
Open Research Online
The Open University’s repository of research publications
and other research outputs

Requirements modelling of real-time systems
Thesis
How to cite:

Sateesh, Tiptur K. (1995). Requirements modelling of real-time systems. PhD thesis The Open University.

For guidance on citations see FAQs.

c© 1995 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

Requirements Modelling of Real-Time
Systems

Tiptur K Sateesh B.Eng.

A thesis submitted

for the degree of

Doctor of Philosophy

~~ Op-b/\ UN'\J~~,::>

Department of Computing

September 1995

Av~r-~ ... --~: I-J., 1"Z- 35 N~
~. o~~b~c:o,,: ~ Uu.:; ,QQ5
~ (>~ ~~: ;5 ~e.p~~~J' 1'115

To my parents,

Krishnamnrthy and Chayalakshmi

ii

Abstract

Real-time systems are characterised by the critical nature of their missions, and the

demanding environment with which they interact. Real-time systems are used for

dedicated applications. Every application is the subject of special requirements

enforced by the customer. Considering the vital role that these systems play, it is

imperative that a systematic approach be adopted in modelling their unique

requirements. In this thesis I propose such a treatment.

Real-time systems are time critical. Temporal requirements are the timing

restrictions imposed by the application environment. Previous studies in

requirements modelling of real-time systems have focused on adding the notion of

time to modelling techniques of traditional systems without regard to the realities of

requirements modelling. The information should be presented in the way the user

handles it, and not the way which is convenient to the software engineer. I attempt

to understand the needs of the users better by modelling the real world as close to

the user's perspective as possible, and propose the Real World Model (RWM).

RWM is assumed to be developed by users, and requirements engineers. An

engineering approach to building the model is provided.

A real-time system has a well defined use to its community. A requirements model

must rely on the user level activities, and aid the human understanding and

communication. In the RWM, a real-time system is viewed as a set of concurrently

iii

acting automata, each representing a system entity. This model supports temporal

reasoning in easily described ways, for all classes of timing properties. A

generalised classification of timing constraints is provided.

A requirements modelling language facilitates the description of requirements, and

serves as a medium of communication among developers and stakeholders.

Jarke et al [Jarke 94] observe that there is a need for a requirements language that

manages the relationship between the meta-level domain scheme, and the scenarios

that actually instantiate the scheme under development. Here I propose Timed

Requirements Language (TRL) to bridge this gulf between the world of

stakeholders, and the world of specifiers. TRL has natural looking expressions for

formulating the needs. TRL has a number of novel features including the treatment

of causality, and the description of static, and dynamic constraints all integrated into

one uniform framework. TRL has been used with a number of systems. The

generality of the language is validated through its application to specific systems.

iv

Contents

Abstract ... i i i

L o t f F O

° ° IS 0 Igures •••••••.••••••••••.••••••.•••••••.•••.•.•••••.••••• XII

Acknowledgements ... x v i

1 Introduction .. 1

1. 1 Concept of Control .. 2

1.2 Context and Motivation '" 3

1.3 The Nature of Modelling ... 4

1.3.1 Requirements and Specifications4

1.3.1.1 Requirements .. 5

1.3.1.2 Specifications .. 5

1.3.2 Requirements Modelling ... 6

1.4 The Problem ... 7

1.4.1 Real-Time Systems are Safety Critical 7

1.4.1.1 Modelling Safety .. 9

1.4.2 Real-Time Systems are Time Critical 9

1.4.2.1 Modelling Timeliness 10

1.4.3 Real-Time Systems are Reactive ll

1.4.3.1 Modelling Reactivity 12

1.5 Scope of Requirements Model ... 13

1.6 Objectives .. 14

1.7 Structure of the Thesis .. 17

v

2 Requirements for Real-Time Systems 2 0

2.1 Introduction .. 21

2.1.1 Features of Real-Time Systems 22

2.2 Requirements Document. .. .24

2.3 An Overview of the Approaches ... 25

2.3.1 Data-based Approaches .. 26

2.3.2 State-based Approaches ... 27

2.3.3 Petri-net-based Approaches29

2.3.4 Process-Algebra-based Approaches 30

2.3.5 Logic-based Approaches .. 31

2.4 Requirements Languages ... 32

2.4.1 Comments on Specification Languages 33

2.4.2 Discussion of Features for Requirements Languages 34

2.5 Specific Languages .. 36

2.5.1 Structured Analysis and Design Technique (SADT) 36

2.5.2 Requirements Statement Language (RSL) 37

2.5.3 Real Time Requirements Language (RTRL) 38

2.5.4 PAISLey ... 38

2.5.5 Requirements Modelling Language (RML) 39

2.5.6 ERAE (Entity-Relation-Attribute-Event)40

2.5.7 FOREST ... 41

2.6 Discussion .. 41

2.7 Quest for a Requirements Language 43

2.7.1 Analysis Tool ... 44

2.7.2 Human Communication .. .47

2.7.3 Vehicle towards Automation 50

2.8 Related Issues .. 50

2.8.1 Requirements Engineering .. 50

2.8.2 Specification Languages ... 52

2.9 Summary .. '" .. 54

vi

3 Real World Model of Real-Time Systems 5 5

3.1 Introduction .. 56

3.2 Modelling the Real-Time System .. 56

3.2.1 Conceptual Modelling Process 60

3.3 A Railroad Crossing Example ... 62

3.4 Real World Model. .. 63

3.4.1 Concept of an Agent ... 65

3.4.2 Concept of Role .. 65

3.4.3 Agent Identification .. 66

3.5 System as a Web of Agents " 69

3.6 Building the Real-WorldModel ... 70

3.6.1 Modular Scenario Based Approach (MSBA) 72

3.6.2 Philosophy ofMSBA .. 74

3.6.3 Characteristics of MSBA .. 75

3.7 Modelling the Constraints .. 78

3.7.1 Static Constraints ... 79

3.7.2 Dynamic Constraints ... 80

3.7.3 Timeliness Requirements .. 83

3.7.3. 1 Safety Requirement 83

3.7.3.2 Liveness Requirement 84

3.8 Validation of the Requirements .. 85

3.9 Discussion .. 87

3.9.1 Summary .. 90

4 Time-Constrained Automata Model 91

4.1 Introduction .. 92

4.2 Characteristics of an Event " 92

•
4.3 Event-Based Model ... 94

vii

4.3.1 Event set. .. 94

4.3.2 The Perspective of Time ... 95

4.3.3 Point Structure of Time .. 96

4.3.4 Need for Dense Time .. 98

4.3.5 Timing AxiOIllS ... 99

4.3.6 Timed Event. .. 100

4.4 Abstract Model of a Real-Time System 100

4.4.1 ill - Automata .. 101

4.4.1.1 Acceptance of Infmite Words 104

4.4.2 Biichi Automata ... l05

4.4.3 Timed Scenarios .. 106

4.4.4 Technique to Represent the Timing Constraint 107

4.4.5 Multiple Clock Paradigm .. 108

4.4.6 Timed BUchl Automata .. 110

4.4.7 Related Information .. 110

4.5 Modelling an Agent ... 111

4.5.1 Composition of Agents .. 113

4.5.1.1 Modelling the Composition 113

4.5.1.2 Formalising the Composition 114

4.7 Summary ... 116

5 Timed Requirements Language - TRL 118

5. 1 Introduction .. 119

5.2 Basic Premises ... 120

5.2.1 Conception of Requirements 122

5.2.2 Timed Requirements ... 123

5.2.3 Description of Requirements 125

5.3 Conceptual Analysis .. 131

5.3.1 Cause - Effect Analysis .. 131

5.3.1.1 Condition ... 133

5.3.1.2 Effect ... 133

5.3.2 Types in TRL .. 135

viii

5.4 Aperiodic Behaviour .. 135

5.4.1 Situation Dependent Effects 138

5.4.2 Timing Constraints in a Conceptual Model. 140

5.4.2.1 Timeliness Requirements 142

5.4.2.2 Representation of Timing Constraints 144

5.4.3 Addressing What if Situations 148

5.5 Periodic Behaviour ... 153

5.6 Summarising the BNF .. 155

5.7 Summary ... 157

6 Case S tndy .. 159

6.1 Introduction .. 160

6.2 The Railroad Crossing Example " 160

6.2.1 Requirements - First Level .. 161

6.2.1.1 Environment Analysis and Modelling 161

6.2.1.2 Modelling Agents 162

6.2.1.3 TrainMonitor .. 162

6.2.1.4 Controller .. 164

6.2.1.5 Gate ... 165

6.2.2 Higher Level Requirements , 166

6.2.2.1 TrainMonitor .. 166

6.2.2.2 Controller .. 167

6.2.2.3 Gate ... 169

6.3 Another Example: Truck Loading System 172

6.3.1 Basic Operations ofSystem 173

6.3.2 Resource Structures .. 173

6.3.3 Modelling Agents ... !73

6.3.3.1 Operator .. 174

6.3.3.2 Truck ... 174

6.3.3.3 Monitor ... 178

6.3.3.4 Controller .. 180

6.3.4 Higher Level Requirements 182

ix

6.3.4.1 Operator .. 182

6.3.4.2 Truck ... 183

6.3.4.3 Monitor ... 185

6.3.4.4 Controller .. 186

6.4 Observations ... 189

6.5 Summary ... 191

7 Evaluation ... 192

7.1 Introduction ... 193

7.2 Cruise Control System .. 193

7.2.1 History ... 193

7.2.2 Informal Problem Description 193

7.3 Application of Case Study .. 196

7.3.1 SREM .. 196

7.3.1.1 Use of the Technique 197

7.3.1.2 RSL Description ... 202

7.3.2 RTRL .. 205

7.3.2.1 RTRL Description207

7.3.3 PAISLey ... 209

7.3.4 TRL .. 212

7.4 Evaluation of What and for What. ... 221

7.4.1 Comparison of the Approaches 224

7.4.1.1 Analysis TooL ... 224

7.4.1.2 Human Communication TooL 231

7.4 .1. 3 Vehicle towards Automation 238

7.5 An Overview ofTRL ... 239

7.6 Summary ... 241

8 Summary and Conclusions ••.•.•••.••••••••••••.••••••••.•••.• 243

8.1 Thesis Summary ... 244

x

8.2 Contributions .. 247

8.3 Directions for Future Research .. 251

8.3.1 Making Sure .. 252

8.3.2 Knowing More ... 253

8.4 Conclusion ... 254

Appendix A

Published Works ... 255

Bibliography .. 257

xi

List of Figures

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

4.1

4.2(a)

4.2(b)

4.3

5.1

5.2

Characteristics of analysis tooL .. .45

Characteristics of human communication tool48

Abstract model of a real-time system57

Different phases of conceptual model 61

Railroad crossing system ... 63

Agents of railroad crossing system ... 69

Elaborating the responsibility of train monitor 74

Notion of a scenario .. 76

Visualisation of a scenario ... 76

Association among the activities .. 77

Classification of constraints ... 78

Static constraints .. 80

Twin views of an agent .. 89

Dimensions of a scenario ... 89

Ordering the events ... 94

Transfonnational system .. 101

Reactive system ... l01

Timing constraint over many events 108

Behaviour in TRL .. 121

Process in TRL ... 122

xii

5.3(a)

5.3(b)

5.3(c)

5.4(a)

5.4(b)

5.5(a)

5.5(b)

5.5(c)

5.6(a)

5.6(b)

5.7

5.8

Syntax diagram of event .. 124

Syntax diagram of event and time parameter 124

Identifier ... 124

Syntax diagram of system ... 125

Syntax diagram of processes .. 125

Process definition .. 127

The body of a process ... 128

Behaviour definition ... 128

Behaviour expression .. 129

Next behaviour definition ... 129

Syntax diagram of special behaviour l30

Event sequence , 132

5.9 Scenario of aperiodic operation ... 136

5.10(a) Syntax of aperiodic expression ... 136

5.10(b) Syntax of 'initiator' .. 137

5.lO(c) Syntax of 'condition' .. l37

5.lO(d) Syntax of 'participator' .. l37

5.11 Syntax of modelling the situation dependent effects 138

5 .I2(a) Syntax diagram of aperiodic behaviour139

5.12(b) Syntax diagram of alternative event sequence 139

5.13 Time constrained events , ... 141

5.I4(a) Representation of a continuous event 142

5 .14(b) Attributes of timing constraint considering value function 142

5.15(a) Syntax of 'timing constraint' .. 144

5.15(b) Syntax of'timing factor' .. 145

5.I5(c) Syntax of 'timing duration' .. .145

5.15 (d) Syntax of 'integer' ... 145

5.15(e) Syntax of 'real' .. .146

xiii

5.16 Classification of timing constraints .. .l48

5.17 Modelling the temporal behaviour .. 150

5.18 Aperiodic behaviour with time-related exceptions 150

5.19(a) Syntax diagram of 'effect' ... 153

5.19(b) Syntax diagram of 'timed exception'l53

5.20 Syntax of periodic behaviour ... 154

6.1 Scenarios with train monitor as an agent 163

6.2 Scenarios with controller as an agent 165

6.3 Scenarios with gate as an agent .. 166

6.4 Scenario of train monitor with constraints 167

6.5 Scenario of controller with constraints 168

6.6 Scenario of gate with constraints ... 169

6.7 Railway crossing system as a composition of agents 170

6.8 A truck loading System .. 172

6.9 Scenario of operator .. 174

6.1O(a) Truck moving in forward direction ... 175

6.1O(b) Scenario representing the truck moving towards platform R 175

6.11 (a) Truck moving in reverse direction .. 176

6.11 (b) Scenario representing the truck moving towards platform A. 176

6.12 Scenario while stopping the truck .. 177

6.13 Scenarios representing the purpose of 'monitor' 179

6. 14(a) Scenarios of 'controller' for moving the truck 180

6.14(b) Scenarios of 'controller' for stopping the truck 181

6.15(a) Scenarios of 'truck' with constraints, while in motion 183

6.15(b) Scenarios of 'truck' while stopping at a platform with the

stipulated constraints ... 184

6.16(a) Temporal requirements while moving the truck '" 187

xiv

6.16(b) Temporal requirements while stopping the truck 187

6.17 Representing the Truck Operating System 189

7.1 R -Net description of the system .. 199

7.2 Subnet Description of getting the current speed200

7.3 Subnet Description of setting the brake status 201

7.4 Subnet Description of getting the desired speed 202

7.5 RSL description ofR-net shown in Figure 7.1 203

7.6 RSL description of R -net shown in Figure 7.2204

7.7 RSL description ofR-net shown in Figure 7.3 204

7.8 RSL description of R-net shown in Figure 7.4205

7.9 RTRL description of the system .. 206

7.10 RTRL description of the system shown in Figure 7.9 209

7.11 PAISLEY description of the system 211

7.12 Declaration of PAISLey processes ... 212

7.13(a) Scenario of driver activating/deactivating the system 214

7 .13(b) Scenario of driver initiating the process of varying the speed 214

7.13(c) Scenario of driver terminating the process of varying the speed 214

7 .13(d) Scenario of driver operating the brake 215

7.14 Scenario of 'speed_sensor' monitoring the current speed 217

7.15 (a) Scenario of 'monitor' start varying the speed 218

7 .15 (b) Scenario of 'monitor' stop varying the speed 218

7.16 Scenario of 'controller' as an agent " 220

7.17 Representing cruise control system .. 221

7.18 Timing Constraint on several events in RTRL , 230

8.1 Position of TRL in system development 251

8.2 Identifying the areas for further work 252

8.3 Automatic generation of test data ... 253

xv

Acknowledgements

This work has resulted from the advice, encouragement, and attention of many

people; I wish to thank them all.

My sincere thanks to my advisor Professor Patrick Hall for his continued support

during the course of this work. Amongst many shortcomings of mine, Pat had to

put up with my odd working schedules. He has taught me many things, and I am

really grateful for having been under his tutelage.

I wish to thank Professor Darrel Inee, Dr. David Benyon, Dr. John May,

and Dr. Hong Zhu for helpful comments. I also wish to thank Debbie Stone for

her friendship, and help.

I am indebted to my brothers Vijay, Ramesh, and Uday for their encouragement.

They have been a source of inspiration to me. It's a pleasure to acknowledge the

support of my sister-in-Iaws Rama, Mamatha, and Vani. As a child my interest in

learning was instigated by my father Krishnamurthy who owned an excellent

library, and my mother Chayalakshmi who encouraged me to spade through the

library. Thank you Anna and Amma for everything. Finally my thanks to Indira

(Anu) for her support and encouragement.

xvi

Chapter 1

Introduction

Computers are used extensively in industrial,

medical, scientific, and military systems. Many of

these systems operate under critical conditions. The

critical nature of these systems, coupled with their

inherent complexities, demand that a systematic

approach be employed while modelling the

requirements of these systems. This thesis proposes

such a treatment.

1.1 Concept of Control

Control is the essence of technology. The word control is usually taken to mean

regulate, direct, or command. The need to mechanise the process of achieving a

result is ever increasing. The early processes were primitive. They were controlled

and supervised manually. Considerable progress has been made since the

development of computers. The evolution of process control has been astounding

with the continued improvement in the capability of computer hardware l . A major

application of computers has been in the control of physical processes such as

controlling the traffic, regulating the power supply, and etc. In all such

applications computers monitor and control the functions. In process controlled

systems, an important aspect is the process dynamics i.e., the time behaviour of

changes in operating conditions. In all these circumstances computer has to adapt

to the changes. For such reasons scientists and engineers agree that these systems

are difficult to model, specify and design. This dissertation is however concerned

only with a subset of these activities. In specific, requirements modelling is the

subject of this dissertation. The remainder of this chapter introduces the

characteristics of these systems in more detail and shows how and why these

systems introduce unique problems into the requirements modelling process. This

study enables us to discover the objectives of a requirements model to be employed

with these systems. This work proposes an approach based on the objectives

identified.

1 There is a great factor of improvement in the ratio of the cost of the microprocessor. to its

capabilities. This has spiralled the ambitious growth of the process controlled systems.

2

1.2 Context and Motivation

A system which operates with a dynamic environment (variable environmental

conditions) is forced to operate with temporal constraints. The temporal restriction

depends upon the changes occurring in the environment. Such systems nonnally

operate with a number of physical devices, to monitor and control the environment.

These systems are termed differently depending on the area of application like

process controlled systems, embedded systems, discrete event dynamic systems,

and reactive systems. In general they can all be referred as real-time systems. The

word real-time emphasises the fact that

• time criticality is crucial for correctness rather than convenience, and

• a number of semi-independent activities must be coordinated.

These systems range in size from very large like air traffic control systems to much

smaller systems like patient monitoring systems. Real-time systems normally

interact with physical devices that have to be monitored and controlled. Real-time

systems perform complex functions like control of physical devices,

communication between various devices, and coordination of user interaction with

the system. Thus we consider a real-time system as a combination of interacting

elements forming a collective entity2. These systems are used for dedicated

applications. This means that every application is the subject of special

requirements enforced by the customers depending on the application environment.

2 Oxford dictionary definition for a system. "a set or assemblage of things connected. associated or

independent. so as to form a complex unity".

3

1.3 The Nature of Modelling

A model is a representation of the problem usually on a smaller scale, and

modelling is to create a model. A model represents the factors for the purpose

being considered. For example a 'model of a shopping complex' (say, displayed in

the city hall), does not provide any guidelines for the civil engineer to build the

shopping complex. The purpose of such a model is to gain the public opinion on

the proposed project. Model differs depending on its intended purpose. In fact a

system development can be regarded as a series of model building activities.

1.3.1 Requirements and Specifications

In the computing literature the two words, requirements, and specification are used

interchangeably, or mostly in conjunction. Abbott and Moorhead [Abbott 81]

proposed that a distinction be made between requirements and specification. In

their words, 'a requirements document defines the requirements of the system to be

built, while a specification explains how a system that meets those requirements

would look to the user'. In other words, requirements refer to the needs of the

user, while specification gives a description of the system that meets those needs.

In this work we use the two words requirements, and specification as two distinct

activities, and for such a reason we detail out, what is requirements?, and what is

specification?

4

1.3.1.1 Requirements

Requirements reflect high level aims, or goals. The requirements are essentially

conceptuaP. The requirements reflect the needs of the user, and are descriptive.

Requirements provides a description of the environmental oriented activities. This

phase is primarily an activity of determining the requirements. At this stage it is

only possible to validate the requirements model. The role of requirements model

is to act as input to a specification model.

1.3.1.2 Specifications

Specification, specifies the properties of a system to be developed. In other words,

specification is prescriptive. Gehani and McGettrick [Gehani 86] express very

clearly the intention of specification. They state:

'There are important benefits from writing specifications, i.e., stating in

precise terms the intended effect of a piece of software. For then it is

possible to talk about such issues as the correctness of an implementation, a

measure of the consistency between that specification and the effect of the

program. The range of benefits are actually wider than this: they relate to

the methods of programming, to possible approaches to verification and

validation of programs, and even to the management and control of large

software projects'.

3 Conceptual -(Oxford dictionary meaning) - that is conceived or taken into the mind.

5

Thus the issues concerned during specifications closely relate to the implementation

of a system. As mentioned earlier, in requirements explicit attention is given to the

environment, while in specifications according to [Wing 90] it is often neglected.

Sol [Sol 83] refers to the requirements model as 'conceptual model', and the

specification model as 'empirical model'. Conceptual model is based on the belief

that such a system is desirable from the human point of view. However whether a

design actually meets the expectations, can only be determined when the

'conceptual model' has been refined into empirically determinable characteristics.

1.3.2 Requirements Modelling

Requirements reflect a certain subjective desire. In other words, understanding a

system from the user perspective forms the requirements. As defined by a number

of researchers, requirements describe the functions to be performed by the system

from the viewpoint of user or external environment, without implying a particular

implementation [Heninger 80, Davis 79, Boehm 76]. During requirements

modelling the objectives of a system that characterise the user's needs are

documented and agreed upon.

From the external (user's) point of view, a system can be characterised by the

realistic descriptions of the service provided by it. Requirements document is the

place to record that information. Requirements document serves the user, specifier,

and acceptance tester. When a system is under acceptance testing, it is actually

testing the system against the needs of the user. Any error made in identifying the

requirements, may go undetected till the completion of the tests. Correction of such

an error involves extensive reworking of the complete system. As noted by

[Roman 85] and [Boehm 81] discrepancies discovered between the delivered

6

system and the requirements are the most difficult and expensive to correct, and

they may even make the entire system useless.

The basic activities in requirements phase are referred as requirements modelling.

The languages used during requirements are referred as 'modelling languages',

while the languages used during specification are termed as 'specification

languages' [Greenspan 94].

