with TRL are twofold. First, concentrating on the user level terminology focuses 

the attention away from design issues. Secondly, the identification of agents 

allows the abstraction of key features without being lost in a mass of detail. The 

detail is available, but it is localised. This makes the requirements description 

hierarchically structured in terms of the levels of abstraction of the goals of the 

agents, and this undoubtedly is an aid to understanding. 

The TRL formalism captures naturally many aspects of the real world, while 

encapsulating the notion of discrete event system. During requirements analysis, 

validation is a process to gain confidence in the model. Validation is performed 

with stakeholders. There are many aspects of software requirements that can be 

most effectively validated by user inspection of the scenarios. Scenarios include 

something the agent wants to accomplish, which is associated with action. This 

essentially poses the question, what must be done in order to accomplish the 

mission? A scenario is an encapsulated description of achieving a specific 

outcome, under specified circumstances. Scenarios have two main uses: First 

scenarios can be used to understand the needs. Second, scenarios can be used for 

validating those needs. The scenarios can increase the confidence in the 
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requirements engineers, and users. This can be visualised as a process of 

mechanically reducing the requirements into a unique simple form. 

In a goal directed reasoning the engineer analyses the ways of achieving a desired 

goal. This reasoning provides an opportunity to identify unforeseen consequences. 

While in a data directed reasoning the engineer is attempting to interpret the data 

(associated with the situation) to identify the course of action. Jackson 

[Jackson 94] observes that concentration on solution is widespread, and all 

methods place their emphasis on describing a solution. According to Shemer 

[Shemer 87] such solution specification is the cause of many failures of software 

systems development. 

The approach advocated addresses the key issues. They are: 

I. The approach focuses on the features conceived by the users, and 

requirements are derived from these features. This need based 

concept reduces the tendency of requirements engineers to over 

specify the system, and thus step into the system design. The over 

specification cuts into the design freedom of system developers, 

making the system overly restrictive. 

2. The description focuses on the important objectives, while 

emphasising the constraints to be met by the system. 

3. As the description of the requirements is in the terminology of the 

users, it allows the users to provide valuable comments on the 

model. 
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Thus the approach is effective for requirements description. The benefits of this 

approach are that it enables the stakeholders and requirements engineers to develop 

a shared understanding of the needs. 

8.3 Directions for Future Research 

It is common in every research that, as some progress is made, a substantial 

amount of further work is generated. The work described here is no exception. In 

this section we highlight the areas in which the research presented here can be 

further extended. 

Specification - - - System 

Figure 8.1 Position of TRL in system development 

As described in Figure 8.1 TRL provides a bridge between the scruffy world 

(real world), and the neat world34 (of specification). Please note in Figure 8.1, we 

are not advocating any life cycle, but are highlighting the main activities during the 

development of a system. Reviewing the Figure 8.1, we can identify two areas for 

34 We are using the terminology as used in 3rd European Software Engineering Conference. 1991 

(for example see [Greenspan 91] ). 
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further research, as shown in Figure 8.2. The objectives of the areas are (1) to 

make sure, and (2) to know more. These are explained below. 

Making Sure 

Specification System 

Knowing More 

Figure 8.2 Identifying the areas for further work 

8.3.1 Making Sure 

Any software system, undergoes mainly three types of testing, the module testing, 

integration testing, and acceptance testing. In this section we are interested in 

acceptance testing. Acceptance testing (AT) is normally carried out with the 

stakeholders. This testing is carried out on the real hardware, normally in the same 

environment where the system is likely to be installed. Some times, an external 

agency may also be involved in validating the system. This external agency 

comprises of specialists appointed by the stakeholders to validate the system. 

This process (AT) consists of three basic activities: (1) generation of detailed test 

plans, (2) the documentation of test results to check the progress, and 
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(3) agreement on the resolution of test results, and procedure on retest of the defect 

tests. In this process the generation of test data is dependent upon the requirements 

description of the application. In this sense, acceptance testing, is the testing of the 

system against the needs of the stakeholder. The purpose of generating the test data 

is to establish a means to formally demonstrate that the system to be delivered 

performs according to the requirements. As shown in Figure 8.3, it is possible to 

generate the test data automatically [Weyuker 94]. 

Software 
Requirements 

Test plan 
generator 

Figure 8.3 Automatic generation of test data 

Test scenarios 

Another interesting area is the design of a query language (knowing more) which is 

discussed below. 

8.3.2 Knowing More 

The goal of requirements engineering is to increase the understanding of the 

requirements. This is partly achieved by the design of TRL which is both 
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understandable, and executable. However the understanding of the requirements 

both by the stakeholders, and system engineers increase in the presence of a 

querying language [Potts 94]. The purpose of querying language (now on referred 

as RQL - Requirements Querying Language) is to construct queries against the 

requirements expressed in TRL. RQL makes it possible to gather information on 

properties of the system. A query singles out a behaviour based on the properties 

supplied by the query. RQL increases the capabilities of requirements inspection35• 

Requirements inspection, is a process to provide information, whether a particular 

property, or a scenario has been considered in the requirements description. A 

real-time system exhibits a great variety of behaviour, which may become difficult 

to analyse the properties of a system manually. The presence of RQL can mitigate 

this problem. 

8.4 Conclusion 

The study relating to the modelling of real-time systems presented here has struck 

an important chord in learning more about the requirements modelling of real-time 

systems. The research discussed here can be extended with a number of tools to 

span the various fields of requirements engineering. This research holds great 

potential for further work. 

35 We are borrowing the tenninology of [Fagan 86]. The details of Fagan's work is outside the 

scope of this thesis, and can also be found in [Sommerville 92], [Pressman 87]. 
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Appendix A 

Published Works 

The following publications have originated from the work reported in this thesis: 

[Sateesh 95a] 

[Sateesh 95b] 

[Sateesh 95c] 

T.K. Sateesh, "Real World Model for Real-Time Systems", 

in the Requirements Engineering and Knowledge 

Engineering track of KA W '95, (Ninth Knowledge 

Acquisition Workshop) Banff, Canada, March 1995. 

T.K. Sateesh, "Conceptual Model for Real-Time Systems: A 

Perspective", in proceedings of the 10th Annual ACM 

Symposium on Applied Computing (SAC '95), Nashville, 

Tennessee, February 1995 

T.K. Sateesh, "Making the Requirements of Process 

Controlled Systems Explicit", in proceedings of the 28th 

Annual Hawaii International Conference on System Sciences 

(HICSS-28) Maui, Hawaii, January, 1995 
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[Sateesh 95d] 

[Sateesh 94a] 

[Sateesh 94b] 

[Sateesh 94c] 

[Sateesh 94d] 

T.K. Sateesh, "Representing the Conceptual Model of a 

Time Critical System", in proceedings of Groningen 

Information Technology Conference (GRONICS '95), 

Netherlands, February 1995 

T.K. Sateesh, "Modelling the Temporal Requirements of 

Man-Machine Interaction", in proceedings of the 1994 

Workshop on Information Technology and Systems (WITS 

'94) Vancouver, Canada, December, 1994, pp. 252 - 261 

T.K. Sateesh and P.A.V. Hall, "Eliciting the Requirements 

for Process Controlled Systems", in proceedings of the 

1994 International Computer Symposium (ICS '94) 

Hsinchu, Taiwan, 1994 

T.K. Sateesh and P.A.V. Hall, "Modelling the 

Requirements for Process Controlled Systems", in Software 

Quality and Productivity: Theory, Practice, Education and 

Training, Edited by Matthew Lee, Ben-Zion Barta and Peter 

Juliff, Chapman and Hall, pp. 88-91 

T .K. Sateesh, "Expressing Temporal Requirements of 

Man-Machine Interaction", in Integrating Human Factors 

with Software Engineering, Ed. by William E. Hefley, 

Human Computer Interaction Institute and Software 

Engineering Institute, Carnegie Mellon University, 

Pittsburgh, pp. 123 - 140 
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