1.4 The Problem

To model the system, we must understand the various problems the system poses.

Real-time systems introduce unique problems while modelling, because of the

nature of their application. In the following sections, we discuss modelling these

features.

1.4.1 Real-Time Systems are Safety Critical

Real-time systems are used in such applications, where an error4 could harm the

plant and even the lives of the peopleS. These systems are safety critical. In the

early days there was a reluctance to introduce the computers in safety critical

systems. This reluctance was partly grounded in the fear of introducing an

unknown (complex) factor. Safety-critical systems were largely controlled by

mechanical or electronic devices, with the help of human. The human error was

regarded as controllable and manageable before any damage could occur. As the

4 [Leveson 86] discusses the vocabulary that has evolved to discuss safety.

5 An extreme example is Bhopal.

7

microprocessors became cheap, and more powerful, the use of computers in safety

critical systems could not be resisted, and are widely used. Some of the examples

of these systems can be found in flight control, railway traffic control, aerospace,

industrial plant control, and health care systems. The potential advantages of using

the computers in safety critical systems are discussed in [Parnas 90]6. Reviewing

[Leveson 86, Leveson 91, and Parnas 90] we can conclude that system accidents

are intimately intertwined with complexity. With the advent of more powerful

microprocessors the potential for problems may also be on the increase. Despite

such apprehensions, computers are used to control safety-critical systems. As

Rouse [Rouse 81] suggests introducing computers can improve safety 7. While

Perrow [Perrow 84] argues that, though the increase in technological innovations

can decrease the accidents, they (the technological innovations) also allow those

making the decisions to run greater risks, in search of increased performance. This

means, the safety factor may not get the consideration it deserves, before the

demand for better performance. For example, 'feedback control makes it possible

to design aircraft that are aerodynamically unstable (such as the X-29) so as to

achieve high performance' [IEEE 87].

6 The advantages are (l) possibility of building more logic into the system easily. (2) logic in

software is easier to change (at least in theory), and (3) can provide more information to the

operator.

7 The techniques of improving the safety with computers are described in [Anderson 81],

[Sennett 89], [Bowen 93], but are outside the scope of this thesis.

8

Safety criticality is associated with the consequences like loss of human lives, risk

to the health of persons, environmental pollution, or damage to the property8.

Safety is concerned with the causes, and consequences of accidents.

1.4.1.1 Modelling Safety

Safety is a system wide property [Leveson 86]. Safety relates mainly to the

environment surrounding the target system. Safety requirements of a system

depends on the application environment. For example, a temperature controller

used in a home heating system, and in a nuclear reactor have totally different safety

requirements. Thus safety requirements can be stated concentrating on the

application environment.

1.4.2 Real-Time Systems are Time Critical

A crucial aspect of real-time system is its dynamicity. This aspect, makes the

system time-critical. This is clear in the definition of real-time system in the Oxford

Dictionary of Computing

'Real-time system is any system, in which the time at which the output is

produced is significant. This is usually because the input corresponds to

some movement in the physical world, and the output has to relate to that

same movement. The lag from the input time to output time must be

sufficiently small for acceptable timeliness' [Oxford 90].

8 [MIL-STD 84J defines safety as "freedom from those conditions that can cause death, injury,

occupational illness, or damage to or Joss of equipment or property",

9

Robert Glass [Glass 83] stresses the importance of timeliness as follows:

The computer is controlling something that interacts with reality on a timely

basis. In fact timing is the essence of interaction An unresponsive

real-time system may be worse than no system at all' [Glass 83].

It is evident that the timeliness requirement, is defined by the application

environment, and not by the computer.

1.4.2.1 Modelling Timeliness

Time as a property of the universe has intrigued people since centuries. Real-time

systems are time critical. Temporal constraints are resulted from the characteristics

of the environment. There does exist some difference of opinion among

researchers, on the explicit use of time, while modelling the real-time systems. In

an interesting article Turski [Turski 88] warns against the over reliance of timing

factor. However Turski agrees that sometimes timing is the only viable way to

express the interactions of a real-time system with a physical process. Mok

[Mok 91] discusses at length the necessity of temporal considerations in real-time

systems, and argues for the use of timing constraints as a control mechanism in a

systematic way. Jaffe et al [Jaffe 91] discuss the importance of timing in

requirements. These requirements are constraints on the real-time behaviour of the

system. The criticality of functions arise due to the timeliness requirement.

Timeliness has to be observed even under extreme load conditions. As Harel

[Harel 92] pointed out behaviour over time is much less tangible than either

functionality or physical structure, and more than anything else, this is the aspect

that renders these systems so slippery and error-prone.

10

Real-time systems are time critical, and the consequences of this on the

requirements description language are:

• the description language must consider explicitly not only what happens,

but also when it happens;

• the description language must include syntactic mechanisms suitable for

the definition of timing constraints.

Timing constraints are dependent upon the application environment. For example

the applications like, spray painting a car by robot have stringent timing

restrictions. The job done either too early or too late can be dangerous, or

ineffective. Timing constraints are determined by the environment. The dynamics

of the environment imposes the timing constraints.

1.4.3 Real-Time Systems are Reactive

Harel and PnueH [Harel 85] introduce two different views on computing system.

The first view regards the behaviour of a computing system as a function from an

initial state to a final state in a deterministic case, and as a relation between initial

and final states in a non-deterministic case. This view is appropriate for the

systems, where all inputs are available before the beginning of the computation,

and outputs are produced at the termination of computation. Such systems are

referred as 'transformational systems'.

On the other hand, there are systems, that cannot be covered by the

transformational view. These systems are those that, ideally never terminate, since

11

their purpose is not to attain a final result, but rather to maintain some interaction

with their environment. These systems are called as 'reactive systems'.

Real-time systems fall into the latter category of systems. As such, the purpose of

a real-time system, is to maintain an ongoing relationship with the environment

[Stankovic 88a]. A real-time system controls a physical system, by taking into

account all interactions with the environment where the physical system works.

The real-time system must be aware of each change in the environment, and the

action by the control system may change the environment in some manner.

1.4.3.1 Modelling Reactivity

A real-time system is driven by the events happening in the environment. These

events occur irregularly, and a control system cannot control these events. A well

known example is a telephone switch, where the telephone switch has no control

over the subscribers initiating a call. Thus a reactive system cannot block the

occurrence of events not under its control. A sufficient condition for reactivity is

the enabling property proposed in [Lynch 88]. A reactivity can be modelled with

the explicit notion of 'trigger' - where the system events are the result of an earlier

trigger. The triggering mechanism plays a very important role in analysing the

behaviour of real-time systems. The changes that take place in the system are

resulted by some other change. For example, a telephone exchange is idle, if no

subscriber initiates a call. When a subscriber picks up hislher handset, it causes a

series of actions and reactions. The term reactivity gives the implication of a strong

sense of cause and effect. The notion of causality plays a very important role in

modelling the real-time systems. Reactivity can be modelled by focusing on the

environment.

12

1.5 Scope of Requirements Model

Gray and Thayer [Gray 91] identify two key components of any software

requirements methodology: (1) to aid in determining the requirements and (2) to

represent the software requirements. Requirements modelling is regarded as the

core activity of Requirements Engineering. Davis [Davis 90] suggests that

Requirements Engineering is the analysis, documentation, and ongoing evolution

of both user needs, and the external behaviour of the system to be built.

Greenspan et al [Greenspan 94] stress the importance of research in requirements

modelling, 'it is our contention that such representation and reasoning issues must

continue to be addressed and that their resolution is a prerequisite to progress in all

aspects of Requirements Engineering research and practice'. The glaring limitation

of the research in requirements modelling can be noted in the words of [Potts 91],

"requirements engineering research seems to me to have been conducted because

the people involved wished to apply techniques already developed for

'downstream' software development phases further 'upstream'; for example, the

application of plan-based program skeleton recognition and reuse techniques to

domain model schemas, or the application of program transformations to

requirements volatility". As such the research emphasis in software engineering

has been a 'bottom-up' approach. In the 1960s emphasis was on 'coding', in

1970s emphasis was on 'design', in 1980s emphasis was on 'specification', and in

1990s the emphasis is focused on 'requirements'. Because of such an approach,

the practice of using the same upstream activities for downstream activities arises.

Each activity has its own unique problems to be addressed. and requires

recognising those before addressing them. In contrast to the upstream phases,

requirements modelling is firmly based in the problem world. rather than in the

solution world.

13

Due to the advances in the processor chips, the realm of real-time system is

expanding rapidly, involving most computer products. The requirements

description of real-time systems must capture the real-time aspects of the system

discussed above. It is essential that the requirements model is validated by the

stakeholders, as the end product should meet those needs. Thus along with the

components identified by Gray and Thayer [Gray 91] the approach must also

support validation of the requirements.

1.6 Objectives

So far we discussed the significance of the requirements model. In this section we

briefly recall the arguments to extract the objectives of requirements model for a

real-time system. These objectives determined the course of the work reported

here.

Argument 1

As discussed in earlier sections, requirements modelling is a need oriented

approach rather than a strategy oriented one. A basic purpose of a requirements

model is to serve as a reference frame for communication among developers and

stakeholders. As Potts [Potts 91] puts it Requirements Engineering is about the

communication of human intent.

Objective 1: Requirements description must be understandable by naive

users.

14

Argument 2

Requirements model characterises the users' needs. In other words, requirements

model concentrates on the application domain, rather than on the characteristics of

the system to be delivered. As reasoned out earlier, stakeholders must be able to

comment and validate the requirements model. This validation helps to reveal the

errors in the model. An error in this stage is the error in perceiving the features of

the system, as perceived by the users.

Objective 2: Users' participation in the validation of requirements model is

essential.

Argument 3

Requirements descriptions can be large. It must be possible to uncover static errors

(e.g., syntax errors, range violations) in the requirements descriptions. Typically

such improvements (though small) can be quite significant.

Objective 3: Requirements description must be amenable to machine assisted

reasoning.

Argument 4

Real-time systems are normally complex. A research challenge identified in the

control system conference [IEEE 87]9, looks for an approach for the description of

the system, and states:

9 A joint report by the leading researchers in control system.

15

Solving almost any significant engineering problem requires finding a

framework for identifying subsystems which interact with each other in

easily described ways [IEEE 87].

Objective 4: A framework used for the problem description, must identify

the subsystems.

Objective 5: Description of the interaction of the subsystems must be simple

for the users to understand.

We recall the characteristics of real-time systems, and the modelling concepts of

these aspects discussed earlier.

Argument 5

Real-time systems are time critical. A realistic description of the system must

include not only the functional description, but also the evolution of such

descriptions over time.

Objective 6: Requirements description, must include both the functional and

temporal aspects in the same framework.

Objective 7: Requirements description must handle all classes of quantitative

timing requirements.

Argument 6

Real-time systems are safety critical. Safety considerations involve real-time

constraints. The timing constraints are derived from the safety of the objects in the

16

control system. The limiting factors (like temporal constraints) are derived from the

operational conditions, like the loss of data as time passes, or maintaining a safe

distance between two vehicles in vehicle control system, and so on. If timing

constraints cannot be met, then a timing error will occur. In such occasions it is

necessary to describe the reaction to timing errors.

Objective 8: Requirements description, must provide a framework to

describe reaction to timing errors.

Argument 7

Real-time systems are reactive. In earlier sections we discussed reactivity, and its

modelling respectively.

Objective 9: Requirements description, must explicitly handle causality.

The work described in this thesis addresses these objectives. Many issues

discussed in this thesis have been reported in articles [Sateesh 95a, Sateesh 95b,

Sateesh 95c, Sateesh 95d, Sateesh 94a, Sateesh 94b, Sateesh 94c, Sateesh 94d].

1.7 Structure of the Thesis

In chapter 2, we review the research efforts in requirements modelling that have

been addressed in the past few years. We provide a classification of the research

efforts by means of their underlying mechanism. We evaluate some of the

representative techniques based on the characteristics of real-time systems. Here

we set the background and the criteria for thinking about modelling the real-time

systems. The criteria concentrates on the characteristics of real-time systems. This

17

review helps us to discover the need to address the problems identified in modelling

the requirements of real-time systems.

In chapter 3, the notion of the requirements is examined in detail, and we propose

the modelling approach, namely the real world model formalism. Following a brief

overview of the guiding principles that motivated our approach, we present the

basic components of our model. Here we present an approach for thinking and

reasoning about a perceived application domain. An engineering approach to

building the conceptual model of a system is provided.

In chapter 4, we provide an automata-theoretic approach for the real-world model

discussed earlier. We discuss the various formalisms of time, and provide

justification for the choice of our model - dense time. We introduce time

constrained automata to model the dynamic nature of real-time systems. The model

discussed provides a single formalism to describe both the functional, and temporal

aspects of the system. A system is viewed as a set of concurrently acting automata,

each representing a system entity.

Chapter 5, presents TRL (Timed Requirements Language). We present an

overview of TRL (Timed Requirements Language) followed by its syntax, and

semantics. Here we model the system by user oriented concepts and the constructs

are easily readable. Elements of the language are discrete events and this applies to

a wide class of systems. We provide a generalised classification of timing

properties that may arise in a real-time system. We demonstrate that TRL

conveniently handles all classes of timing constraints. TRL projects operational

behaviour through time.

18

Chapter 6, provides a practical demonstration of the use of the concepts developed

in the previous chapters, by means of its application to the problems, for which the

requirements are derived and described using the criteria developed earlier.

Chapter 7 provides evaluation of our approach with the representative techniques

discussed earlier in chapter 2.

Chapter 8 summarises the conclusions of this dissertation. It also identifies the

possible paths for future research.

19

Chapter 2

Requirements for Real-Time Systems

The problem associated with requirements become

amplified for real-time systems [Stankovic 88aJ. A

number of techniques have evolved over recent years

to support this difficult task. The goal is to represent

the high level objectives of a system. Here we

examine the characteristics associated with real-time

systems, and critically review the techniques

suggested by various researchers.

20

2.1 Introduction

The "software crisis" is dead! [Freeman 89]. Yes software is no-more regarded as

an unmanageable beast as it was considered to be. As Harel argued [Harel 92] the

engineers in software community have fairly understood an insight into building the

software. A million lines of code is the nonn, and not an exception. Requirements

has been identified as the main teething problem during system development.

Requirements engineering emphasises the activities during requirements stage. In

this phase of the software development life cycle, the external behaviour of the

system is described [Davis 82]. Requirements description is now widely

recognised as a critical step in the development of large software systems. Both

Brooks [Brooks 87] and Turski [Turski 86] highlight this activity as the essence of

software engineering.

McMenamin and Palmer [McMenamin 84] divide the system development activities

into the essence of a system and its incarnation. The essence of a system

constitutes understanding the system level activities, while the incarnation includes

the side effects (like the availability of the technology/tool to implement the system,

the social conflicts, and the cognitive limitations). The first step which describes

the activities of the system provides the essential model of the system. This

suggests that at the front end is the needs of the user, and at the other end is the

(control) system to be designed to meet these needs.

The features of a system differ depending on the environment, and the needs of the

users. For example the requirements of office systems (example: database

systems, decision support systems), public information systems (example: home

tele-shopping, transport information system), knowledge-based systems (example:

21

advice-giving systems), and real-time systems differ. Each class of systems has a

set of distinguishable characteristics. Accordingly the needs and the objectives of a

system differ as the properties differ from one class to another. The requirements

method employed must be suitable to these systems. For such a reason we will

briefly discuss the important features of real-time systems. Distinguishing features

of real-time systems is dealt in detail in [Stankovic 88a, Foster 81, Bums 90, and

Mellichamp 83].

2.1.1 Features of Real-Time Systems

A typical real-time system consists of a controller (computer) and an environment

as a controlled object. Environment may comprise of physical processes and

humans. The environment and the controller have a mutual influence upon one

another. Koymans et al [Koymans 88] define real-time system as a particular kind

of interactional system: one that maintains an on-going relationship with the

dynamic environment. Consequently, a real-time system is fully responsible for

the proper operation with respect to its environment. In a dynamic environment,

the situations are characteristically complex and immediate. The control system

must deal with the immediate situation. Such requirements poses restrictions on the

real-time behaviour of the system. Wirth [Wirth 77] singled out this time

dependency as the one aspect that differentiates real-time systems from other

systems.

Burns [Burns 91] provides a classification of the systems, defining utiIitylO as a

function of time. Utility is the contribution of the execution of a task towards the

10 Utility as a time varying function is defined in [Jenson 851.

22

system's objectives. The key idea is that the completion of a task has a value to the

system that can be expressed as a function of time. Depending upon such a

classification the various activities carried out by a computer are either real-time

tasks or non real-time tasks.

Real-time tasks are time critical tasks and can be sub classified as [Stanko vic 88a]

• periodic tasks,

• aperiodic tasks, and

• alarm tasks

While non real-time tasks may be performed as background tasks.

Periodic tasks are started at regular intervals specified by their period. Aperiodic

tasks are activated randomly as a result of the environmental action. These are

asynchronous. System has no control over such incidents. Aperiodic tasks can

have stringent timing constraints. Alarm tasks are aperiodic tasks but they run with

absolute priority over all real-time tasks. Alarm tasks are intended to handle

exceptional conditions. Background tasks are tasks with no real-time properties.

Real-time systems are nonnally required to respond within a specified time. For

example consider the firing operation of spark plug in an engine control system.

Here it is the time at which the service is provided is important, not merely

providing it, in which case the engine may never start at all. In some systems a

right result produced late may contribute to a wrong result or may cause a

catastrophe. We refer to these requirements as 'timing constraints'. Timing

23

constraints depend on the physical characteristics of the plant. For example,

advanced variable cycle jet engines can blow up if correct control inputs are not

applied every 20 to 50 milliseconds [Lala 91]. Depending on the prominence of

time criticality the systems are classified as soft real-time systems and hard real-time

systems [Shin 87]. Faulk and Parnas [Faulk 83] provide a concise definition of

hard real-time systems: 'we use the term 'hard real-time' to describe systems that

must supply their information within specified real-time limits. If the information

supplied is too early or too late it is not useful'.

2.2 Requirements Document

Computer controlled systems are complex entities [Dasgupta 91]. A process of

abstraction is essential in understanding the user's expectations. The requirements

are considered as an abstract representation of the system [Verrijn-Stuart 87].

Requirements engineer makes use of a description language to represent the needs

of the user. These languages are requirements languages. Requirements languages

provide frames with which the user's needs are defined. User needs are recorded

in the requirements document. The requirements document is written using the

terminology of the task environment, reflecting the user's view of the problem

[Wassennan 79]. The purpose of the requirements document [Parnas 86] is

•

•

to serve as a common reference frame for communication among

customers, users, and developers;

to serve as a model of reality. offering insight into the application

domain;

24

• to provide documentation in order to facilitate the modifications or

enhancements;

• to serve as a basis for test plan development.

At the heart of the requirements engineering process are the users and the

customers. The primary requirement for the language employed for the

requirements elicitation and representation is that it be understandable by naive

users [Fraser 91]. The purpose of the requirements is to provide a model of the

system. Thus requirements languages are referred as modelling languages

[Greenspan 94]. These languages employ a variety of approaches. These

approaches vary from employing a natural language to formal language. The

language is formal in the sense that it has a well defined syntax and semantics

[Davis 82]. Much research has been done in the design of languages. To get a

more detailed view of the ongoing research, we provide a rough genealogy of these

languages.

2.3 An Overview of the Approaches

Each system is unique in its own way. The needs of a system depends upon its

application environment. Thus the expected features of the language differs from

one class of system to another. Also the difference of opinion among researchers

on such basic questions like: what should requirements be? how should

requirements be stated? has led to the use of different approaches. The approaches

suggested by various researchers are based on different flavours. Some of these

flavours are appropriate during specification and design phase. For the sake of

completeness we briefly refer to the various approaches.

25

2.3.1 Data-based Approaches

Early attempts at expressing the requirements shared a common view of the

systems as data manipulators. Traditionally all the activities performed by a

computer can be regarded as the manipulation of data. Entity relationship model

[Chen 76, Hall 76] emphasises the structure and the relationship between the data

items. These have been extensively used to model the static properties of the data.

Entity relationship diagrams are the basis of high level data models. Diagrams

emphasise data and the associations among data elements.

Data flow models extend this concept by incorporating the flow of information

[Yourdon 79, DeMarco 78, Gane 79]. DFD (data flow diagrams) shows the flow

of data. It shows how data entities are progressively transformed as they are

processed by the system. Popularity of DFD is attributed to its simplicity, it

requires no formal training to read the diagrams: bubbles are used to represent

functions~ decomposition, arcs connecting them represent

functional dependencies among their input and output data, and suitable

representations are provided to represent data stores and data exchange with the

external environment [Fuggetta 93]. DFD has several weakness for real world

modelling. DFDs are inherently ambiguous and incomplete for any procedural

interpretation. The flow includes data flow, information flow, control flow and

material flow. DFD has been criticised for its failure to model the dynamics in a

proper way and for the lack of formal basis [Richter 86]. For example it is not

clear when a process is activated, and how the complex combination of input can

influence the activation. Many extensions have been suggested to address some of

these issues like [Ward 86, France 92].

26

An early attempt to improve the practice during system development was the CRIS­

effort. Unfortunately the CRIS-effort COlle 82] limited its focus to the design

phase. In this way it sought better ways to improve the design method. The

efforts of Ward and Mellor [Ward 85, 86], Hatley and Pirbhai [Hatley 87], and

Gomaa [Gomaa 84, 86] were directed towards providing a design method for

real-time systems. Database modelling was the popular choice to represent

solutions. The basic components in data-oriented model are entities, and data

types. Data oriented perspective places emphasis on a complete analysis of data

and its relationships. Data oriented models are solution centred. GIST

[Goldman 80] is based on operational modelling over relational databases.

Operational base of GIST allows executable specifications. Kung [Kung 89]

proposes a graphical approach for conceptual modelling. An ER-like language is

used along with the traditional DFD technique.

DFDs stress on logical decomposition of system into modules and on data

dependencies. Heitmeyer [Heitmeyer 83] has shown that functional decomposition

of system is implementation dependent and always results in an inferior system

owing to the boundaries imposed by the decomposition. Yourdon [Y ourdon 90]

proclaimed the limitations of DFD and suggested to knock away the old technique.

2.3.2 State-based Approaches

Several attempts have been proposed to use finite state machine for modelling the

system. An early suggestion can be traced to [Parnas 69]. The notable works

include [Alford 77] and [Heninger 80]. SREM (Software Requirements

Engineering Methodology) [Alford 85, Alford 77] was developed by a consortium

of contractors for the specification and analysis of systems. It comprises of a set of

27

tools and is based on stimulus-response paths and finite-state machine

representation. SREM identifies events subject to timing constraints. SREM has

very little support for abstractions and modularity [Berzins 85]. Heninger

[Heninger 80] describes the external behaviour of systems in terms of events

defined by transitions. However this approach has not explicitly modelled the

timing constraints associated with the system. Recently Leveson et al

[Leveson 94] propose a modified Statechart [Harel 87] notation. It may be noted

that Davis [Davis 88] compares ten specification languages, and rates statecharts

3rd from the bottom in understandability to the naive users.

Dasarathy [Dasarathy 85] added timer alarms to finite state machine to model the

temporal constraints. A state based language RTRL is reported in [Dasarathy 85],

[Taylor 80]. SREM's RSL (Requirement Statement Language) and RTRL share a

common view of the system, in which a response at any instance is determined by

the system's present state and the stimulus that has arrived. State based languages

have been found to be unsuitable for describing complex systems [Davis 88].

Descriptions in a state based language tend to be monolithic.

Recent works have addressed the issue of providing a temporal framework for the

finite state machine. Lewis [Lewis 90] extends finite state graphs to incorporate

timing constraints which is expressed as lower and upper bounds. Alur,

Courcoubetis, and Dill [Alur 90] proposed the use of Timed Btichi Automata

(TBA) to model the behaviour of finite-state real-time systems. TBA is a Btichi

Automata augmented with a mechanism to express the timing constraints. Timing

constraints are expressed using a finite set of clocks for each automaton. The

clocks are set instantaneously with each transition. Nancy Lynch [Lynch 88]

proposed the use of Input-Output automata as a model of computation, and this

28

model is extended to include timing [Lynch 90]. The timed model allows the

specification of lower and upper bounds on the transition.

A pure graphic formalism called Statecharts is proposed by Harel [Harel 87].

Statechart decreases the number of states by introducing the multiple active state

notion. Jahanian and Mok [Jahanian 86, 88, 94] proposed modechart as a

structured way of representing real-time systems. Modecharts is similar to

Statecharts. In Modechart, a transition can be a time-bound pair which defines the

smallest time (the delay), and the largest time (the deadline) for making a transition.

For the purpose of reasoning about the specifications, Modecharts are translated

into RTL (Real-Time Logic).

2.3.3 Petri-net-based Approaches

Petri -nets [Peterson 81, Reisig 85] consist of two basic components: a set of places

and a set of transitions. In addition the movement of tokens represent the control

flow. Tokens are passed from place to place through transitions by simple rules.

Several researchers have proposed extension of Petri-nets to include the notion of

time. The two earlier extensions are of Ramchandani [Ramchandani 74] and of

Merlin [Merlin 76a, Merlin 76b]. Ramchandani associates computational delays

with transitions. Here each transition is associated with a (finite) firing duration (a

delay) of time 't'o The transition is prevented from occurring for the period 't',

and is fired immediately after the elapse of time 't'. Ramchandani proposed this

scheme mainly for performance evaluation. Merlin introduced the extension to

specify and evaluate the communication protocols. Here each transition is

associated with two values of time (1, u) lower bound and upper bound where

1 < u. If a transition is enabled then it remains enabled for a minimum time of '1'

29

before it fires, and 'u' is the maximum time during which a transition can remain

enabled without being fired. The latter extension is more general and can

incorporate the former. Associating delays on transitions violates the instantaneous

firing feature of basic Petri-nets. This was remedied by associating delays on

places rather than transitions [Coolahan 83]. Timed Petri-nets have been used for

performance evaluation [Holliday 87] and safety analysis [Leveson 87].

A high level Petri-net fonnalism called ER nets [Ghezzi 91] is proposed to specify

control, function, and timing issues. ER nets is similar to other high level Petri­

nets [Agarvala 79] and integrates the timing extension mentioned above.

A certain amount of practice is needed in understanding Petri-nets and relating them

to the real world. Petri-net lacks the ability to model the plant (environment) and

controller separately. Petri-net handles plant and controller as one system. Thus

Petri-net does not accommodate a systematic exploration of the system.

2.3.4 Process-Algebra-based Approaches

Algebras provide an abstract approach for the analysis of systems. A popular

formalism is Hoare's theory of Communicating Sequential Processes (CSP)

[Hoare 78, Hoare 85]. CSP provides a set of constructs for writing concurrent

programs and laws for reasoning about them. The work of Davies and Schneider

[Davies 89] has extended this model to include the timing. Timing is included with

the addition of process wait d, where d is the non negative unit of time. The wait

process terminates after d units of time. A conceptual global clock is used for

delaying the process.

30

Another notable approach is Milner's CCS (Calculus of Communicating Systems).

CCS views the system computation as a finitely-branching tree. CCS is based on

two central ideas: firstly the notion of observationally equivalent processes, i.e.,

processes that are indistinguishable to an observer. Equivalence classes of

processes are the basic objects of CCS; and secondly the definition and

manipulation of these basic objects using algebraic operators. Various notions of

observational equivalences have been proposed and studied. Untimed CCS is also

extended with time [Wang 91].

LOTOS [Faci 91] [Bolognesi 87] (Language of Temporal Ordering Specification)

is developed within ISO for specifying communication protocols. LOTOS makes

use of a combination of methods like Act One (for the description of data

structures) and CCS with some CSP influence (for the description of process

behaviours and interactions). LOTOS notations have been criticised for the

difficulty in reading it. It is remarked in [Ruggles 90] that LOTOS really stands

for 'Lots Of Terribly Obscure Symbols'.

2.3.5 Logic-based Approaches

Pnueli in his seminal work [Pnueli 77] suggested the use of temporal logic for the

specification of non terminating programs. From then on several researchers have

greatly contributed to this field. Temporal logic makes use of the modal operators

to describe the order in which the events happen rather than the actual times at

which they happen. The structure of state is an important concept in temporal

logic. A formula containing temporal operators is interpreted over this structure of

states (sequence or a tree). Lamport [Lamport 83] suggested that time can be

modelled by introducing a clock as a global variable. Then the assertions

31

involving real time will be temporal logic formulae involving the clock variable.

Here clock has to be incremented by the time required to execute that action at the

end of every action. Ostroff and Wonham [Ostroff 87, 89] instead suggested the

use of an infinite loop process (a clock process) to increment the clock variable ad

infinitum. Ostroff proposed suitable structures to specify real-time constraints. In

this formalism it is difficult to state some quantitative timing constraints

[Ostroff 92]. Temporal logic has been found to be more suitable to state the global

properties of the system like safety and liveness. Temporal logic notations tend to

be terse, and as noted by some researchers (for example [Wing 90]) temporal logic

specification is simply an unstructured set of predicates.

Unity [Chandy 89] gives specifications as formulas in logic which is similar to

temporal logic. It also provides a collection of inference rules to deduce additional

formulas that are satisfiable by a system. Shankar and Lam [Shankar 93, Lam 90]

make use of a combination of styles. Safety properties are specified using

automaton, and liveness properties by temporal logic formulae.

Allen [Allen 81] proposed a method for maintaining a network of relationships

between temporal intervals. Seven types of relationships are defined that can hold

between the two intervals. These relationships between the intervals has been a

fundamental tool to think about the intervals, and has been used by a number of

researchers. However Allen's relations face difficulties in handling the metric

constraints.

2.4 Requirements Languages

A representation language is used to describe the essence of a system. Here the

word 'language' is used in a very general sense, it includes natural languages,

32

diagrammatic notations, or artificial languages based on different representation

formalisms. An often used formalism is data oriented like, SA-diagrams

[Yourdon 89], ER-diagrams [Chen 76], SADT [Ross 77a, 77b] etc. These

semi-formal languages use a combination of graphics to describe system

requirements. Other languages are the variants of Petri-nets or state-transition

diagrams. Some of the other approaches are influenced by the concepts of the

programming/simulation languages like SimulalSmalltalk. It includes knowledge

representation languages like RML [Borgida 85]. Another notable approach is the

executable language PAISley [Zave 82].

A basic requirement of the language employed for the description of requirements is

that it be suitable for the task, and must aid the communication among the various

parties involved in the process. The requirements language is employed for

reasoning and communication.

2.4.1 Comments on Specification Languages

As we pointed out in earlier chapter requirements is different from specification.

Here we focus our attention on requirements languages rather than on the

specification languages 11. In an excellent introductory work on specification

languages Wing [Wing 90] points out that specification languages neglect the

environment. Fraser et al [Fraser 94] state that the specification languages are

inappropriate to use during the early stages of lifecyc1e.

11 Specification languages are discussed briefly in Section 2.7

33

2.4.2 Discussion of Features for Requirements

Languages

It is widely recognised that well defined requirements is vital to the success of the

project. The language employed to describe the requirements, must be suitable for

the application. Depending on the type of the system, the tool to be employed for

requirements description also varies. The effectiveness of the technique can be

discussed with respect to some goal. The intended goal is the requirements model

for real-time systems, and the technique must address all the aspects of

requirements modelling. As we are interested in real-time systems the feature relies

on the characteristics of real-time systems. We extend the dimensions suggested by

Kung [Kung 83] with real-time requirements. A requirements model must support

the following features:

• understandability

• expressiveness

• processing independence

• checkability

• changeability

• capability to handle quantitative timing requirements

• causality, and

• capability to handle timing errors

34

The first feature deals with the style of the content. User's involvement in the

requirements development process is regarded as a crucial factor for the success of

a system [S¢lveberg 80]. This suggests that the model must include user-oriented

concepts, and constructs should be easily readable. However the use of a natural

language increases the ambiguity of the expressions at the same time.

Understandability includes unambiguity, clarity and intuitivity. Intuitivity and

clarity includes more than the representational formalism (i.e., graphs or tables so

on). It essentially involves the aspects of enhancing the understanding of the

application-oriented features.

The second feature deals with the description of the human perception of the reality.

This refers to the concepts and constructs that are used - is this powerful enough to

describe the features that need to be described without much effort. Model must

include the time domain. Time perspective is required not only by the application

domain but also improves the expressiveness [Bubenko 80].

The third feature refers to avoiding the premature design decisions. Designers must

have an unrestricted choice of design alternatives. The requirements model must

not cut into the space of the design alternatives. This implies that the model must

be kept free of data processing considerations.

The checkability feature concerns the validation of the model. The model must not

contain inconsistencies. It should be possible to determine whether the model

represents the user intended goals.

The changeability feature deals with the nature of reality. The only truth about

requirements is that it changes [Scharer 81]. To achieve a high degree of

35

changeability a model must be localised and loosely structured. It should be

possible to add and remove the system components while readjusting the schema.

The importance of the other three features has been discussed in detail in Chapter 1.

These features in general deal with the relative merits of the modelling formalism.

In addition we concentrate on the generic characteristics of the time mode1. This

deals with temporal functionality issues like primitive temporal notions and

temporal reasoning formalisms. Characterisation of a technique according to our

chosen dimensions has two advantages (1) it provides valuable information on the

intended goals, and (2) it provides a basis for relating our observation on the actual

use of the technique.

In the following sections we review the techniques. A fuller description of the

approaches with example is further discussed in Chapter 7.

2.5 Specific Languages

2.5.1 Structured Analysis and Design Technique (SADT)

The development of SADT12 was pioneered by Ross [Ross 77a, 77b]. SADT is a

network of diagrams consisting of boxes representing activities. The arrows on the

four sides of the box represent input, output, control and mechanism for the activity

involved. The activities can be decomposed in a top down fashion. A natural

language or an artificial language can be embedded into this graphical framework.

12 SADT is a trademark of Soffech Inc.

36

An indexing scheme is used to state the relationship between boxes and arrows.

SADT is often used during requirements phase.

Although SADT has a visual formalism, the large number of primitive constructs

(around forty) can hinder the understanding. The mechanism concept may force

an analyst to deal with premature implementation issues. SADT has no underlying

formalism and any language can be used with it. SADT is a manual method.

Davis and Vick [Davis 77] characterise SADT as primarily an MIS technique. Zave

and Yeh [Zave 81] note that SADT is grossly inadequate for real-time systems.

2.5.2 Requirements Statement Language (RSL)

RSL is a part of SREM [Alford 77, Alford 80, Alford 85]. RSL makes uses of a

stimulus - response mechanism, and views requirements in terms of processing

paths. Each processing step represents the arrival of a stimulus and the generation

of a response. Each processing step is known as Alpha. Each Alpha can be

replaced by a number of lower level of Alphas. The processing paths and step are

represented in a graphical form known as R-nets. R-net is a data flow - like

description of the processing steps to be performed.

R-Nets are used to input all the necessary constraints like maximum and minimum

values, allowed ranges of the data and the timing constraints. It is difficult to keep

track of the timing requirements, as they may span several R-nets. Timing

constraints can be represented on stimulus - response paths. This allows timing

constraints to be associated from a stimulus to a response. RSL is limited to

describe the requirements only along the control flow path in an R-net.

37

Requirements in RSL is very difficult to express even for the experienced persons

[Scheffer 85]. Also it has very little support for abstraction. It is more appropriate

during specification, rather than requirements [Scheffer 85].

2.5.3 Real Time Requirements Language (RTRL)

RTRL [Taylor 80, Casey 82, Dasarathy 85] is based upon finite-state-machine and

stimulus-response sequences. RTRL essentially consists of states and transitions.

RTRL is nothing more than the textual representation to record the state-transition

diagrams. Description in RTRL tends to be cryptic and the finite-state machine

model shows through the syntax of the language. RTRL provides timer extensions

to the finite-state-machine to describe temporal constraints.

2.5.4 PAISLey

PAISLey (Process oriented Applicative Interpretable Specification Language) is

aimed at specification of embedded systems [Zave 82, Zave 84, Zave 86]. Both the

environment and the system are modelled as a set of co-operating sequential

processes. The language is based on APL, and is interpretable. The main thrust of

PAISLey is on the output. The input to the system is modelled as an output from

the environmental processes. The specifications can be executed.

Zave [Zave 82] emphasises on timing constraints and is implemented in PAISLey

as comment. (a part of BNF of PAISLey is given below)

<timing attribute> :: =! ~ <comment>

<comment>:: = any string of Ascn characters

38

PAISLey provides a mechanism for denoting the timing constraints, but does not

enforce the same. A timing constraint always refers to the evaluation time of a

particular function. When the specification is executed, the printer attached to the

simulator prints the timing of each event. Thus it can be known, whether the

timing requirements are satisfiable.

With PAISLey to state what a system must do, it is required to state how the

system should do it. Such a mechanism severely compromises the basic tenet of

requirements engineering - the separation of concerns.

2.5.5 Requirements Modelling Language (RML)

RML is a sibling of the TAXIS [Mylopoulos 80J programming language. RML

[Borgida 85, Greenspan 86] expresses the requirements in terms of objects

organised in classes. In RML everything that is described is an object. RML

distinguishes entity, activity, and assertion objects in order to model different kinds

of things. An object can only be described by describing its relation to other

objects. Similar approach was also suggested by [Bubenko 80].

The classes in RML can be built into generalisations or is-a hierarchies. The is-a

relation allows sub-classes to be defined, providing a notion of inheritance. The

idea is that general classes can be defined first and then sub-classes can be defined

while developing the details at a later stage. Subclass hierarchies are well known

by SimulaiSmalltalk.

In RML temporal information can be expressed by defining interval relations

suggested by Allen [Allen 83J. Predicates like during, before, and overlaps can all

39

be defined as classes in RML. The temporal description in this form is verbose

[Greenspan 94].

Requirements are the top level objectives of a system. An object model developed

in the requirements phase can be an actual base for construction of the system.

Such an approach may lead to a structure that is not stable and maintainable

[Jacobson 92]. Similar opinion is expressed by McDermid [McDermid 93]:

'In the author's experience, the greatest problem with requirements is that

they typically start at too a low level - indeed they are presented in

implementation terms. A stress on object orientation may well exacerbate

this problem'.

2.5.6 ERAE (Entity-Relation-Attribute-Event)

ERAE [Dubois 85, Dubois 87] is based upon ER analysis [Chen 76]. It involves

the definition of entities and relationships between them. It is an extension of the

E-R model. The basic component of the model are objects and associations. In

this sense both ERAE and RML share a similar view regarding the development of

requirements. An object can be an entity or an event. Time is introduced as a

distinguished value type. These concepts are handled in the framework of

multi-sorted first order temporal logic.

In ERAE time is considered to consist of a linear sequence of states, with a set of

events labelling the transitions between states. Each state is associated with a time

value which increases along the sequence. A set of temporal operators [Dubois 87]

is employed to refer to the past or future.

40

It may be difficult to translate customer's requirements in to the fIrst-order temporal

logic. Also customers cannot read and comment on the description.

2.5.7 FOREST

FOREST [Finkelstein 87, Goldsack 91] project makes use of SCS (Structured

Common Sense) and MAL (Modal Action Logic). SCS is based upon the known

methods like JSD [Jackson 83], CORE [Mullery 79] and ER [Chen 76]. SCS

provides the method to write the specifIcations. SpecifIcations are written in MAL.

MAL is based upon a many-sorted first order logic. The logic includes the

definition of variables, predicates, constant symbols, logical symbols, function

symbols and a number of axioms and inference rules. The logic is extended with

two sorts, actions and agents and a branching line temporal interval logic. Interval

logic is used to describe time related objects. Agents identify the entities in a

system, as is the case in CORE with viewpoints. Action describes the processes

that the agents can carry out. Steps between SCS and MAL are not very clear.

Also, it is difficult to express quantitative temporal requirements using intervals.

2.6 Discussion

A widely recognised problem with requirements is as follows. Firstly the

complexity of the systems renders the description of the functionalities and

constraints very difficult, and secondly a complete and correct set of requirements

is seldom known in advance. These problems are increased with real-time systems

because they are time critical and reactive. Reactive systems differ from the

traditional information systems in being environmentally driven [Harel 85]. A

sufficient condition for reactivity is the input enabling property proposed in

[Lynch 88]. This admits the causal nature of physical processes. It requires that

41

locally controlled actions be produced only as a result of an earlier trigger. Thus

causal relationships are necessary to capture the environmental oriented activities.

Although PAISLey is designed for embedded systems, it fails in many respects.

Time is added as an afterthought and the notion of causality is non-existent.

Coombes and McDermid [Coombes 93] describe temporal logic as conceptually

unsuited to the specification of distributed systems. They conclude that temporal

logic can be used to represent certain issues, but at the expense of clarity. Similarly

Bowen et al [Bowen 95] remark that trying to specify a concurrent system in a

model-based specification language, such as Z or VDM, is like using a hammer to

insert a screw. The languages based on notations adopted from mathematical logic

are inappropriate for communicating with the end user during the requirements

elicitation and confirmation stages [Fraser 94]. Fraser et at [Fraser 94] discuss at

length the problems associated with such representational notations and state:

Preliminary empirical evidence from cognitive science suggests that in the

stages of problem solving, when the problem area is relatively ill structured,

the use of formal representations inhibits the exploration of alternatives and

is detrimental to the quality of the outcome. Thus··· formal specification

languages may not be an ideal tool for exploring and discovering the

problem structure during the problem refinement process.

Some of the approaches [for example Kung 89, Fraser 91] have tried to redress this

situation. These approaches have tried to bridge the gap of providing user

understandability while providing the rigour of languages based on mathematical

logic. Fraser et al [Fraser 91] propose the use of data flow diagram and decision

tables to develop a complete set of requirements. While [Kung 89] proposes an ER

42

like language to be used with traditional DFD technique. These approaches are

commendable but they are not suitable for real-time systems. Though DFD

provides intuitivity and understandability it fails to provide the processing

independence, and the temporal informations are an afterthought and ad hoc. This

study makes us to understand the deficiency of a language which

*

*

*

*

*

*

provides a common reference frame for communication among developers

and customers;

provides a model offering insight into the application domain;

provides processing independence;

deals with the features of real-time systems;

allows the expression of stringent timing constraints for time critical

activities;

deals with tasks of different nature, to integrate real-time and non real-time

activities.

2.7 Quest for a Requirements Language

Most researchers in requirements engineering (for example Greenspan 94,

larke 94) believe that research on requirements language will remain central to

further development in the field. I believe this faith is rooted in two propositions:

43

1. Languages are the primary notational vehicle of our field. As concepts

are explored, and become woven into the fabric of the field, they

invariably find expression in languages.

2. There is an implicit hypothesis that the nature of the language shapes

the ways in which we think about the problems. Although it is

difficult to substantiate this directly, it is believed that the person

equipped with a language suitable for the purpose is better equipped to

deal with complex problems.

A requirements language has at least three goals:

1. It is an analysis tool.

2. It is a vehicle for human communication.

3. It is a vehicle towards automation.

A fuller description of these goals with examples is provided in Chapter 7, here we

provide an outlook of these goals.

2.7.1 Analysis Tool

The requirements engineer faced with a task, has to choose a model that will

accomplish the task. The model must be amenable to inevitable modifications, as

the requirements do change. The initial stages of this process are generally best

conducted at an abstract level.

44

The perspective of requirements engineer, specifier, and designer is different. Each

perspective is different, in that it is dealing with a different set of constraints

relevant to that perspective. For example:

• Requirements Engineer: Deals with utility or usability constraints in the

conceptual view of the end product. It provides a conceptual model of the

system.

• Specifier: Deals with the logical view of the product, and considers the

operational constraints. It provides an empirical model of the system.

• Designer: Deals with the physical view of the product, and considers the

design (constructional) constraints. It provides a solution model of the

system.

The basic focus is the identification and recording of the requirements essential to

the system. The figure 2.1 describes the factors that influence analysis. The basis

for analysis is the belief that the document can be improved.

Analysis

Localisation

I Temporal
Reasomng

Figure 2.1 Characteristics of analysis tool

45

Abstraction: The concept of abstraction is to extract the essential properties while

omitting the inessential details. The use of abstraction permits one to work with

concepts and terms that are familiar in the problem environment without the need to

transform them into unfamiliar structure. The concept of abstraction is perhaps

among the oldest in computing (see Parnas 72). However the concept of

abstraction at the requirements level is still a matter of controversy 13.

Localisation: Localisation builds on the notion of abstraction. Localisation is the

idea of grouping the requirements. The requirements can be grouped depending on

the environment, and the proposed system. The localised requirements provide a

framework to understand the needs of the system better. This improves the

reviewability of the document. There is no argument that the document be more

reviewable as it could be improved to cater to the needs, while discovering the

mistakes.

Uniformity: The concept of uniformity is applied to notational matters. The

notation must provide a uniform way of describing all types of requirements. For

example, with the notation the functional requirements, and the temporal

requirements must be describable at the same level. The concept of uniformity

provides a notation free of confusing terminologies.

Temporal Reasoning: This is an important concept that concerns real-time systems

in particular. The notation must provide a uniform way of defining all types of

temporal requirements that may arise in a system. The description of timing

13 Davis [Davis 90] provides a detailed discussion of what versus how controversy.

46

constraints must also obey the concept of abstraction. The temporal requirements

must emphasise the needs, not the way of implementing temporal requirements.

A language facilitates analysis by allowing the persons to use simple

representations. If the representation of the requirements is closer to the problem

space, then its applicability can be clarified through interaction with the users.

Usually we understand a system by its expected features. Similarly the

requirements document is validated with respect to user needs. Essentially the

requirements must reflect the needs of the user. The users are concerned with the

way they use the system. The requirements language must emphasise the way the

users interact with the system. It is necessary that the model be expressed in a non­

computing presentation mode. The representational factors influence human

communication, and is discussed below.

2.7.2 Human Communication

A requirements language serves as a communication medium in two contexts:

1. After a requirements document is created, it is required to be used by a

number of persons like specifiers, acceptance testers and users.

2. In large multiperson projects conveying the expression of thought, or

concepts is important.

In both contexts one's ability to read and understand a fragment (of requirements)

is more important than the ability to write the same fragment. A language's direct

inclusion of central concepts that are characteristic of those class of systems is a

major factor in making the concepts comprehensible. Also the document is to be

47

used by various persons, and the computing concepts must be made invisible and

unobtrusive as possible. The underlying concepts of computing system should be

hidden from the user to the greatest extent possible. The way in which the

requirements are integrated into the environment is significant in conveying the

concepts. The requirements should be easily adaptable to conform to the changing

user requirements. Most real-time systems are complex. Thus the language

reflecting the features of real-time systems embedded with readable constructs

increases the effective communication among persons involved in the project.

Human
Communication

Understandability

Modifiability

Figure 2.2 Characteristics of human communication

Conciseness

Structuredness

Readability

Writeability

Extendability

As implied in Figure 2.2, we are of the opinion that human communication

improves with understandability, and modifiability. In the realm of requirements

development, objectives are stated in terms of desired properties of the resultant

document.

The influence of understandability depends upon the intended audience: users,

management, or technical. Understandability involves the entire conceptual model.

48

Real-time systems are inherently complex. The notation must provide a structure to

ease this complexity. Understandability involves many factors such as self­

descriptiveness, conciseness, structuredness, and readability. These factors also

improve the analysis. It is obvious that an understandable description can be

analysed easily. The notion of self-descriptiveness implies a clear statement of

requirements. Self-descriptiveness helps to ascertain the correspondence between

the requirements document, and user needs. With conciseness the problems

become intellectually manageable by highlighting the important features.

Conciseness makes the description of the goal easier. The notion of structuredness

denotes the ability to organise the requirements as a number of small units.

Structuredness makes it easier to describe large systems. The notion of readability

combined with structuredness, and conciseness makes the description of the

requirements lucid. It is important that the stakeholders must be able to read the

document before they can agree to it. Also the requirements development team

consists of a number of persons, and readability helps in conveying the concepts.

Modifiability requires the ability to have an adaptable and evolutionary structure.

The factors such as structuredness, conciseness also affect modifiability. The two

other factors that interest us here are extendability, and writeability. Extendability

implies controlled change, in which some parts of the document are altered while

retaining some of the aspects. Extendibility is important as requirements change for

different reasons. Writeability is a much less rigorous factor compared to other

factors discussed above. Write ability imposes that the notation employed to

document the requirements must be easily expressible. Writeability depends much

upon the syntactic aspects of the notation. Write ability describes how easy it is to

document the requirements in the chosen notation.

49

2.7.3 Vehicle towards Automation

Requirements document has different roles within the software life cycle. It serves

as an input to the specification, and acts as a checkpoint in the design phase.

Acceptance testing ascertains the correspondence between the deliverable system

and the requirements document. Unfortunately, the requirements are never perfect,

and requirements engineers are forced to reconceive their description of the system.

Modifications and enhancement to a system requirement are common. To a certain

extent the language must help in propagating the changes. Also with the notation

employed the errors like syntax errors, or timing range violations must be easily

checkable.

2.8 Related Issues

A number of issues concern the initial phase of a development of a system. In this

section we briefly visit those issues.

2.S.1 Requirements Engineering

Prototyping has been suggested by many researchers to come to grips with

problems associated during early stages [for example, Balzer 82]. Prototyping is

successfully used in other disciplines like automobile industry. This is a very

successful approach for massively produced systems. Prototyping is a solution

oriented activity. It may become difficult to isolate customer requirements and

implementor's responsibilities. Despite these difficulties, Luqi et al [Luqi 1988]

have developed a prototyping tool that helps with the construction of prototypes.

50

Knowledge-based tools like KATE [Fickas 87], Requirements-Apprentice

[Reubenstein 91], Analyst Assist [Adhame 89], have been suggested to help the

analyst. KATE makes use of the domain knowledge to identify potentially missing

components in requirements. Requirements-Apprentice uses 'frame' as the

underlying concept, and can also use the domain knowledge in the same way as

KATE. Analyst Assist, makes use of conceptual graphs, as the underlying

mechanism, and involves - method knowledge, and domain knowledge. The

motivation for the tool TARA (Tool Assisted Requirements Analysis)

[Finkelstein 88] was based on the concepts of validation through animation, and

reuse. The concepts were investigated in the context of CORE [Mullery 79].

Finkelstein concluded that reusability can be added, although not in a clean way.

Requirements modelling involves a number of persons. This involvement with a

number of people may lead to conflicts in requirement. In recent years, many

researchers have felt the need to address this issue. Nuseibeh and Finkelstein

[Nuseibeh 94] propose the notion of a Viewpoint model, where one person can

have several viewpoints, and also one viewpoint can represent several people. The

tools are provided to support the environment. While Feather [Feather 89] uses a

basic specification as a source which can then depart along different lines

depending on the concern. These different parallel specifications are later merged.

Another question that appears in this context is how to manage the conflicts.

Anderson and Fickas [Anderson 89] suggested to look for the help of experts in the

field to manage the conflicts. While Easterbrook [Easterbrook 93] proposed a tool

(Synoptic) which allowed the participants to compare their viewpoints.

Another important aspect in requirements engineering is traceability. Ramesh and

Dhar [Ramesh 92] propose a model to support this aspect. [Ramesh 93] also

51

discusses the importance to assign accountability to identifiable team members.

This helps to detennine the criticality of the requirements.

The social issues that surround the requirements modelling was identified by

[DeMarco 78, Checkland 81]. The problem articulation produces a picture of the

stakeholders involved, and the goals people have [Checkland 81]. This places a

solution in the socio-technical context. Recently ethnography a social process has

been suggested to investigate the requirements [Gougen 93, Sommerville 93].

[Dobson 93] discuss the issues of safety in a system with human components.

They argue that safety be modelled as a part of a process in the human activity

system. The philosophical issues concerning the articulation of problems is

discussed in [Hirschheim 89].

2.8.2 Specification Languages

SDL (Specification Description Language14) [CCITT 88] is a very popular

language among communication engineers. An extension of SDL, (an object

version of SDL - OOSDL) is its underway. LOTOS (Language of Temporal Order

Specification) [Bolognesi 87] has been proposed by ISO for protocol specification.

The present LOTOS (ISO accepted) however does not provide the facilities to

represent quantitative timing constraints15• State based specification languages like

Z [Spivey 89], and VDM [Jones 90] have been popular in the literature.

Mahony et al [Mahony 92] discuss an approach to specify timing information with

14 Also see [Rockstrom 83], and the whole issue ofCOM-30.

15 Research efforts have been reported suggesting the ways to specify quantitative timing

constraints in LOTOS.

52

Z. Ledru [Ledru 93] discusses a method to specify temporal information with

VDM. Schobbens [Schobbens 93] propose a decomposition method for algebraic

specification. Schobbens decompose the specifications into defaults (those that

follow the rules), and exceptions. Dardenne et al [Dardenne 93] discuss a general

approach to requirements acquisition in the context of KAOS (Knowledge

Acquisition in autOmated Specification) an AI project. A set of rules is provided

for transforming KAOS objects and actions into Z data and operation schemas.

Kurki-Suonio [Kurki-Suonio 92, 93] discuss DisCo language. They discuss

stepwise design with DisCo specification. Ghezzi et al [Ghezzi 91] discuss TRIO

a temporal logic language. The specification language ASTRAL (a derivative of

RT-ASLAN [Auemheimer 86]) can be translated into TRIO. Ciapessoni et al

[Ciapessoni 93] discuss a revised version of TRIO to allow the reasoning on metric

time. This extension is similar to the extension of temporal logic - metric temporal

logic (MTL) discussed by Koymans [Koymans 90]. Specification language based

on Petri-nets is also suggested [Ghezzi 91]. Fickas et al [Fickas 92] combine

Petri-nets and temporal logic for the design description.

While Shaw [Shaw 92] discusses the use of CRSM (Communicating Real-Time

State Machines) in the specification of real-time systems. Raju et al [Raju 94]

discuss a prototyping environment for CRSM with the programming language

C++. The other specification formalisms are based on Statecharts [Harel 87].

Timed Statecharts is proposed in [Kesten 91]. Gabrielian [Gabriel ian 91] propose

a method based on Petri nets, Statecharts, and temporal logic called HMS

(Hierarchical State Machines). ENCOMPASS environment supports incremental

construction of Ada programs [Terwilliger 87]. In ENCOMPASS, software is

specified using PLEASE, an Ada based executable specification language.

53

2.9 Summary

As noted by Pohl [Pohl 94] the three phases of requirements engineering are

representation, agreement, and specification. It is evident from the current literature

that the majority of the work done is to support the specification, and incremental

design. This is not necessarily surprising as the research work in specification, and

design has matured (the upstream activities, as suggested in Chapter 1). While

there is very little work done in bridging the gap between requirements, and

specifications. This gap is also noticed by Jarke et at [Jarke 94], they state 'we do

see a need for a formal requirements language that manages the relationships

between meta-level domain scheme, actual specification, and instance scenarios of

this specification'. Here we perceived such a gap, and in further chapters we

discuss our approach to bridge this gap.

54

Chapter 3

Real World Model of ReaI-Time Systems

We attempt to understand the needs of the users

better by modelling the real world as close to the

user's perspective as possible. This model is

assumed to be developed by users, and requirements

engineers during the requirements acquisition

process. Here we introduce an approach for

thinking and reasoning about a perceived application

domain. Our approach is non-data processing

friendly more than the traditional approaches.

55

3.1 Introduction

Ramamoorthy and So [Ramamoorthy 78] state 'system requirements, needs, and

objectives are generally vague and ambiguous, chiefly because they are at the top

level and arise directly from the application area problems'. Since this statement,

much work has been done in the field. We studied in the earlier chapter some of

the suggested approaches and noted that real-time systems need some special

attention. As Brooks [Brooks 87] noted 'the difficulty is not in saying but to know

what to say'. For such a reason we need an abstract representation of the system to

determine its requirements. A model of a system provides such a representation.

In the following sections we discuss the modelling approach.

3.2 Modelling the Real-Time System

Stankovic [Stankovic 88b], and Ward and Mellor [Ward 85] characterise real-time

systems by the existence of non-trivial interfaces between computers and their

environment. The environment includes various technical components (devices)

and people interacting with the controller (computer). In general a real-time system

is an arrangement of physical components connected or related in such a way as to

command, direct, or regulate itself or another system. With real-time systems

everything that happens alters the environment in some manner. The system

dynamics is understood by measuring the changes in the operating environment.

The changes occurring in the environment is monitored by the sensors. Sensors

provide the information on environment variables like temperature, pressure,

velocity, position, level, and flow. The controller processes this information and

determines the desired control actions. These actions are sent to actuators. An

operator often supervises the system functions. The operator has a greater control

56

on the system. As in flight operation, the operator can replace the control system

and run the operation manually. A system can be described from external user's

point of view as shown in Figure 3.1. Each of the components shown in Figure

3.1 have some kind of associated behaviour. A system can be thought of as a

parallel composition16 (II) of these components. Thus a real-time system can be

modelled as controller II sensor II actuator II operator.

Environment _____ 1

Figure 3.1 Abstract model of a real-time system

A model of a system is a simplified representation of a system (postulated or real)

[Stavely 83]. A system can be modelled from the views of an observer. As Zeigler

[Zeigler 76] notes:

16 Formalisation of the operator (II) is provided in Chapter 4.

57

The real system refers to nothing more or less than a source of observable

information. The system may be a natural one, such as biological or

ecological system, an artificial one, such as a computer operating system, or

a mixed one involving both natural and artificial elements such as

transportation, urban or world systems. The important characteristic is the

identification of a segment of reality and the distinguishing of it from the

rest, permitting measurements and other observations to be made on it.

Similar observation is also made by Hoare [Hoare 90], a model of a computational

paradigm is a set of direct or indirect observations that can be made of a

computational process. The observer view of the system is a very high level and

domain-specific view of the system. Requirements describe only externally visible

behaviour of a computer system [Heitmeyer 83]. It is easier and natural to

modularise the requirements by means of features perceived by the user. Such a

mod~l of the system is called as a conceptual model.

A conceptual model provides a user understanding of the system behaviour. A

conceptual model is not an actual construction model, it only provides a synoptic

view of what is going on in the system. The phrase conceptual model was

popularised in 1970's, and was used as a synonym for data modelling. It was

often used in discussion with the design of database (see for e.g. Brodie et al. 84).

In the literature, conceptual model is used at various levels. As Bennett

[Bennett 91] comments there are different conceptual models dependent upon the

observer: the designer's model, the user's model, and the assessor's model.

Similarly Deutsch [Deutsch 88] proposes three different models (viewpoints) that

are related to the major parties involved in system development: the customer, the

user, and the implementor.

58

In the literature conceptual model is also referred as user model. Reviewing the

obligation of a conceptual model, we can notice two different perspectives of a

conceptual model, viz. the use perspective and the user perspective. Conceptual

model discussed here emphasises on the use, rather than on the 'user'. Use

perspective emphasises on the use of the model like:

* to provide a conceptual framework for precise thinking;

* to provide a framework to initiate communication among people;

* to check that the model reflects the intentions of stakeholders;

* to provide a framework for the stakeholders, on which they can test the

end product.

While the user perspective emphasises the roles of different persons involved in the

project. A number of persons are involved in a project, and their requirements of a

product can vary, like the requirements of

* end users,

* specifiers,

* designers,

* quality engineers,

* maintenance engineers, and

* project managers.

59

The user perspective identifies that differences exist in the view of the system

depending on the role of the person. This perspective models the views and their

relationship [Finkelstein 92].

Our view of conceptual model refers to a highly abstract level of system

description, and emphasises the use perspective. At a conceptual level the

characteristics of the system are important. It provides an integral aspect of the

system's definition. Conceptual modelling is closer to the human conceptualisation

of the problem domain [Gorski 89]. Description at this level is aimed to enhance

the communication between persons involved in the project including the

customers. For the purpose of determining the requirements the conceptual models

are abstracted at the highest level. In conceptual modelling the conceptual process

is essential. Then what is the conceptual modelling process?

3.2.1 Conceptual Modelling Process

The conceptual modelling process deals with understanding the purpose of the

system. As Ross [Ross 85] expresses 'at first, you don't actually know what the

problem is. You have to get into the details to find out how it shapes up'. To get

into the details, we need an orderly procedure. An orderly procedure (method)

helps to determine the requirements, i.e., to build the conceptual model of the

system. A model represents understanding of the system without having to deal

with every detail of it. The modelling process detailed in Figure 3.2 provides a

systematised way of reflecting the inherent structure of the model. In Figure 3.2,

the left column represents the activities in the application world, and the right

column represents the activities of the modelling process. The figure provides a

description of the interrelated phases that occur during modelling. A layered

60

approach is suggested for the development of a conceptual model. The first layer

emphasises understanding the application domain, in the second layer we identify

the various components that make up the application, in the third layer we develop

an engineering understanding of the various components that enter the system, in

the fourth layer we develop the specific use of the system, and in the last layer we

revisit the model by developing the safety critical aspects of the system.

Needs and objectives

Composition of the model

Use of scenari~s to
confirm the mcpdel

I

I
I

+

.....1 Characterize the model

'------:-~ -----I ~

,,--D_e_te_nnI_·n_e_th_e_c_o_n_str_al_·n_ts---ll... .. =1 ===Q=U=al=if=Y:th=e=m=od=e=I=====

Define the service

,
Conceptual model of the requirements

Figure 3.2 Different phases of conceptual model

In Chapter 1, we discussed the importance of modelling the environment. The

important characteristics of the real-time systems concerns the environment. In

Section 3.4, we discuss the concepts of identifying the components that take part in

J

61

a system. This details out what we mean by components, and what is its use to the

definition of the system. In Section 3.5 we detail out how a component interacts

with another. Section 3.6 discusses an approach to define the use of a system. A

definition of a system is provided by defining its use. Section 3.7 discusses the

constraints that introduce the restrictions to the behaviour of the system. The use of

the system is refined with the constraints identified. A requirements model is not

constructed by the requirements engineer alone, the model building activity is a

shared task involving stakeholders. In Section 3.8 we discuss the validation of the

model involving stakeholders. Section 3.9 discusses the significance of the

approach, and summarises the approach.

We consider an example to motivate our discussion.

3.3 A Railroad Crossing Example

Consider the rail road crossing system shown in Figure 3.3. This problem was

introduced by Leveson [Leveson 85]. This system involves operating a gate at a

railroad crossing. The requirement is whenever a train is in the crossing, the

crossing gate must be down. We make use of this example for discussing the

various concepts.

62

Controller

~

Figure 3.3 Railroad crossing system

3.4 Real World Model

Software systems are typically large and complex, and reasoning about uch

systems is a difficult task. An approach that has been suggested by many people to

deal with this complexity, i to build a model that focuses only on those properties

that are of interest, while ignoring the mas es of irrelevant detail. This abstraction

focuses on the identification of what an application doe. An application takes

place in the real world, and this call for modelling the real world.

Determination of requirements is ba ed on understanding the problem environment

[Davis 82a]. Understanding the problem environment becomes es ential to

perceive what is important, and what is needed. The need for understanding the

environment for the effective development of a y tern ha been widely recognised

[Jackson 83, Zave 83]. The requirements of a sy tern is always in its relation hip

with the environment. Environment influences the requirement in three key

63

dimensions: perception of needs, problem definition, and system safety. As Turski

[Turski 86] notes the properties of the environment are difficult to describe and the

resulting descriptions are quite complex. For such a reason a systematic

description helps to perceive the intrinsic nature of the problem domain. An

environment based system description provides a conceptual structure of the system

at a very high level. The word structure refers to a partial description of the system

showing it as a collection of parts and showing relations between the parts

[Parnas 74]. This structure establishes a portfolio of responsibilities that will

provide a complete coverage of the needs. To create such a conceptual structure we

need to introduce some concepts.

I am of the opinion that for the reason of simplicity and comprehensibility (which is

vital in the initial phases) only few basic concepts have to be introduced. In other

approaches, often a large number of artefacts (for example, see Alford 85) are

used. Our approach does not promote countless artefacts, and several steps. We

present concepts that are suitable for understanding the system, and describe an

approach to use these concepts. For consideration about the conceptual model two

basic concepts are sufficient, namely agent and role. The concept of agent is

well known [Feather 87, Finkelstein 87]. The notion of viewpoints introduced in

CORE [Mullery 79] characterised as something that does things, is similar to an

agent. As in [Feather 87, Finkelstein 87] we name agents those that contribute to

the behaviour exhibited by the controller and its environment. In fact I define an

agent as an artificial device that serves a representational function. In this sense an

agent still refers largely to 'components', we mentioned in the earlier Sections.

Ro 1 e relates to a specific set of characteristics to be exhibited by an agent.

64

3.4.1 Concept of an Agent

A model of a system is identified in tenns of the devices (parts), and its properties.

Devices have specific capabilities. The capabilities are tailored depending on the

customer needs. We name these devices as agents. An agent is an abstraction of a

problem domain which models the characteristics of an entity. An agent is

described by its external operations and usage restrictions. Agents are identified

during problem analysis. These are characterised by what they do rather than what

they are. Agent characterises the resources and the operations assigned to it.

Agents can be either concrete or abstract. A concrete agent may have a

representation in a system like a switch, a printer and so on. An abstract agent may

have no direct representation in a system, instead it models a behaviour which is a

set of operations that it can be requested to carry out. An agent has a particular

responsibility to the system.

3.4.2 Concept of Role

Role describes an agent that has been selected for modelling. In essence, it is the

role, that clarifies the intended purpose of an agent in the context of the problem

domain. The description of the role of an agent forms a part of the requirements

document. The role of an agent is provided by the customers. Role is a way of

categorising agents on the basis of what 'it' does. For example in an organisation

we can identify two agents 'programmer' and 'manager'. Any agent can play the

role of a programmer or a manager. The difference between the two agents is

attributed to the roles they play, rather than to the agents. Thus the agents are

characterised by the roles they play. Each role has a specific goal associated with

it. The two questions that arise in this context are:

65

• Does the role of an agent consistent with the objectives of the

system?, and

• What steps are necessary for an agent to achieve a goal?

Here we are making a subtle distinction between objective and goal. An objective

refers to the overall system expectations. While a goal refers to the expectations of

an agent in a role ascribed. For example, the objective of a nuclear reactor is to

produce electricity, while the goal of a 'plant protection subsystem' is to shut off

the system in abnormal situation.

3.4.3 Agent Identification

In the literature many approaches have been suggested that merits discussion.

Abbott [Abbott 83] suggests, writing an English description of the problem (or a

part of the problem) and then underlining the nouns and verbs. Nouns represent

the 'candidates' and the verbs represent operations on them. Similar idea was also

suggested by Booch [Booch 83]. Ward and Mellor [Ward 86] suggest that

'candidates' may be derived from external entities, data stores, control stores, and

control transformations. Coad and Y ourdon [Coad 90] suggest another source of

information like, structure, locations, organisational units, events remembered, the

different roles of users, devices, and other systems.

In our case, the identification of agents is highly domain-specific. The agents are

identified on the grounds of their utility rather than their approximation of the

system behaviour.

66

For example as suggested by Booch [Booch 83], or Abbott [Abbott 83] we cannot

rely on the descriptions provided by the customers. In the rail-road crossing

example, a description may run like this, 'the cars, and vans move on the road'.

This description may influence one to consider a van or a car as a 'candidate'.

Similarly, it is too early to get trapped into the realm of DFDs. It is necessary to

step back from the description of the system provided by the customer, and to think

on the objectives of the proposed system.

The identification of the agents begins from recognising the objective of the system.

At this stage we are concerned with the objective of the system, and not the

implementation issues like functional decomposition. The objective is firmly

grounded in the environment.

We need to know:

(1) What is the environment?

(2) In a real-time system, the environment acts as a source and a recipient.

All the environment oriented activities are either the monitored activities,

or the controlled activities. This raises an interesting question, what to

monitor, and what to control.

(3) This analysis makes us to understand, what the system is intended for?

(4) What a system should do?, and

(5) What a system should not do?

Considering the example again, we have:

67

(1) The environment comprises of trains moving on the rail track, the cars and

other vehicles moving on the road, and a gate in the crossing region to control

the traffic. The gate stops the cars, and vans crossing the rail track.

(2) Monitor the train entering and exiting the region of interest.

(3) Control the operation of the gate.

(4) The system is intended to allow for the smooth flow of traffic in both the

directions, on the road, and on the rail track.

(5) The system must close the gate while a train is in the crossing region.

(6) The system must not open the gate, while a train is in the crossing region.

(7) The system must not keep the gate closed unnecessarily (i.e., when a train is

not in the crossing region)

Thus in this example, we need a sensor to detect the arrival and exit of a train, a

gate to stop the traffic on the road, and a controller to manage the system.

We name the three agents as 'Train Monitor', 'Gate', and 'Controller'. The role of

the 'Train Monitor' is (a) to monitor the arrival of a train, and (b) to monitor the exit

of a train from the crossing region. The role of Controller is to co-ordinate the

'Gate'. The role of a Gate is (a) to make the gate to go 'Up', or (b) to make the

gate to go 'Down'. The vehicles that pass across the road, have no roles to play,

i.e., no role can be assigned to the vehicles which pass across the road. Thus the

agents of the system are as shown in Figure 3.4.

68

Controller

~

Train Monitor Gate

"""""'0
Figure 3.4 Agents of railroad crossing system

3.5 System as a Web of Agents

A system cannot be modelled as a single agent that does everything. The focus

here is to express the requirements of a system as a set of agents which interact

with each other. Relationship pertains between agents. Agents communicate with

other agents in a system in order to achieve its responsibilities. The two questions

that interests are:

• how the relationship evolves over time?, and

• how an agent interacts with another agent?

We model a system as an organisation of agents. Agents interact through shared

information. We do not model the interaction of agents through requests

transmitted by other agents. This approach is different from many object-oriented

approaches like [Wirfs-Brock 90, Co ad 90, Shaler 88] where services are

requested through messages. The models that use such features become more

69

solution-oriented, as the message that needs to be modelled is always a feature, that

is outside the realm of conceptual model [ISO 87].

An agent keeps track of its user's focus of attention. Agent identification step

involves two units of knowledge concerning the system: the purpose, and the

function. An examination of these two units recognises the issues like:

• what is the role of an agent?

• what activities to be performed?

• what causes these activities?

• how these activities influence other activities?

These questions reflect the pragmatic issues like what are the things we are talking

about, and how do we provide explanations of these activities. To deal with such

pragmatic issues we need a general approach, which bounds the problem space and

aids in the efficient search of requirements. Such an approach is discussed below.

3.6 Building the Real-World Model

Brooks [Brooks 87] feels that: 'the most important function that the software

builder performs for the client is the iterative extraction and refinement of the

product requirements'. Simply asking users to state the requirements is not

sufficient. Davis [Davis 82b] identifies four broad strategies for determining the

requirements as: asking; deriving from an existing system; synthesis from

characteristics of the current system; and, discovering from experimentation with an

evolving system. In practice, all these approaches are used. A true understanding

70

of the system can emerge from understanding the needs of the individuals. Thus an

approach used must have the following features.

Simplicity. It must enable an efficient interaction with the stakeholders. It must

attempt to involve the stakeholders.

Informative. The approach used must encourage the user to reason on the

requirements like, what slhe wants to do, why slhe wants to do, and when slhe

wants to do.

Flexibility. An objective is to provide a tool of thought for the user to navigate

with the problems. The user must be able to experiment with what-if situations.

Dealing with such situations must be easy and straightforward.

Familiarity with the user's world. The vocabulary of the requirements

document should be that of the application environment, not of the software

engineer. The facts about the environment should follow the working rules of the

user, and not the logic of the system. The information should be presented in the

way the user handles it and not the way which is convenient to the software

engineer.

A real-time system evolves by reacting to the requests it receives from the

environment. A system description through the observable effects on the domain -

as what happens to the environment makes the objectives clearer. Here we propose

a scenario based approach to elicit the requirements.

71

3.6.1 Modular Scenario Based Approach (MSBA)

A scenario is a sequence of situations a user would experience when operating the

proposed system. A scenario is a frame for the description of a particular sub­

problem, which needs to be tackled by the system. Hooper et al. [Hooper 82]

suggest that scenarios have the advantages of rapid prototyping without the

overhead of actually building implemented prototypes. Scenarios provide natural

ways of describing, how things behave in a system. Scenario based approach

increases the communication between users and analysts.

A real-time system has an ongoing relationship with the environment. In a real­

time system we can identify several patterns of reaction of behaviour. System

evolution can be characterised by identifying several patterns of reaction as time

progresses. These patterns are best understood by examining the change that

occurs in the environment. A pattern of reaction can be referred as a scenario.

Our approach (MSBA) is different from the approach suggested by [Holbrook 90,

Jacobson 92, Carroll 92, Hsia 94,]. [Holbrook 90] suggests to create a task

hierarchy, and then to create the scenarios. [Jacobson 92] suggests the descriptions

of use-cases from users to identify requirements. [Carroll 92] suggests a scenario

based approach in understanding the activities directed at design. While in

[Hsia 94] scenarios are generated for the system from the point of view of different

users. In general task decomposition may lead to a rigid structure of the system

[Heitmeyer 83]. Also decomposing goals in a top-down way is possible only for

toy problems17. Generating the scenarios for the whole system is a very difficult

17 Ross [Ross 85] complains that there is a magic in such an approach.

72

task. The number of scenarios in any system grows out of hand, making it

tedious, and difficult to analyse. Our approach views the system as a network of

agents. Here the scenarios fall into groups. These groups are natural for the users

to analyse and comment. A set of scenarios define the requirements for an agent.

It is possible to capture the responsibility of an agent with a reasonable number of

scenarios.

An agent has a responsibility to the system. This responsibility sheds light on the

expectations of an agent. This expectation symbolises a particular 'use' of the

agent as conceived by the user. This 'use' provides a scenario. The concept of

scenario generation is explained further in Section 3.6.3. Now consider an

example.

For example consider the 'Train Monitor' discussed in the Section 3.3. The role of

the 'train monitor' is to monitor the train in the crossing region. Monitoring

involves, monitoring the arrival of a train (a train approaching the crossing region),

and monitoring the exit of a train from the crossing region. This provides two

scenarios:

(1) if a train is approaching the crossing region, then report 'train is entering'.

(2) if train has left the crossing region, then report 'exit'.

73

Scenario 1

Train Monitor

'observe the train is entering
the crossing region'

'report that the train is
entering the crossing region'

Figure 3.5 Elaborating the role of train monitor

3.6.2 Philosophy of MSBA

Scenario 2

Train Monitor

'observe the train is exiting
the crossing region'

'report that the train is
exiting the crossing region'

The approach - MSBA conveys a sense of the purpose of an agent by elaborating

its role. This approach emphasises the utility point of view as conceived by a user.

An agent has a perceived utility to the system. Such a responsibility driven

approach is also suggested by [Hsia 88]. In general the stakeholder's interest is in

what gets done, not how it gets done. This suggests that we consider important

non-data issues such as context and role. The primary focus of conceptual model is

concepts. The approach does not depend on a model of data. This view is in line

with the conceptualisation principle advocated by the ISO document [ISO 87]. The

conceptualisation principle states:

A conceptual schema should only include conceptually relevant aspects,

both static and dynamic, of the universe of discourse, thus excluding all

74

aspects of (external or internal) data representation, physical data

organisation and access as well as all aspects of particular external user

representation such as message formats, data structures, etc.

This approach is different from the traditional approach to problem solving that

stems from the top-down approach, where the system functions are sub-divided

into smaller and smaller problems. Such an approach tries to fit a problem into one

mould at a very early stage. With complex systems the requirements modelling is

rather an outside-jntS approach, which allows to add more detail to the model as

we gain further insights to the system. Requirements modelling as indicated by

Feather [Feather 91] consists of a series of incremental steps that converge in a

model with the appropriate content.

3.6.3 Characteristics of MSBA

The identification of an agent recognises the responsibility it has for the system.

An elaboration of the role (as we discussed above) makes one to recognise the use

of an agent. A comprehensive description of the use provides a scenario. A

scenario accomplishes a goal. Malhotra [Malhotra 80] in studying the dialogue

between people involved in problem solving, noted that the dialogues were

composed of cycles like (1) goal statement, (2) goal elaboration, (3) solution

outline, (4) solution elaboration, (5) solution explication, and (6) agreement on

solution. Conveniently we can summarise this structure (as shown in Figure 3.6)

by the following stages of user activity:

18 We are using the tenninology of [Ross 85].

75

• Detennine the use,

• Conceive the purpose, and

• Specify the sequence of activities.

Detennine
the use

..... _----tI.~ Conceive the
purpose

Figure 3.6 Notion of a scenario

Environmentally
Observed Activities

!
Specify the sequence
of activities

Goal

Figure 3.7 Visualisation of a scenario

A scenario bridges the gulf between environmentally observed activities and the

intended purpose as shown in Figure 3.7. This brings out the relationship between

the two. An activity can contribute to a requirement in three ways (as shown in

Figure 3.8):

76

• An activity can cause a requirement. For example a person pressing a

button, causes a requirement to be satisfied;

• An activity can form part of a requirement. When a person presses

a button, acknowledging this action forms a part of a requirement;

• An activity can ful f i 1 a requirement. When a person presses a button,

displaying the required information fulfils the requirement.

Scenario

Activity 1 - pressing a button
causes a requirement to be fulfilled

Activity2 - acknowledging the activity 1
forms a part of the solution

Activity3 - displaying the information
f u 1 f i 1 s the requirement

Figure 3.8 Association among the activities

Thus the scenarios provide a suitable formalism in establishing the connections

among the user perceived activities. Scenarios essentially involves something that

the agent wants to accomplish. This accomplishment is described by activities. A

77

scenario is an encapsulated description of achieving a specific outcome under

specified circumstances. In real-time systems the agents have to accomplish a

particular purpose under specific restrictions. The restrictions are influenced by the

environment as described in Chapter 1. Analysing the restrictions with the

described scenarios is essential. The next Section discusses such an analysis.

3.7 Modelling the Constraints

Constraint is a restrictive condition [Oxford Dictionary]. In general while working

in the real world some set of constraints can be observed. Real-time systems have

some special kinds of constraints. Some of these constraints arise from the

technical capabilities of the system itself, and others from the nature of the activity,

that is appropriate to the application. Constraints are essentially conditions imposed

on the goals. We classify the constraints as static and dynamic constraints as

shown in Figure 3.9. These are explained below.

Figure 3.9 Classification of constraints

78

3.7.1 Static Constraints

Static constraints are constraints that are independent of time. They specify the

static aspects of the application domain. Static constraints stem from two sources.

Firstly, a system cannot be assumed to have infinite resources. Every system has a

limited resource like memory, number of channels, and so on. For example, when

a car arrives at the parking centre, car can be allowed inside only if a space is

available. Secondly many of the system's action is conditional depending upon the

circumstances. For example while monitoring the temperature, a requirement can

be, to raise an alarm if the monitored temperature exceeds 100 degrees. Here the

temperature read by the sensor causes an alarm to be raised, only if its value

exceeds 100 degrees. Such conditional requirements reflect static constraints.

Static constraints can be sub-divided into two types as shown in Figure 3.10; static

constraints as constraints over a single parameter, or constraints over multiple

parameters.

a. Constraints on a single parameter:

1. Temperature> 100 degree

2. Temperature> 100 degree AND Temperature < 500 degree

b. Constraints over multiple parameters:

1. Temperature> 100 degree AND Pressure> 200 psi

2. Total resource available exceeds the demanded resource. Here the

resource may consist of more than one parameter.

79

a. Constraint on single parameter

100

Temp> 100 Temp> 100 AND Temp < 500

b. Constraint on multiple parameters

Temp> 100 Pressure> 200

Total Resource Available
Exceeds the Demanded
Resource

Figure 3.10 Static constraints

3.7.2 Dynamic Constraints

Dynamic constraints are perfonnance requirements. I agree with Zave [Zave 82]

that performance requirements is what really characterises real-time systems. All

perfonnance constraints are constraints concerning time or space [Smoliar 81].

Here we will be referring to constraints on time. Timing constraints are an essential

part of real-time systems. We refer to timing constraints as timeliness constraints,

as they dictate the response time of the system. Timing requirements in real-time

systems arise because of the importance of the activities of the controller upon its

environment. For example, in a manufacturing plant, if the computer controlling a

robot does not command it to stop or turn on time, the effect can be disastrous.

Timing constraint imposes a temporal restriction on the environment and on the

controller. Timing constraints provide a temporal relationship between the

activities. Two types of temporal relationships can be distinguished depending

upon the causal relationship between the activities [Koymans 88].

80

Qualitative: temporal relationships are concerned with only the order in time;

and,

Quantitative: temporal relationships are concerned with the order and the distance

in time. Quantitative temporal relationship refers to the time of

occurrence of an action. Here we refer to such relationships as

timeliness constraints. Timeliness constraints refer to the moment

of occurrence of an action.

Requirements model for real-time systems must incorporate real-time features. An

important real-time feature is the ability to measure time. For example, the data

available from the sensor is time sensitive. After some time elapses, the data

obtained from the sensor is of no value, as it may not reflect the true state of the

environment. For such a reason a quantitative temporal reasoning is required. For

example, in a rail-road crossing system it is required to state that the gate closes in a

certain duration of time rather than to state that it eventually closes, in

communication protocol, if message acknowledgement is not received within a

certain time, then action is to be taken to re-transmit the same within a fixed time,

and in a manufacturing system, a particular job like painting a car by robot may

have to be started and completed at a particular time. These systems are time

dependent, and require explicit quantitative temporal reasoning.

In literature there is interesting discussion on how best to represent the quantitative

timing requirements [Jahanian 86, Alur 92, Lamport 83]. Global clock paradigm is

a well known paradigm used to represent quantitative timing requirements. Global

clock paradigm is not suitable for real-time systems [Jahanian 86]. Real-time

systems are often distributed. The clocks drift, and it is difficult to synchronise the

81

clocks. [Lamport 78] has argued that to avoid inaccuracies in timing only

observable events should be used for timing other events in the system.

Timing constraints are bound to the environment and to the controller. A

generalisation of the timing constraints is needed to discuss the temporal

requirements. Such a generalisation was provided by Dasarathy [Dasarathy 85] 19.

Dasarathy [Dasarathy 85] categorises the timing constraints by three types of

temporal restriction on the events in a system.

maximum - no more than t time units must elapse between the occurrence of

two events,

minimum - no less than t time units must elapse between the occurrence of

two events, and

durational - event must last for t units of time.

A slightly different approach to temporal requirements is employed in [Mok 84].

This classification derives its origin from the scheduling problems. It categorises

timing constraints as sporadic (quasi-periodic) and periodic [Mok 83]. Dasarathy

views temporal restrictions from the point of view of user. While Mok views the

temporal requirements from the point of view of controller. In a controller view

the realm of temporal restriction, falls with the scheduler. Sporadic timing

constraint requires some action to be executed before a specified time. For example

a sporadic requirement can be, to open the valve within 10 time units of pressing a

19 We discuss the limitation of this classification in Chapter 5, and provide a very general

classification.

82

button. On the other hand, a periodic timing constraint requires some action to be

executed at fixed intervals. For some applications a periodic timing constraint may

exist from system initialisation, like monitoring the temperature in a nuclear reactor

control, and for others it may come into existence dynamically, like radar tracking

an aircraft, this comes into existence when the aircraft enters the traffic control

region and ceases to exist after aircraft leaves the region.

In general, a model must reflect both types of timing requirements. In this Chapter

we shall not reflect on the expressiveness of this classification of temporal

requirements. We visit this aspect in Chapter 5. This study has presented the

intricacies of timing requirements.

3.7.3 Timeliness Requirements

The fact that temporal properties naturally partition into two disjoint classes was

first observed by Lamport [Lamport 77]. Thus timeliness requirements arise from

two sources:

(1) Safety requirement, and

(2) Liveness requirement

3.7.3.1 Safety Requirement

Safety requirement depends upon the operational context. Safety requirement

stipulates that 'bad things' do not happen during the operation of the system

[Lamport 83]. For example in a railroad crossing system, the safety requirement

may state that, accident should not happen. An analysis of what is an accident

83

makes us to investigate the possibilities of avoiding it. This examination introduces

timing constraint. The timing constraint depends upon the environment, the

maximum speed with which a train can travel, and so on. This analysis introduces

a timing constraint to be incorporated into the requirement.

Safety: The gate must be closed within 100 time units of detecting the

arrival of a train.

3.7.3.2 Liveness Requirement

Liveness requirement, stipulates that 'good things' happen eventually

[Lamport 83]. A system to be of use to its community must be live. For example a

railroad crossing system, can achieve safety by closing the gate always. The

system, to be of use must open the gate eventually, i.e., the gate must not remain

closed for long. This requirement ensures that the system is live. The requirement

that the gate eventually be raised, is only a qualitative requirement. If the system is

to be of much service, then a quantitative requirement is needed, like that the gate

be raised within 500 time units of the exit of the train. Thus real-time liveness

criteria suggests temporal constraint.

Real-Time Liveness : The gate is never closed for more than 500 time units,

after the exit of the train

It may be noted that Alpern et al. [Alpern 89] have proved that every property20 is

the conjunction of a safety property and a liveness property. The safety and

20 Examples of the properties are: partial correctness (if precondition is satisfied then eventually

postcondition holds good); abortion freedom {if precondition holds good, then eventually system

84

liveness properties belong to the environment (to the problem model), while other

properties (mentioned in the footnote) belong to the solution model. Thus the

properties that are of interest to the solution model are a derivative of the properties

of the problem model.

Restrictions imposed by the safety and liveness requirement, refine the scenarios.

Now we shall refer to the evaluation of our model.

3.8 Validation of the Requirements

So far the discussion surrounded the technique which provided a process of

articulating the objectives and the needs of the system. After formulating the needs,

the evaluation phase begins. The evaluation phase provides feedback on the user

requirements. The scenario based technique discussed above, can be used both for

generating the scenarios, and for validating it. The scenario-based technique is

used to provide feedback on what the user thinks the focus is. This allows the user

to change the focus if necessary.

does not enter a state where the program aborts); total correctness (in a finite program, if a

precondition holds good then it satisfies some postcondition, and the final value of the program

counter denotes the end of program); normal termination (in a finite program, if precondition is

satisfied then eventually the state where it ends the program, is not the one where program aborts);

mutual exclusion (a condition such that, two processes are not inside a critical region); deadlock

freedom (a condition, where a process has entered such a state, where it has no enabled action, and

no other process can alter that); guaranteed service (a request is serviced eventually); first-come

first-serve (receive the request in the order of arrival); starvation freedom (if a process is enabled

frequently enough, it will progress eventually).

85

The evaluation phase involves the review of the conceptual model (which

symbolises the provisional understanding of the system i.e., the user solution of

the system). This review focuses on the goal set, and the user solution to achieve

the goal. The user may explain hislher needs by giving a solution. Such a review

along with the user can uncover the unstated requirements which are known as

'mistakes' [Malhotra 80, Boehm 76]. Review of Malhotra's dialogue

[Malhotra 80] suggests that a good portion concerns obtaining feedback from the

customer - that the requirements engineer has understood some specific aspect of

the problem. This study suggests that the problem definition and user solution are

not independent activities, they are interrelated. This relationship between problem

definition and the user solution is made clear with scenarios.

The scenarios provide a list of actions for a specific situation. The scenarios are

fragmentary in nature. The fragmentary nature of the scenarios suggest that they

playa significant role in stimulating the acquisition process, rather than relying on

the predetermined information. Scenario description is more concrete, and this

helps to understand and resolve the conflicts more quickly. This approach of

problem definition/user solution seems to match the prototype development

strategy. This approach is radically different from the serialised life-cycle

approach, where it is unrealistically assumed that all the requirements are captured

at the very beginning. From Malhotra's study it is apparent that during the

requirements definition activity, unless the provisions are made to capture such

solution elements, important information may be lost.

86

3.9 Discussion

The central activity during system development is requirements determination,

whereby requirements are established. An analysis of the approaches suggested for

requirements determination by Davis [Davis 82b] provides a central theme. The

approaches are:

(1) Asking the user

(2) Derive them from the utilising system, that is, from an analysis of the

needs of those who will use the system. This involves studying the

work that users actually perform using interviews, observations, sample

documents, etc.

(3) Derive them from an existing system - one that was previously installed

as developed. An understanding of system requirements is obtained by

reverse engineering.

(4) Evolve them through the process of prototyping. That is, by iterating

through building -> use -> feedback -> modification of requirements ->

building cycles of system development. Here the system itself is the

requirement. This still evolves in the minds of the user and system

developer as iteration progresses.

All these approaches rely on asking the user for information, although steps 1 and 2

are heavily dependent upon this. Rapid prototyping methods like PAISLey

[Zave 82], or Gist [Balzer 82], allow the analyst to understand the system

behaviour. Prototyping involves experimenting with problem solving. This means

87

that the person responsible for prototyping must have a solution in mind, before

s/he starts prototyping. Prototyping postulates a solution. The prototyping

language does not portray the intended or expected behaviour by the user. While

the scenario based technique describes the external system behaviour from the

user's point of view. Scenarios describe the proposed use of the system. Scenario

description involves environment and the controller.

Our approach is to analyse the objective and assign the role responsibilities to the

objective. This helps in the identification of agents. An agent can be represented

with twin views as shown in Figure 3.11. Responsibility view is the extrinsic

view, it provides a description that stems from the use of an agent. While the

behavioural view is the intrinsic view, it furnishes the behaviour that the agent is

capable of producing. An agent has both an external representation, and an internal

representation. Scenarios provide an interface between the two representations.

This approach provides a tool of thought for both the requirements engineers, and

specifiers. For stakeholders, an agent has a person view that accommodates a

particular responsibility. While a specifier has a system view of an agent, that

provides some functionality. For a customer the agents distribute responsibilities,

while for a specifier the agents distribute functions. Thus agents support both

responsibility, and functionality. This dual role helps to reveal any mismatch

between customer's expectations, and requirements engineer's understanding.

88

Role

Constraints

Relation with other
agents

Agent

i

Scenarios

Figure 3.11 Twin views of an agent

Causes actions
aI, a2, ..

Participates in actions
aI, a2, ..

Depends upon actions
aI, a2, ..

In responsibility view the role is dominating. The role represents the mission of the

agent. The mission of the agent is explained as scenarios by the users. The

scenario characterises the responsibility as deemed by the user. While the

behavioural view provides the functional view to achieve that mission. The

functional view represents the behaviour to be portrayed by an agent. This

distinction is outlined in Figure 3.11.

Behaviour

Observed Activities

Information

Figure 3.12 Dimensions of a scenario

89

In Figure 3.12, information represents the needs, objectives, and desires as

regarded by the user. The behaviour is what the system adopts. Behaviour arises

out of time ordered observed activities. The observed activities provide a

qualitative description of how the agent behaves. This description is grounded in

the real world. Requirements description based on the real world features are

transparent and easy to understand.

3.91 Summary

Here we suggested a five layered approach during the requirements stage (seen in

Figure 3.2), as its first purpose to develop an understanding of the problem

domain, as its second purpose to develop a user understanding of the objectives

that enter the overall system - which guides the identification of agents, as its third

purpose to develop an understanding of the agents co-operation to provide the

required objective, as its fourth purpose to develop an understanding of the specific

use of the system, and as its last purpose to develop an understanding of the safety

critical aspects of the system. The model is refined later with stakeholders. A

formal view of the model is necessary to aid the analysis. A formalism specifies a

class of objects under discussion in an unambiguous and general manner

[Zeigler 84]. A formal view of the model will be discussed in the next chapter.

90

Chapter 4

Time-Constrained Automata Model

A system often consists of several agents, and these

agents are time-constrained. We introduce

time-constrained automata to model the dynamic

nature of an agent, which needs to evolve over time.

This is achieved by enriching the elements in the

domain, with an explicit time component. This

model describes both functional, and temporal

restrictions using the same framework. A real-time

system is viewed as a set of interacting automata,

each automaton representing an agent in the system.

91

4.1 Introduction

The objective of a model is to represent an abstract knowledge about a universe of

discourse [ISO 87]. In the preceding chapter we discussed an approach to derive

the conceptual model with dynamic properties. Real-time systems are time­

sensitive, and necessitates dynamic properties to be modelled. A real-time system

often consists of several agents. An agent is characterised by the important

incidents that occur. An incident is an abstract representation of the chunk of

information handled by an agent. An incident provides a dynamic instance of the

description and is called as an event. Thus an event is an assertion about some

behaviour parameter of an agent. Now we can visualise a scenario as a sequence of

events that accomplishes a mission. This style of description is oriented towards

activities occurring in the user's world. Thus an event model provides a context in

which the requirements are abstracted as observable effects on the domain. In the

following sections, an event-based model is discussed.

4.2 Characteristics of an Event

Traditionally the behaviour of a system is captured by continuous variables

modelled by differential equations [Kuo 67, Ogata 90]. A system can be modelled

by symbolic changes of a system rather than as changes in the numerical values (as

modelled by continuous variables). Such a model identifies the important events

that occur in a system. We think of a system in terms of events. The notion of

observation is crucial to the philosophy of event-based models. An event refers to

observable information. A system is modelled by such discrete-events. The events

are discrete in the sense that it is assumed to occur instantaneously. A discrete

event system, is a dynamic system that evolves with discrete events which occur at

92

unknown irregular points of time. For such reason the model is also called as

discrete event dynamic model.

Events of a system are identified in principle by the independent observation of the

system. An observer recognises the interactions that take place in the system. An

observer cannot influence the system in any way. The dynamics of a system is

understood by the events it is associated with. Event conveys different

information, for example an event like 'temperature exceeds 50 degrees', defines a

dynamic change in an ongoing process. While an event like 'temperature set point

modified to 25 degrees' characterises an operation. An event may characterise an

environmental operation, or controller operation. Events are fmnly associated with

the evolution of the system. Events are instantaneous and mark a point in time.

Continuous events which have a duration are represented by two atomic events like

start of the event and the end of that event. By atomicity we mean that the events

are indivisible. Each event has a unique name. Event model allows a system to be

described without referring to its internal operations. As noted earlier, an event

may refer to an operation from the environment or from the controller. To an

observer ongoing activities are the flow of events from and to the environment.

Event-based models are advocated by [Hoare 85], or in control systems by

[lnan 88], and in hardware by [Snepsheut 85]. These models do not explicitly deal

with functions of time. In our model, we explicitly deal with the function of time.

We also consider non-terminating interaction of reactive systems.

93

4.3 Event-Based Model

An event based model sets up the basic abstraction of a system. Event based model

is a tuple < E , T > where E is the event set and T is the time base set. In an event

based model the concept of event is central.

4.3.1 Event set

Event set represents the incidents that can take place in a system. These events are

observed over a time base T. Time base T provides a chronological pattern to the

events occurring in a system. Event based model consists of events and their

relations [Lamport 78].

Definition: An event is an instantaneous atomic instance of the description in a

system.

----~-----------4----------4_----~ .. ~ time

button pushed door closed door opened

Figure 4.1 Ordering the events

For example the incidents like button pushed, door closed, door opened are the

events. These events can be ordered depending on the time of their occurrence as

shown in Figure 4.1, where 'button pushed' happens before 'door closed' and so

on, or in other words 'button pushed' precedes 'door closed' and so on. This

precedence relation is a relation between two events and denoted by symbol <.

Thus an event structure is represented by (E, <).

94

The distinctive property causality (that there is no effect without a cause) can be

represented as

tie 3 e' e' < e

The binary relation < is irrefiexive, transitive, and anti symmetric21 •

Events with duration are modelled using two atomic events marking the beginning

and the end of the event (with duration). 0

4.3.2 The Perspective of Time

Time is thought in terms of points or intervals [Benthem 91]. We refer to time as a

non-empty set T, consisting of objects called time-elements. With a point

perspective, time consists of a series of time points, like bullets triggered

continuously from a gun. These time points are duration-less. Traditionally time­

points are regarded as the basic elements, and time-interval a derived concept

[Koymans 92]. An interval can be regarded as a series of time points. Relations

between time intervals proposed by Allen [Allen 83] provide a useful mechanism to

think in intervals. With intervals, it is very difficult to state complicated timing

constraints that arise in an application [Alur 90, Stokes 91]. Also it is very difficult

for the user to interpret the relations between the intervals. Time points provide a

viable mechanism to represent any complicated timing constraints. The relation

between the time points is straightforward. Both the environmental and controller

dependent timing constraints can be clearly stated. For such a reason we make use

of the point structure of time.

21 These properties are explained below, with time set.

95

4.3.3 Point Structure of Time

A point structure P is an ordered couple (T, <) where T is a non-empty set of

ordered points, with a binary relation < on T. This ordering notion has the

following properties.

Irreflexivity (i.e., a time point cannot precede itself)

IRREF 'V x --, x < x and

Transitivity

TRANS 'V xyz (x < Y /\ Y < z ~ x < z). From these two conditions the

condition of asymmetry follows.

ASYM 'V xy (x < y ---+ -, Y < x)

For any two time points, either one precedes the other or they are the same point.

Thus linearity is

LIN 'V xy (x < y v y < x v x = y)

Each time point has a neighbouring point in past and future, and this implies a

succession property

SUCC 'V x 3 y, y < x (past), 'V x 3 y, x < y (future)

96

The point time structure gets classified into dense time structure or discrete time

structure, depending on whether we assume an infinite divisibility between two

points or not.

Thus with infinite divisibility we have

DENS 'V xy (x < y ~ 3 z, x < z < y)

and using a stepwise succession we have

DISC 'V x (3 z (x < z /\...,3 i x < i < z » ,

'Vy (3z(z<y /\...,3i z<i<y»

A dense time structure observes IRREF, TRANS, LIN, SUCC, DENS and a

discrete time structure observes IRREF, TRANS, LIN, SUCC, and DISC.

The two types of models that originate from the point structure of time are discrete

and dense time. In discrete time model, time increases in steps. This is familiar to

the number system N (natural numbers). Dense time model is familiar to the

number system R (non negative real numbers)22.

22It may be noted that, the number system Q (the rational numbers) is dense, but not continuous,

while R (the non-negative real numbers) is both dense and continuous.

97

4.3.4 Need for Dense Time

Real time systems operate in intimate coordination with its associated physical

systems. These operating domains progress at widely separated time scales.

Independent events may appear arbitrarily close together in time. Such events

cannot be faithfully modelled with discrete time. With discrete time, time increases

in steps. When time increases in a stepwise succession, a prior commitment to a

quantum of time is needed. If time quantum chosen is t then the time points (x)

that can be studied are

"if x :3 n E N, x = n t.

After choosing a time quantum intermediate points cannot be studied. If time

quantum is chosen as 1, then event sequence consisting of a, b, c, d can be

represented as

(a, 1) , (b , 2) , (c , 4) , (d , 5)

In the above case if b occurs at 1.1 then it will be denoted as time(b) = 2, this limits

the expressiveness. Also in modelling realm, explicit reference to discrete time can

be made redundant, by adding null events (0) to mark the passage of time. The

above timed sequence can be represented as { a , b , 0 , c , d }, where timing is

implicit23.

The argument for dense time can be summarised as below [Joseph 92]

23Such an approach is used in linear time temporal logic. with the repetitive use of next operator.

98

1. The independent events in a distributed computation may appear arbitrarily

close together in time, and so time must be represented in dense domain.

2. Physical processes are modelled with time in a continuous (real) domain, so

programs that interact with physical processes must represent time in a similar

way.

4.3.5 Timing Axioms

A time sequence T consists of infinite sequence of time values, and satisfies the

following constraints:

Progress: time value strictly increases.

This states that time never decreases.

Non-Zeno Property: Between two time values, there is never an infinite

number of time values. 0

This rules out the possibility of representing an infinite number of computations in

arbitrarily small time. Such machines which perform infinitely many computations

in finite time are called as Zeno machines [Witrow 80]. Zeno machines are hyper

arithmetical [Joseph 92, Kurki-Suonio 94]. As, such systems are non existent the

above axiom rules out such behaviour.

99

4.3.6 Timed Event

A timed event associates a time parameter with an event. It is expressed as

(button_pressed, t1) where t1 is the timing parameter associated with the event

button_pressed. Time parameter t1 marks the occurrence of event button_pressed.

Definition: Given a set of events E and a totally ordered time set T, then a timed

event is a pair of an event and a time point (ei, ti) E EXT where ei E E and

ti E T. 0

4.4 Abstract Model of a Real-Time System

As noted earlier real-time systems are reactive systems, and in this respect differ

from transformational systems. A transformational system accepts input, performs

transformations on them to produce output as shown in Figure 4.2(a).

Transformational systems prompt the environment for additional required inputs,

while reactive systems are prompted by the outside world. Reactive systems are

interactional systems, as shown in Figure 4.2(b). As Pnueli [Pnueli 86] expresses,

"reactivity characterises the nature of interaction between the system and its

environment. It states that this interaction is not restricted to accepting inputs on

initiation and producing outputs on termination. In particular, it allows some of the

inputs to depend on intermediate outputs". In this respect we can notice a subtle

link between reactivity, and distributivity or concurrency. Concurrency or

distributivity refers to an internal organisation of the system, and a component in a

concurrent system should always be viewed as a reactive component. This is

because typically a component in a concurrent system maintains a reactive

interaction with other components in a system. Thus a component is studied in

100

terms of the interaction it maintains with the other components. In Chapter 3 we

modelled a real-time system as a combination of a number of concurrently acting

agents (components). In the following section we discuss an abstract view of this

model.

Transfonnational
System

output

(a)

input

Figure 4.2 (a) Transformational system

Environment

output

Reactive System

(b)

(b) Reactive system

One of the often suggested approaches is the use of finite-state automata. Since the

unique feature of real-time system, is its ability to deal with infinite computations, it

is appropriate to consider automata over infinite sequences (0) - automata).

4.4.1 0>. Automata

The theory of automata is a foundation stone for computer science. We recall some

of the well known concepts of classical automata [Hopcroft 79]. The concepts of

ID-automata are not so well known, and are found in articles24 [Btichi 72,

Choueka 74, Hoogeboom 86, Thomas 81]. The theory of ro-automata are based on

24 The concepts of 0> - automata can also be found in [Eilenburg 74).

101

the theory of finite automata. We develop the theory of O)-automata with the

classical automata.

An alphabet 1: is a finite nonempty set. The elements of an alphabet 1: are called as

letters or symbols. We refer to a finite sequence of letters as a word, and to an

infinite sequence of letters as an infinite word, or (J)-word. As usual, e denotes the

empty word, 1:* represents the set of all finite words over 1:, 1:+ denotes the set of

all nonempty finite words (.I:,+ = :E* - {e}), and I,O) denotes the set of all infinite

words.

An O)-word u over 1:, is an infinite sequence over :E, written in the form

(u = U1, U2, U3). The set of all O)-words over I, is denoted by :EO).

Definition: If I, is an alphabet then an 0)- word over I, is a mapping from N into

1:, where N denotes the set of nonnegative integers.

Consider a word w. We use Iwl to define the length ofw. For a word WE :E*, we

let wi be its component at the (i)th position, if 1 SiS Iwl. The concatenation of a

word w E 1: *, with the symbol ~ E :E is represented by W· ~ E :E * . A word

v E :E*, is a prefix of w, if Ivl S Iwl, and vi = Wi for 1 SiS Ivl.

For a finite word cr E :E+ and an infinite word cr'E I,O), we denote by cr (cr' the

fact that cr is a proper finite prefix of cr', i.e., a prefix that differs from cr'. We can

note the relation cr (cr', requires cr to be finite. The word cr·cr' is obtained by

concatenating cr' to the end of cr. The concatenation (cr·cr') is defined only if cr is

finite. 0

102

For example, consider a sequence of even numbers. The property of even numbers

defines a characteristic set, such that the elements of the sequence, s

(x = 2), (x = 4), (x = 6), ...

belongs to even numbers.

While the sequence, r

(x = 2), (x = 4), (x = 5), ...

does not.

Recalling the discussion in Chapter 3, a scenario defines a sequence of actions

(events) for a particular situation. If events are modelled as symbols of the

alphabet, then a scenario is a word. A system comprises of a set of scenarios, or a

set of words. Another name for such a set is a language. A language is a set of

words from an alphabet. An ro - language consists of co-words. Thus an ro -

language over an alphabet ~ is a subset of ~c.o.

In the abstract model considered, a property judges some sequences to be

acceptable (follow the property), and other sequences to be unacceptable (those that

do not have the property).

Afinite automaton is a five tuple A = (~, Q, Qa, a, F) where ~ is a finite alphabet,

Q is a finite nonempty set of states, a ~ Q x ~ x Q is a set of transitions, Qo ~ Q is

the set of initial states, and F !:: Q is the set of final states. A is said to be

deterministic iff IQol = I, and for all q E Q and a E ~, I { q} x {a} x QI ~ 1.

103

If automaton is in state q, then it can move to q', while reading a symbol. Thus an

automaton moves to various states while reading a word from its initial state. A

word x is accepted by A iff there exists qQ E QQ, and qf E P, and a pathqo ~qf'

A run is the sequence of states that an automaton occupies while reading a word.

A run r of automaton A on a word x, is such that

(a) r[l] E QQ, and

(b) for all i, 1 ~ i ~ lxi, (r[i],x[i],r[i+ 1]) E a

A run r on the word x is accepting iff

(c) x is finite, and r[lxl] E F

The automaton A that satisfies the condition (c) is the classical PSM (finite state

machine).

4.4.1.1 Acceptance of Infinite Words

In the automata A considered above if x is infinite, then a run of A over x, consists

of some state from the set P repeating infinitely often along r (BUchi acceptance25).

In other words, a run r of A over a word x E ~Ol is an accepting run iff

Inf(r) (J F"# 0 (BUchi acceptance).

Thus a run r on the word x E ~ro is accepting iff

25 In the literature various types of Ol-automata are studied. Here we consider only Biichi

automaton.

104

(d) x is infinite, and Inf(r) n F * O.

The automaton A that satisfies the condition (d) is the Btichl automaton.

4.4.2 Biichi Automata

Recalling the above discussion, in Btichi automata a run is accepted if the

intersection of the infinite set of run with that of accepting states is not empty i.e.,

Inf(r) n F ~ 0. Inf(r) is the set of automaton states that appear infinitely often in

a run of the automaton over a given word, and F c Q, is the set of accepting states.

An co-language acceptable by Btichi automaton, can be constructed from the

language acceptable by finite state machine. This is explained below.

Infinite behaviour of the automaton A, denoted as Behoo (A) is the set of all the

labels of the run starting in qO and going infinitely often through the set F. The

family of all acceptable subsets of 1:(J) is denoted as R(1:oo). Similarly finite

behaviour of automaton A is denoted by Beh. (A), and the family of recognisable

subsets of 1:* by R(1:*).

Theorem: An m-Ianguage L!:; 1:00 is Biichi recognisable iff L is a finite union of

sets of u.yoo where U and Y ~ 1:*.

Given U and Y E R(1:*) and W = U.yoo = L(A)

The word W is a concatenation of two words U and V(J)

or W = Behco (A)

105

The labels on the run of the automaton A consists of the word U followed infinitely

by V. This exhibits the path of the automaton, which starts in initial state qO e Q,

and then moves to a final state f e F, and then keeps looping back to the same

state.

The word U takes the automaton from the state qo to f, and this can be represented

as Uq,f = (Q, qO, f). After the automaton moves to the state f, the automaton is

made to revisit the same state infinitely often by V, and this can be represented as

Vf = (Q, f, f).

w = u U Uq,fV~
qeQo fe F

Conversely U and V e R(l: *) we can build an automaton A such that

U.vro = Behro (A).

4.4.3 Timed Scenarios

In the above discussion, we considered untimed language i.e., set of untimed

words. The above formalism is sufficient to consider the untimed scenarios. In the

earlier chapter, we argued the need for a temporal reasoning. For example, in a cat

and mouse problem, the cat after observing the mouse, must catch it within a

couple of seconds, if not the mouse will vanish. This is a real-time scenario. To

incorporate the temporal reasoning, we introduced the notion of a timed event (an

event associated with a time element). In essence a real-time scenario is a sequence

of timed events, i.e., a timed word.

Definition: A finite timed word is a finite sequence of timed events.

106

In the earlier section, we discussed the need for a dense-time domain. In this

section, we shall see how temporal reasoning can be incorporated.

4.4.4 Technique to Represent the Timing Constraint

Most of the temporal representations suggested in the literature fall into one of the

two forms:

(1) delaying a transition for a finite time (same as the one suggested by

Ramchandani74);or

(2) constraining a transition for a lower bound time, and an upper bound

time. Here a transition is delayed for a lower bound time 1, and constrained

to occur within an upper bound time u. (This is the same as the one

suggested by Merlin 76).

Both these formalisms consider a temporal constraint as a restriction over one

symbol. This concept arises from the inherent stimulus-response mechanism,

where response is considered as a symbol. In practice, as we argued earlier26,

timing constraint may involve temporal restriction over several events. For

example, in the Figure 4.3, the time of occurrence of symbol d, is constrained not

only by the time of occurrence of symbol a, but also by the time of occurrence of

symbol c. Such temporal constraints cannot be stated in the formalisms mentioned

earlier. For such a reason we make use of the concept of multiple clocks mentioned

in [Alur 92].

26 We argue this further in Chapter 5, and present an alternative tool for stimulus-response

mechanism.

107

x=O
a

c

y=O

Figure 4.3 Timing constraint over many events

4.4.5 Multiple Clock Paradigm

Here a finite number of clocks are used to represent the temporal requirements.

Each clock is initialised (set to zero) before it is used. These clocks are fictitious

clocks which are used like stop watches.

Timing constraints are stated, as a constraint over the clock. The reading of a clock

at any instant equals the time elapsed since the clock was initialised. A clock can be

initialised over a transition, and timing constraint is stated over transition. For

example in Figure 4.3, automaton A starts in state p, and moves to state q with the

Occurrence of symbol a. The clock x gets initialised along with this transition. The

value of a clock always reads the time elapsed since it was reset. When the

automaton is in state q, the clock x reads the time elapsed since the symbol a

occurred. The transition from state q to state r occurs if symbol b occurs while the

value of this clock x is within (an upper bound 00 two units of time and a lower

bound of one unit of time. The transition from state r to s occurs with the arrival of

symbol c. The clock y is initialised to zero along with the transition from state r to

state s. Similarly the transition from state s to state p occurs, if symbol d occurs

108

while the value of clock x is less than five units of time, and the value of clock y is

greater than or equal to one unit of time.

The automaton can make a transition if the values of associated clocks satisfy the

enabling condition. The transitions are instantaneous i.e., transitions between

states take zero time. A state in a timed automaton represents the state of the

automaton and the values of all its associated clocks. Thus state is a pair (q, x)

where q E Q is a location of the automaton and x E IRn is the value of its

associated clocks. For time values di E IR the transition can be represented as

(q,x) (a,d))(q',X') . A run r for a timed automaton is an infinite sequence of

states qi E Q , clock vectors X E IRn and time values di E IR .

The runs of timed automaton is in correspondence with the runs of the normal

automaton. For example, sayan observer is watching the transitions that take place

in Figure 4.3. According to the observer, if timed word is (a, 4), (b, 5.5), (c, 6),

(d, 8) then with the values of clock it can be denoted as

(p,[O,O]) (a,4) • (q,[0,4]) .. (r,[1.5,5.5])
(b,5.5) (c,6) ..

(s, [2,0]) (d,S)" (p, [4,2])

The automaton A makes use of two clocks x, and y. All the states associated with

A (Le., state p, q, r, and s) is associated with two clocks. Initially at p, the value of

both the clocks is zero, and is represented as p[O,O]. The first transition is noticed

as (a,4). This increases both the clocks by 4 units of time (Le., x = 4, Y = 4), but

the clock x is initialised to zero over the transition, so the value of clocks at location

q, is (x = 0, y = 4) and represented as q[0,4]. Similarly all the other transitions

modify the clock values as shown above.

109

Formalism of Clock Constraints

As shown above, the clock constraint is allowed on the transition. A simple clock

constraint compares a clock value with a time constant. A clock constraint is such

Boolean combinations of simple clock constraints.

Definition: If X is a set of clocks, the set <I>(X) of clock constraints 1 is defined

inductively as follows (c is a time constant, and x is a clock in X) :

Y= x S; c I x ~ c I x < c 1 x > c 1 x = c 1-.1111 A. Y2 0

4.4.6 Timed Biichi Automata

The formalism of timed Btichl automata is as given below [AIur 92]. Timed Btichi

automata (TBA), provides a temporal reasoning with dense-time domain. The

formalism can incorporate aU the temporal representations. A timed Btichi

automaton (TBA) is a 6-tuple A = (!., Q, Qo ,C, 0, F), where!. is an alphabet, Q

is a finite set of states, C is a set of clocks (for example {xO ... xn}), Qo is a set of

start states and Qo c Q, 0 gives the set of transitions, denoting 0 ~ Q x!. x 2C

x <I>(C) x Q, and F is a set of acceptance states F ~ Q. Each transition might

reset a clock and has an enabling condition expressed as a constraint on the values

of associated clocks.

4.4.7 Related Information

Btichi automata are popular in temporal logic also. Given a formula in linear

temporal logic, it is possible to construct a BUchi automaton that accepts those

infinite sequences that are models of that formula [Clarke 86]. This relationship

110

has been exploited in temporal logic for verification purposes, to show that an

implementation meets the specification. This is termed as temporal logic model

checking. Model checking is an effective method to prove that a concurrent

program satisfies a temporal logic formula [Vardi 86]. In this approach the

specification of a system is defined in temporal logic formula. Then the BUchi

automaton extracted from this formula is checked for containment with BUchi

automaton obtained from the implemented system. The automata are tested for

containment by checking their languages [Kurshan 87]. If automaton A accepts the

language L(A) and B the language L(B) then to test L(A) c L(B), the complement

of automaton B i.e., B', is constructed, and the language produced by the product

automata is tested for emptiness i.e. L(A * B') = 0. The complexity of this

approach is atleast as complicated as finding the complement of the automaton and

is commonly known as emptiness of the complement problem. The

complementation construction is presented in [Sistla 87].

4.5 Modelling an Agent

In the above sections we discussed the formalism of timed scenarios, and the timed

automata that is capable of representing such properties. As discussed earlier, an

agent is characterised by scenarios. Thus each agent is represented by a timed

automaton. In terms of the event model discussed, each symbol refers to an event.

As discussed above the behaviour of an automaton is set of timed event sequence.

We shall consider an example.

Example: Consider an agent performing a communication by sending and

receiving the messages in an environment. We assume that the agent sends a next

message, only if the previous message had been received. The sending and

111

receiving of the message is abstracted by events 'send', and 'receive' respectively.

Then the possible behaviour is

(send, t1), (receive, t2), (send, t3), (receive, t4)· ..

To discuss the event model at the right granularity, we consider the concept of

process27• We can characterise the behaviour of an agent as a process. A process

is defined in terms of a set of timed events, and a set of traces. A trace is a finite

sequence of timed events. In the concrete model a trace refers to a scenario.

Definition: A trace is a fmite sequence of timed events. 0

For example, If events a and b are in A, then the trace (a,t1), (b, t2) is a sequence

of two timed events. An empty trace, that is a sequence of no events is denoted by

<>.

In the following section we formalise the definition of a process.

Definition: A process essentially has two meanings (1) to define all possible

events, and (2) to define the behaviour of a process. Thus,

a process P is a pair (aP, traces(P))

where aP is the set of events that the process P is characterised by, and traces(P) is

the set of all traces that P can engage. 0

27 Further discussed in Chapter 5.

112

In chapter 3, we regarded a real-time system as a web of concurrently acting

agents. Here we fonnalise the composition of agents.

4.5.1 Composition of Agents

A real-time system is an arrangement of agents. Processes are used to describe the

behaviour of the agents. The behaviour of an agent is asserted by defining a

process. A process consists of sequence of timed events that the real system may

engage. As we studied in the previous chapter these agents are reactive by

themselves. Thus system behaviour is described as a parallel composition of

agents. Here we define the parallel composition of two processes.

4.5.1.1 Modelling the Composition

The parallel composition (II) of a set of processes describes the joint behaviour of

all the processes running concurrently. The rendezvous between the two processes

can be modelled either by means of shared action, or by means of communicating

action (as in the case of CSP). In CSP two processes are connected by a channel.

If a process say, Ml wants to communicate with M2, then Ml perfonns a 'send

action'. This 'send action' will not be executed, until M2 performs a 'receive

action'. The concept of channel, message transmission, and reception mechanism,

can influence the implementation process. A conceptual model must represent

abstractions. We do not make use of the concept of communicating action. The

synchronisation between the two processes is achieved by means of shared event -

i.e., the two processes share the same event label. Such a rendezvous is called

shared action.

113

Here processes synchronise via common events, and concurrency is modelled by

all possible interleaving of the events. For example in a manufacturing plant,

consider a situation where a robot bends a pipe, and places it on the conveyor belt.

The robot, and the conveyor belt are two independent processes. The robot can

place the 'bent pipe' on the conveyor belt, only if it is ready to do so, and the belt

is ready to receive the 'bent pipe'. Thus the event 'bent pipe' requires simultaneous

involvement of both the processes. This suggests that the event 'bent pipe' is in the

event set of both the processes. In other words, the event 'bent pipe' is a possible

event in the independent behaviour of both the processes.

4.5.1.2 Formalising the Composition

The parallel composition of two processes P and Q is denoted as P II Q. To help us

in the definition of parallel composition, we define an operator i such that, an

expression (t i B) denotes the restriction of traces t, to the set of events B, and

is equal to the trace t with all events outside B omitted.

Given the process P and Q, the parallel composition of the two processes, denoted

as P II Q is defined by

a (P 1/ Q) = aP u aQ

traces(P II Q) = {t I (t i aP) E traces(P) ,,(t i aQ) E traces(Q) "

a{t } ~ (aP u aQ)CO }

Processes P and Q execute in parallel and synchronise on common events. For

example, P II Q can execute an event a, if process P and Q simultaneously execute

a, or if one of these processes, say P executes a, and a is not in the event set of Q.

114

An Example of Parallel Composition

Consider a process P with its behaviour as alternating the events a, and b

respectively, such that symbol b arrives after one time unit of the occurrence of

symbol a, and the alternating a arrives at a fixed length of 3 time units. The trace

representing this behaviour is

(a, t) (b, (t+l» (a, (t+3» (b, (t+4»

Now consider another process Q connected to the above process P. Process Q

sends symbol c after receiving the symbol b. The time delay between the symbol b

and c, is one time unit. The trace representing this behaviour is

(b, (t+l» (c, (t+2»

Then the parallel composition of two process P and Q has a unique timed trace:

(a, t) (b, (t+l» (c, (t+2» (a, (t+3» (b, (t+4» (c, (t+5»•

We think of two processes, as two automata Ml and M2. Then the parallel

composition of M 1 and M2, denoted as MIll M2 is given as follows.

As we noted in the earlier section, here a symbol is a timed symbol, i.e., a symbol

associated with its time of occurrence. (The notation P - Q is used to represent the

set of elements in P, but not in Q)

MIll M2 = (Ql x Q2, Al u A2, CI u C2, f, (qOl, q02»

where f«ql, q2), (a, t» = (fl (qt. (a, t», f2(q2, (a, t») if a E Al r'I A2

115

= (fl(qI, (a, t», q2) if a E Al - A2

= (qt, f2(q2, (a, t») if a E A2 - Al

= undefined otherwise.

Here Al - A2 is the set of elements in A 1 that are not in A2. Thus M I II M2 can

execute an event a E Al n A2, if both M t and M2 execute a at the same time, or

if only one of the machines executes a, and a is not in the event set of the other

machine, or the time of occurrence of a is different.

The parallel composition (") of a set of processes describes the joint behaviour of

all the processes running concurrently. Here processes synchronise via common

events. The serial product of automata is used for a long time to formalise the

parallel composition [Lamport 89, Merlin 83, Arnold 94, Lustman 94]. It can be

noticed that the binary operator II is associative and commutative,

Le., MIll M2 = M2 "MI, and (MIll M2) "M3 = MIll (M211 M3)

4.7 Summary

The purpose of our model is to capture the user model of the ongoing activities of a

system. User model of a system is narrated in principle by the independent

observation of the system. Event model provides a succinct approach to model the

dynamic nature of the systems. The notion of event covers all the incidents that are

of interest. As our interest is in discrete systems, we assumed that the event

occurrences have no duration, i.e., it marks a point in time.

116

Real-time systems often consist of several agents. A system is regarded as a

composition of concurrently acting agents. We discussed the formalism for the

parallel composition. The model accommodates both the functional and temporal

aspects in the same framework. In the next chapter, we discuss the language to

allow for the easy expression of the requirements.

117

Chapter 5

Timed Requirements Language - TRL

During requirements, active participation by the

users is essential. Active participation by the users is

possible only if the requirements descriptions are

understandable. TRL has simple constructs, and

promotes a descriptive method. TRL has a number

of novel features including the treatment of causality,

and the description of static, and dynamic constraints

all integrated into one uniform framework. An

approach to model the controller, and environmental

actions is discussed. A generalised classification of

the timing constraints is provided.

118

5.1 Introduction

According to Freeman [Freeman 87, Chapter 5] the main teething problems that

arise during the development of complex system are: gathering of the information

about problem domain, and its representation. These problems are interdependent,

in the sense that the way in which we try to represent the requirements, influences

our ability to gather the requirements. As Guinan and Bostrom [Guinan 86]

express:

The process of information requirement determination requires effective

communication between system analysts and users of the system to be

developed. The analysts ability to discover user requirements is partially

determined by the analyst's familiarity with and ability to communicate in

the user's domain of knowledge and discourse.

In this statement, the first part concerns acquiring the information, and the latter

part on its representation. Both these aspects stress the involvement of users. The

approach developed in Chapter 3 focused on the acquisition of requirements, and

involved the users. In this chapter, we discuss the representational aspects, and

introduce the language - TRL to represent the requirements.

In TRL, requirements are represented in the terminology of the user. As we

discussed in Chapter 3, requirements of a system evolve over time. We learn more

about the requirements, as our understanding of the environment improves. This

understanding is further refined or put to test in discussion with the stakeholders.

The requirements undergo refinement, before it approaches towards agreement.

For such a reason, the stated requirements must involve the active participation by

119

the users. Active participation by the users is possible only if the descriptions are

understandable by the users. Understandable descriptions also help in the

modification of the requirements. TRL promotes a descriptive method. TRL

emphasises understanding what takes place and when it takes place in the system.

Here a system is modelled in the terminology of the user. Such a model provides a

description of the operational behaviour of the system. An operational explication

is a problem oriented system description. Requirements description based on real

world models are transparent and easy to understand. TRL is designed to facilitate

the easy description of operational behaviour of systems. TRL is event driven, and

provides constructs for the determination of timing constraints.

Leveson [Leveson 86] observes that, the greatest problems associated in software

engineering, are due to the computer system being treated merely as stimulus­

response system. We describe an approach to describe the real-time systems by

their intended goals (missions). The approach discussed here, describes the

mission of the system as conceived by the user. The missions are the features that

the customer envisages. We also notice the limitations of the temporal classification

provided in [Dasarathy 85], and provide a general classification of timing

constraints of real-time systems. It is very well known that the temporal

requirements cannot always be guaranteed. We emphasise the need for timing

exception handlers in the representational languages, and provide suitable

constructs in TRL.

5.2 Basic Premises

The descriptions of the requirements of a system is defined in terms of the

observable events. The observable events include, electro-mechanical signals to

120

control the apparatus, the actions taken by humans, and the environmental actions.

The system requirement is expressed through such observable events. These

observable events are ideally described through some enumeration of a list of

events that achieve some mission. The temporal requirement of the mission can be

provided over this flow of events, like at what time a particular event has to occur,

and so on. This flow of events furnishes the system behaviour to achieve a desired

mission in-time. Such a flow is depicted in Figure 5.1. An event is significant for

describing the required behaviour of the system. As remarked earlier an event may

refer to the controller, or the embedding environment, or to the interactions among

them.

EJexpresse<l.. Information through Event

embodi edin

~,

Behaviour
Jurnishes Event
...... Sequence

4~

Constr . runs

Temporal
Requirements

Figure 5.1 Behaviour in TRL

However a list of events alone could not provide a comprehensive description of

the system. A system description is naturally done at the right granularity. The

granularity of events is too fine. In order to make the requirements description

comprehensive, the overall description, corresponds to the description of the

121

processes. A process provides the behaviour of an agent that constitute the

system. As shown in Figure 5.2, a process simply consists of sequence of related

events. A process is composed of activities. An activity incorporates a set of tasks

to be completed. Tasks are the smallest units of work, and consists of events.

Process
consists of ... Activity consists of

consists of Task

Figure 5.2 Process in TRL

5.2.1 Conception of Requirements

Functional requirements originates from a sense of causation. For example, a

message cannot be received unless it is sent, or in a restaurant a customer gets the

food after slhe orders, similarly in a tank controller, opening a valve causes the

liquid level to be raised. The requirement is a chain that mirrors this causal

relationship among several events occurring in a system. Real-time systems

interact with physical devices which are monitored and controlled. A complex

system is a combination of interacting components. In all these systems one

device triggers another. The behaviour of a system is this causal relationship

among real world events. Requirements evolve from this simple set of reasoning.

Requirement of a system involves the order of occurrence of events and the

constraints on the time of occurrence. As Bubenko [Bubenko 80] observes a

conceptual model represents abstractions, and constraints about an application

122

domain. An event model provides such features for the narration of a conceptual

model.

We make use of event based model to capture the behaviour of the system. In

event model, one is interested in the ongoing process involving real world entities

(i.e., how an event is caused, how an event affects other events, and which event is

dependent on other events). Description of behaviour produces a chronological

relationships between corresponding events. With real-time systems we are

interested in the precise sequencing of operations and the detailed timing and

control characteristics of devices. Event model provides such details.

5.2.2 Timed Requirements

Event based model provides the basis to express the real time requirements of a

system. A real-time system requires temporal reasoning. For such a reason in

TRL every event is a timed event. An event associates a time parameter with an

event name. It is expressed as (button_pressed, tl) where t1 is timing parameter

associated with event 'button pressed'. The syntax diagram of event is shown in

Figure 5.3. The syntax diagrams make use of standard notation, non-terminals are

shown in rectangular boxes, and reserved words in bold letters.

<event> ::= "(" <event parameter> "," <time parameter> ")"

<event parameter> ::= <identifier>

<time parameter> ::= <identifier>

123

I event I
• (- I event parameter I - ,

~

C
• .-J

I time parameter I-) •

Figure 5.3(a) Syntax diagram of event

I event parameter

----t··w •
I time parameter

---t··W •

Figure 5.3 (b) Syntax diagram of event and time parameter

----t.. letter

Figure 5.3 (c) Identifier

124

5.2.3 Description of Requirements

As discussed in the earlier chapters (Chapter 3, and Chapter 4) a system can be

deemed to be made of a number of concurrently acting processes28• Thus, a

system can be modelled as a set of processes (Figure 5.4), i.e.,

<system> ::= "requirements" <irl> {<processes>}

<processes> ::= <process> { " " " <process> }

system

---I. a. requirements --I id
(" . ~'I -p-ro-c-es-s-es-I.~

Figure 5.4(a) Syntax diagram of system

I processes

-+ I process
("' .
~Ir--pr-o-ce-ss-es--',- II -.~

Figure 5.4(b) Syntax diagram of processes

28 In Chapter 3, we referred it as 'agents', and in Chapter 2, before introducing the concept of

agents, we referred it by the generic name 'components of the system'.

125

The formalisation of the parallel composition (II) has been discussed in Chapter 4.

The parallel composition of a set of processes describes the joint behaviour of all

the processes running concurrently.

A process consists of events that must be executed in a prescribed order. As we

discussed in Chapter 2, a real-time system is characterised by mainly two types of

processes: periodic and aperiodic. A periodic process consists of events that is

executed repeatedly, once in a fixed period of time. The common example of

periodic process is to read the sensor information, or update the calendar time.

Aperiodic processes29 (or also called as asynchronous processes) consists of

events that correspond to internal or externally motivated events. A common

example of aperiodic process is to respond to operator requests.

System activity is asserted by defining bodies of processes. Processes are used to

describe the dynamics of the system. Process consists of a set of behaviour

definitions, where each behaviour definition is justified by the behaviour definition

previous in the sequence.

In TRL a behaviour definition is of the form

29 For the purpose of scheduling analysis, Mok [Mok 83, Mok 84J suggests to translate an

aperiodic process into a quasiperiodic process (or sporadic process), by providing a minimum

separation time between the motivating events. Polling is an example of this. In this scheme, a

polling task checks to see if an aperiodic event has occurred, if it has occurred then processing

begins, if not then nothing is done till the beginning of the next polling period.

126

where beh_id is the language construct that relates events (e 1 , e2, . . en).

A process P is a set of behaviour definitions of the form

<process> ::= "process" <identifier> "begin" <named behaviour>

{ <named behaviour>} "end"

Each behaviour definition is regarded as a behaviour expression, which is named

with an unique identifier.

<named behaviour> ::= <behaviour name> ":" <behaviour> <endstmt>

<endstmt> is the statement separator. We call such an expression as a named

behaviour. A named behaviour can be abstracted as:

s 1: e 1 --7 e2 --7 e3 <endstmt>

process

--.. process - OU - begin -I body of proc 1- end --..

Figure S.S(a) Process definition

127

I body of proc I

--1 •• 1 named behaviour I-"'?~~-----------:\:::----'.

~ 1 named behaviour I ----.....J

Figure S.S(b) The body of a process

I named behaviour I

----t •• 0--: -- I behaviour 1- I endstmt •

Figure S.S(c) Behaviour definition

In an event based model, a behaviour is regarded as the manipulation of events,

within the specified timing constraints.

<behaviour> ::= "do" <event sequence> ["where" <timing constraint>]

[next behaviour name] I <special behaviOUr>

128

I behaviour I

,----I •• do -- event sequence

~---------------------------------~

where -I timmg constraInt 1 ~ I next beh. name I ~~

'---------~.. special behaviour 1----------..
Figure 5.6(a) Behaviour expression

At present we shall ignore the non-terminal 'timing constraint'. We deal with

timing constraints exclusively in later sections. The non-terminal 'next behaviour

name' provides an approach to relate various scenarios 30.

I next beh. name I

--I.~ & - DLJ •

Figure 5.6(b) Next behaviour definition

Let's consider a simple example. When a person visits a restaurant, he is seated,

and then if he orders for the food, then he is served with food. This can be

abstracted by behaviour expressions as described earlier.

30 Scenarios are fragmentary in nature. Thus there is a need to relate the scenarios to get the

whole story about a particular agent.

129

s 1: visits ~ seated & s2

s2: orders ~ food served

The statements (s1, and s2) in the language is tenninated with a statement separator

as mentioned earlier.

The behaviour that is of much interest are periodic and aperiodic behaviour.

Aperiodic behaviour occurs at irregular points of time. Aperiodic behaviour is

normally the result of an environmentally triggered event. On the other hand, a

periodic behaviour is characterised by an event that has to occur at regular intervals

of time. These two types of behaviour is further discussed in the following

sections. Now it is sufficient for us to mention of their importance in the study of

real-time systems.

<special behaviOUr> ::= <periodic behaviOUr> I <aperiodic behaviOUr>

I special behaviour

..-----.... 1 aperiodic behaviour

-------.1 periodic behaviour

Figure 5.7 Syntax diagram of special behaviour

130

5.3 Conceptual Analysis

The objective of conceptual analysis is to produce statements on the aim and

purpose of the system. This high level activity identifies the needs, i.e., what is to

be accomplished, and what is to be avoided. This structure of thinking of a system

is based on the purpose-driven framework. This purpose-driven framework

emphasises goal specifications. Taylor [Taylor 82] observes that goal

specifications have advantages for error and safety analysis. In event model, the

purpose driven framework is postulated in terms of what happens, and how the

things that happen can interact. In a reactive system, environment regularly

invokes the controller. This behaviour is essentially asynchronous. These events

are not controlled by the software system, and depends only on the environment.

This behaviour can be analysed with cause-effect analysis.

5.3.1 Cause - Effect Analysis

Cause - effect study describes the external behaviour of a system [Elmendorf 74].

Cause is an event, and the effect is a sequence of events directly triggered by the

causal event. An inherent property of this reaction is it being driven by some event

happening in the system. This is what happens with reactive systems. It captures

the causality in the system. Causality asserts that one event triggers another event.

This triggering notion is fundamental to reactive systems. For example, consider a

simple system a water tank controller. In a water tank controller, say a requirement

is, when a switch is pressed (FILL) the tank is to be filled with water. This

behaviour involves activating event which triggers an effect. The effect specifies

the goal to be achieved. Effect can consist of more than one event, in essence it

consists of an event sequence. Thus an effect may be primitive or composite. In

131

the above example, the effect, fill the tank (Ff) is a composite one. The primitive

events that constitute (Ff) are open the valve (OV), and turn the motor on (TM)

and is given by OV ; TM. In general if event el causes event e2, then

el = initiator(e2), or e2 = effect(el). Where effect(e) is a set of (possibly empty)

events created by the event e, and effect(e) defines an event sequence.

Thus an effect characterises an event sequence, and can be represented as

(Figure 5.8):

<event sequence> ::= <event> { ";" <event> }

event sequence

Figure 5.8 Event sequence

In some situations, an intended effect may be to ignore the activating event i.e., to

'do nothing'. Such an effect may be considered as 'defunct effect'. A defunct

effect does not engage in any events, and is built into TRL. A defunct effect is

denoted by 'nil'.

Let's reconsider the water tank controller discussed above. In this example, it is

necessary to check whether water is available to pump in to the tank, before starting

pumping the water. This requirement associates a condition, which can be either

true or false. The condition is associated with the causal event pressing the switch.

This event triggers a required effect only if the condition is true i.e., water is

132

available. Thus the cause-effect analysis is essentially a cause - condition - effect

analysis. The condition, models the static constraints discussed in Chapter 3.

5.3.1.1 Condition

Condition models the physical status of the system. The physical status of a

system varies. For example, a person can be booked in a flight only if a seat is

available. We model the conditions by their names. A primitive condition name

c E C, where C is the condition name set. Condition name c is a variable which is

characterised by a pair (value(c), assignment(c», where:

value(c) E {true, false}, the value true or false is assigned to c;

assignment(c) i.e., assignment to c is an event so as c takes the value,

value(c) at the instant time (assignment (c» .

Examples of such conditions are "water is hot", "seat is available" and, etc. These

conditions describe the dynamics of the system.

5.3.1.2 Effect

Requirements, as discussed in Chapter 3, are described as a set of scenarios,

describing the changes in the system operation. Example of such scenarios are,

when you press this switch, then the system resets. The words like 'press',

'cause', 'affect', 'pull', 'turn', and so on, provide a narration of cause and effect.

The notion of effect plays a vital role in the analysis of requirements. This

description starts with a description of the causal event, followed by the sequence

of events representing the effect. This description provides credibility to the

133

observed or postulated behaviour. This description provides information on how

the things actually happen. In real-time systems the effect is time dependent. This

time dependency is discussed a little later. Let's study some illustrative examples to

reflect on the causal analysis in requirements definition.

Example 5.1: If an aircraft is approaching, and not identified as a friend then

activate threat analysis with a deadline less than 2 sec.

In this example, approaching aircraft triggers 'threat analysis' only if it is not

identified as a friend. This condition is modelled as a constraint on the causal event

'aircraft approaching'. The timing constraint is associated with the event 'initiate

threat analysis'.

Example 5.2: If letters are keyed without selecting a window, then display an

error message 'nobody is hearing'.

The event 'keying the letter' causes an error message 'error report' only if a

window is not selected.

Example 5.3: If the temperature read by the sensor is less than 273 degrees or

greater than 500 degrees, then initiate alann of type 2.

Here the condition can be expressed as follows,

InvalidTemp = (temperature < 273) or (temperature> 5(0)

The event 'temperature' causes an alarm of type 2, only if it is of 'InvalidTemp'.

134

In these examples, the activating event triggers an effect, if a condition holds during

that moment. Triggering event can be guarded by conditions. Requirements can be

elicited by stepping through scenario in which triggering an event initiates a

particular behaviour pattern. A triggering mechanism provides the basis for

describing these events and appropriate reactions.

Following the above analysis we can define the types in TRL.

5.3.2 Types in TRL

Following Martin-Lofs constructive type theory [Nordstrom 84] we define types

as predicates that state the properties of system or its components. For example it

may be an expression that a certain variable has a positive value, or that a certain

resource is available. This mechanism provides a natural way of representing the

dynamics of the system. It may be expressed as

valid_temperature = 15 < temp < 25

registecavailable = a register is available for processing

We use the predicate names such as "valid temperature", or "registecavailable" to

represent system properties. We assume that these have been suitably defined.

5.4 Aperiodic Behaviour

Let's recall that aperiodic behaviour deals with events which occur at irregular time.

Aperiodic behaviour arises due to dynamically triggered events. For example in

telephony, a subscriber going off-hook (lifting the handset) causes an aperiodic

behaviour. Aperiodic behaviour generally has complex timing constraints

135

associated with it. Aperiodic behaviour can be analysed with cause-effect analysis

discussed above. Aperiodic behaviour deals with complex situations. We discuss

these situations, and then generalise the syntax of aperiodic behaviour in Section

5.4.3 (Figure 5.18).

As discussed above, a simple scenario of aperiodic behaviour is as shown in Figure

5.9, and its syntax in Figure 5.10.

Initiating
event

Trigger

Figure 5.9 Scenario of aperiodic operation

participating
event(s) to
achieve goal •

The syntax of aperiodic behaviour can be expressed as:

<aperiodic behaviour> ::= "if' <initiator> "then" <participator>

I aperiodic behaviour I

--. if - initiator I - then participator 1--'

Figure 5.lO(a) Syntax of aperiodic expression

136

I initiator

~ I event I ~~ ..
---l~"1 ~I -ev-en-t-I- and _I condition I----.J

Figure 5.1 O(b) Syntax of 'initiator'

I condition

id

Figure 5.1O(c) Syntax of 'condition'

I particIpator

---I"~ - LI ~effi~ec~t~.-r---------~"~ c: 1 next behaviour name I ..)

Figure 5.1 O(d) Syntax of 'participator'

At present (as discussed in the above section) we shall assume that the effect

consists of an event sequence (including an empty sequence). The syntax of effect

is summarised in section 5.4.3.

Consider a simple aperiodic behaviour of the form

if event 'e' occurs, execute 'f

137

In this example event 'e' is the motivating event, while the event 'f represents the

effect. The above behaviour can be expressed in TRL as follows:

if (e, tl) then (f, t2)

As discussed earlier, the effect depends upon the causal event. This means that a

system can have different effects, at a given moment depending on the causal event.

This is discussed below.

5.4.1 Situation Dependent Effects

A system at a given moment may be expected to behave differently, depending on

the input. For example consider a simple help system, in which if Hotel is pressed

the information regarding the nearby hotels is displayed, if Bus is pressed then

information regarding bus transportation is displayed, and if Taxi is pressed then

information regarding taxi service is displayed.

if initiator
l

then participator 1

elsif initiator2 then participator 2

elsif initiator3 then participator 3

elsif initiatorn then participatorn

I
Figure 5.11 Syntax of modelling the situation dependent effects

In this system the resultant effect depends upon the type of motivating event.

Alternative effects depending on the triggering event can naturally be expressed by

138

elsif clause. Such a situation is as shown in Figure 5.11. The syntax of 'effect' is

provided in Figure 5.19 after introducing some concepts involving time.

The above mentioned syntax of aperiodic behaviour is extended to include the

selection as:

<aperiodic behaviour> .. -.. - "if" <initiator> "then" <participator>

{ <alternative event sequence> }

<alternative event sequence> ::= "elsif' <initiatOr> "then" <participator>

I aperiodic behaviour I

initiator -- then -- participator I ~
~~.~------------------------------_/

C _____ ~--_--------------~_r.
c;= I alternative event sequence I ... J

Figure S.12(a) Syntax diagram of aperiodic behaviour

I alternative event sequence

------. elsif initiator -- then -- participator 1------'

Figure 5. 12(b) Syntax diagram of alternative event sequence

Aperiodic behaviour may be associated with timing constraints such as deadline.

Here we infonnally used the word 'deadline'. By the way what is deadline? Is this

139

the only type of timing constraint that arises in a system? Can we generalise the

timing constraints at a conceptual level, and provide suitable mechanisms to discuss

such timing requirements? These issues will be discussed in detail below.

5.4.2 Timing Constraints in a Conceptual Model

A model is conceptual in the sense that the requirements manifest at an application

level. Timeliness requirements are expressed at a higher level of abstraction. At

the highest level of abstraction, an event cuts the timeline at the point of occurrence.

The timing constraints are expressed as a restriction on the moment of occurrence

of event(s). These timing constraints may be expressed through the timing

relationships involving the time points denoting the occurrence of events. The

temporal requirements are an important aspect of real-time systems. We discuss the

temporal requirements at the user level. Recalling the classification of temporal

requirements provided by [Dasarathy 85] we have:

minimum - no less than t units of time must elapse between the occurrence

of events;

maximum - no more than t units of time must elapse between the

occurrence of events;

durational - exactly t units of time must elapse between two events.

In [Dasarathy 85] the end points of the intervals, between the pairs of events are

classified as one of the following types: (1) stimulus - response, (2) stimulus -

stimulus, (3) response - stimulus, and (4) response - response. This framework

though provides a general classification of timing constraints from the user point of

140

view, it suffers from an implicit assumption, that every timing constraint involves

just a single pair of events. Let's consider an example, to describe a timing

constraint.

Example 5.4: Consider the Figure 5.13, where the event a, causes further events

b, c, and d. If the timing constraint on event d is such that, event d must occur

within six time units of event a and three time units of event c.

a b c

I
~

d

Figure 5.13 Time constrained events

A timing constraint of this sort falls outside the framework of [Dasarathy 85].

Also this framework does not consider timing constraint on periodic processes. In

real-time systems periodic processes are predominant. In the following sections,

we generalise the framework to describe the various types of timing constraints that

may arise in a system. Our framework does not treat the timing constraint as a

temporal restriction between two events. We recognise that a temporal constraint

can involve many events. All the timing constraints are discussed in a single

formalism.

141

5.4.2.1 Timeliness Requirements

At the lower level of requirements, timeliness requirements can be expressed, by

considering the usefulness of an action in a time period. Jensen et al [Jensen 85]

define value function as a way to express the timing constraints of real-time

systems. The value function also provides a natural means to classify the real-time

systems viz. hard, and soft [Burns 91, Abbott 88]. For example con ider an event

"close the door (CD)" as shown in Figure 5.14 (a). This event has a duration, and

as explained in Chapter 4 we represent it by two instantaneous events starteD, and

endeD.

.T
t

Figure 5.14 (a) Representation of a continuou event

The utility of the event 'close the door', can be explained with four attributes a

shown in Figure 5.14(b). The four attributes are:

T

Figure 5.14 (b) Attributes of timing constraint con idering value function

142

Earliest starting time (tesv - the earliest time point during which the event

sta.rtco can occur;

Latest starting time (tlst) - the latest time point during which the event

starteD can occur;

Earliest finishing time (teft) - the earliest time point during which the event

endeD can occur;

Latest finishing time (tIft) - the latest time point during which the event

endeD can occur.

The time period (tlst - test) is the latency, the time period (tIft - teft) is the delay,

and the time point (tIft) is the deadline. All the four timing attributes are naturally

present in soft real time systems. In a hard real-time system, the above four

attributes may get reduced to two attributes viz. tstart and tfinish, where tstart

denotes the time point at which the start event (say starteD) can occur, and tfinish

denotes the time point at which the end event (say endeD) can occur.

As discussed earlier in Chapter 3, timing constraints in a system may arise as a

result of the safety requirement. The safety requirement may arise as a result of the

physical laws and rules of operation. Leveson [Leveson 86) classifies system

requirements as requirements related to mission, and those related to safety while

the mission is being accomplished. Many of these safety requirements are time­

dependent. For example, Leveson and Harvey [Leveson 83) have mentioned a

case where a NASA satellite could have been damaged had the time interval

between the occurrence of two events been short. Real-time systems have different

143

timing constraints associated with them, and such timing constraints are discussed

below.

5.4.2.2 Representation of Timing Constraints

A timing constraint restricts the moment of occurrence of an event. Lamport

[Lamport 78] has argued that to avoid any inaccuracies in timing only observable

events should be used for timing other events31 . In our model, we use observable

events for timing other events.

The syntax of timing constraint in TRL is as given below, and in diagrammatic

form in Figure 5.15(a)

<timing constraint> ::= <timing factor> {"and" <timing factor> }

timing constraint

timing factor T
and----

y

Figure 5.15(a), Syntax of 'timing constraint'

<timing factor> ::= "(" <time parameter> <relation operator> <time parameter>

II + II <timing duration> ")"

31 This advice is in line with the philosophical observation made by Leibniz, "time and space are

not the things, they are the order of the things".

144

timing factor

[
< >,<~ I ' - 1 time parameter 1-,""" -. (-!timeparameter 1- >=, =.. .,

~----~======~----------•• ~
C; + - I timing duration /-) •

Figure 5.15 (b), Syntax of 'timing factor'

<timing duration> ::= <integer> I <real>

timing duration

! Integer 1-.... -)I-_----i.P
Real ..

Figure 5.15 (c), Syntax of 'timing duration'

<integer> ::= <digit> {<digit>}

Integer

---1.~ digit

L digit -*
Figure 5.15 (d), Syntax of 'integer'

<real> ::= <integer> "." <integer>

145

Real I

--~. I Integer 1- Integer

Figure 5.15 (e), Syntax of 'real'

Let's describe the various timing constraints with an illustrating example.

Example 5.5: Consider a requirement such that when a switch is pressed, the

controller must start the job of closing the door within 10 time units, and must

complete the job within 6 time units of having started the job.

The events of interest are switch pressed, start closing the door (startCD), and door

closed (endCD). The above requirement can be expressed as follows:

if (switchpressed, i) then (starteD, j) ; (endeD, k) where (j < i + 10) and

(k < j + 6) endstmt

With this example, we shall explain all the types of timing constraints that can arise

in a system. These timing constraints are described in TRL. Following Jensen

[Jensen 85] the timing constraint, in essence describes the utility of a task with

respect to time. These systems may be hard or soft. The language employed must

be capable of expressing all types of timing constraints.

A timing constraint can constrain, earliest starting time (!est), latest starting time

(tlst), earliest finishing time (!eft), latest finishing time (tift). or any combinations of

these as shown in Figure 5.16. The example given below describes in TRL the

timing restriction on all these parameters.

146

Example 5.6: Timing Restriction on earliest starting time (test), latest starting

time (tlst), earliest finishing time (teft), and latest finishing time (tIft)

if (switchpressed, i) then (starteD, j) ; (endeD, k) where G >= i + 5) and

G <= i + 10) and (k >= j + 4) and (k <= j + 6) endstmt

The timing constraints discussed in Figure 5.16 includes the types of timing

constraints discussed by [Dasarathy 85], and are more general. All class of timing

constraints are expressed in a single formalism. The types of timing constraints

expressed by [Dasarathy 85] can be expressed as below:

Minimum: if (el, tl) then (e2, t2) where (t2 > t1 + 5) endstmt

Maximum: if (el, t1) then (e2, t2) where (t2 < t1+5) endstmt

Durational: if (el, tl) then (e2, t2) where (t2 = t1+5) endstmt

As noted above this classification does not deal with timing constraint over several

events.

147

/

Possible Types of Timing Constraints

Constraints on

test test - tIst test - tlst - teft

test - tlst - tift

test - tlst - teft - tIft

test
- teft test - t -

eft tift

test
-

tIft

tlst t lst
-

teft tlst
- t - tift eft

t lst
-

tift

teft teft - tIft

tIft
'-

Figure 5.16 Classification of timing constraints

5.4.3 Addressing What if Situations

For a real-time system to be robust, it must use a mechanism that can cope with

system failures. Exception handling deals with such failures. Exception handling

are of two types, general exceptions, and time-related exceptions. The former deals

with functional errors. For example, a functional exception handler deals with

situations such as, division by zero, or finding the square root of a negative

148

number. On the other hand time-related exception, endeavours to take evasive

action when a particular timing constraint cannot be guaranteed. This section looks

at exception handling, to deal with timing constraint violations.

The representation language must have provisions, to state what actions to take,

when a timing constraint cannot be guaranteed. These exceptions enable a real-time

system to fail gracefully. In this way a real-time system is consistent, as it is aware

of the timing constraints that are not satisfied. If the syntax of the representational

language provides an exception handler with any time constrained construct, then

the analyst is forced to consider alternative actions at every possible situation,

where a timing failure could occur. In the author's opinion such a provision is

essential. It is difficult to deal with timing constraint failures at later stages.

Suitable actions in these situations can only be determined, in concurrence with the

users.

Real time systems are required to behave properly under all circumstances. Real

time requirements involve constraints related to time in the real world. Complete

and correct action within the timing constraint specified, could never be guaranteed.

In managing the real world environments, an action simply cannot be ensured even

by increasing the speed of processors [Stankovic 88b]. This reflects the reality of

real time system that we must be able to accept the deviations from the desired goals

and settle for the weaker goals. This involves making trade-offs between different

goals in a reasonable manner. Goal abandonment and substitution are important

means by which graceful degradation of the behaviour can be achieved

[Chandrasekaran 91]. In practice the notion of goal abandonment and substitution

is important. It also provides a mechanism to denote the safe behaviour of the

system. Whether the control system offers the desired goal or the weaker one

149

depends upon the real-time behaviour of the system. The time at which the system

responds to the request determines whether the goal will be abandoned in lieu of the

weaker one.

This means that when a task is not guaranteed within the required timing constraint,

then a timing fault can occur. In this situation, an alternative task which has a

shorter computation time can be invoked. If the latter is done, then timing fault is

masked. As shown in Figure 5.17 the temporal switch determines the choice

between the two goals.

triggering
o~ration <

O~~red
temporal

'7 Goal
substitution

Figure 5.17 Modelling the temporal behaviour

Incorporating this temporal behaviour mechanism, the triggering mechanism of

Figure 5.9 gets modified to as shown in Figure 5.18.

participating
event to

,-----,
Goal ,
abandonment I

achieve , (goal
Initiating weaker goal __ I substitution)

I [- - - ~ events
_e_v_en_t ___ -I •• L_T_n_·g_g_er_...J----:-:---:-:----1.~L- - - -'

participating
event to
achieve
desired goal

Figure 5.18 Aperiodic behaviour with time-related exceptions

150

Figure 5.18 describes tasks with fault tolerance requirements. In a system, a

higher level activity, can decide which activity should be performed. This notion

acknowledges that the tasks have different levels of temporal needs, and

importance.

We shall illustrate a situation through an example. In this example, a timing

constraint has a corresponding time-related exception handler. The example shows

that, if the temperature measured is greater than 50, then switch on the cooling

system within 30 milliseconds. If this timing constraint cannot be adhered, then the

time-related exception handler is activated. This example is of a hard real-time, and

takes a drastic action of shutting down the controller.

Temperature Controller

if temperature measured> 50

then switch on cooling system within 30 milliseconds

endif

Time-related exception handler

Issue immediate shut-down

Consider a situation where,

Initiating event: Temperature measured (temperature)

Condition: over_the_limit = (temperature> 50)

151

Responding event: Switch on cooling system (switch300l)

Timing constraint: Respond within 30 milliseconds

This can be expressed as

if (temperature, i) and (ovecthe_limit) then (switch3001, j) where

(j < i + 30) else (shucoff, k) endstmt

Now having worked out the various features required in an aperiodic behaviour,

we can provide the generalised syntax diagram (as shown in Figure 5.18):

<aperiodic behaviour> ::= "if' < initiator> "then" < participator>

{ <alternative event sequence> }

<alternative event sequence> ::= "elsif' <initiator> "then" <participator>

<initiator> ::= <event> I <event> "and" <condition>

<participator> ::= <effect> [<next behaviour name>]

<effect> ::= "nil" I <event sequence> I <event sequence> "where"

<timing constraint> [<timed exception>]

<timed exception>::= "else" <event sequence> I "else" < event sequence>

"where" <timing constraint>

152

effect

nil ------------------------------------~

-. I----t.,. event sequence
'---------~------'

~ / event sequence 1- where --I timing constraint ~\

/ timed exception / ~

Figure 5. 19(a) Syntax diagram of 'effect'

I timed exception I

,------I.,. else--- event sequence

event sequence I - where .,,,,
~~--------------~
'---_____ --1.,. / timing constraint / -------..

Figure 5 . 19(b) Syntax diagram of 'timed exception'

5.5 Periodic Behaviour

Contrary to aperiodic requirements, periodic requirements need to be repeated over

an interval of time. Some typical examples of periodic behaviour are, monitoring

the sensors in a process controlled application, or monitoring an aircraft in a radar

application. A periodic behaviour may come into existence dynamically, or be

present from the time the system is put into service. A task like 'monitoring the

sensor' comes into existence, from the time the system is put into service, and

ceases to exist when the system is put off. A task like 'monitoring an aircraft' is an

153

example of a dynamically created task, the task comes into existence when the

aircraft enters the control region of the radar, and ceases to exist when the aircraft

leaves the region. Similarly, in a telephone exchange, a periodic task is

dynamically created, once a subscriber goes off-hook, and this task ceases to exist

after the subscriber completes the 'dialling of the digits'. The responsibility of this

periodic task is to collect the digits dialled by the subscriber. Periodic tasks exist

for reasonably long intervals of time.

A periodic timing constraint requires some task to be executed at fixed intervals, in

the time-region of interest. This time region is delimited by two events, the one

which initiates the task, and another event which terminates the task. The timing

constraint on periodic behaviour is simple. A periodic behaviour is one in which

the timing constraint has the form "if i E {3 .. n}, ti - t i-I = t2 - t1.

The syntax of a periodic behaviour is (Figure 5.20):

<periodic behaviOUr> ::= "from" <event> "repeat" <event sequence> "every"

<timing duration> "until" <event>.

I Periodic Behaviour I
---i.. from - 1 event 1- repeat -I event sequence 1 ~

~

C-. e:ry -I timing duration 1- until -I event I ----i ••

Figure 5.20 Syntax of periodic behaviour

154

An example of the above syntax is:

from einitiate repeat ebody every 0 until eterminate.

5.6 Summarising the BNF

Items enclosed in [square brackets] may appear zero or one time, and items

enclosed in { braces } may appear zero or more times. Terminal symbols appear in

" double quotes ".

<system> ::= "requirements" <head> {<processes>}

<processes> ::= <process> { " " " <process> }

<process> ::= "process" <identifier> "begin" <named behaviOUr>

{ <named behaviour>} "end"

<named behaviOUr> ::= <identifier> ";" <behaviour> <endstmt>

<behaviour> ::= "do" < event sequence> ["where" <timing constraint>]

[<next behaviour name>] I <special behaviOUr>

<next behaviour name> ::= "&" <identifier>

<special behaviOUr> ::= <periodic behaviOUr> I <aperiodic behaviOUr>

<periodic behaviOUr> ::= "from" <event> "repeat" <event sequence> "every"

<timing duration> "until" < event>

155

<aperiodic behaviour> ::= "if' <initiator> "then" <participator>

{ <alternative event sequence> }

<alternative event sequence> ::= "elsif' <initiator> "then" <participator>

<initiator> ::= <event> I <event> "and" <condition>

<participator> ::= <effect> [<next behaviour name>]

<effect> ::= "nil" I < event sequence> I <event sequence> "where"

<timing constraint> [<timed exception>]

<timed exception> ::= "else" <event sequence> I "else" <event sequence>

"where " <timing constraint>

<event> ::= "(" <event parameter> "," <time parameter> ")"

<event sequence> ::= <event> {";" <event> }

<time parameter> ::= <time parameter name> I <don't care>

<timing constraint> ::= <timing factor> { "and" <timing factor> }

<timing factor> ::= "(" <time parameter> <relation operator> <time parameter>

"+" <timing duration> ")"

<time constant> ::= <integer> I <real>

<event name> :;= <identifier>

156

<time parameter> ::= <identifier>

<condition> ::= <identifier>

<head> ::= <identifier> <endstmt>

<identifier> ::= <letter> {<letter> I <digit> }

<relation operator> ::= "<" I ">" I "<=" I ">=" I "="

<integer> ::= <digit> {<digit>}

<real> ::= <integer> "" <integer>

<endstmt> ::= "$"

5.7 Summary

Real-time systems include electronic gadgets, power plants, aircraft and railroad

control. These systems are highly interactive, and usually require complex

temporal behaviour. Real-time systems are often constructed from many

concurrent components. As Leveson [Leveson 86] observes, the greatest problems

associated in software engineering, are due to the computer system being treated

merely as stimulus-response system (for example see [Alford 85], [Davis 82]).

Real-time systems are described by their intended goals (missions). The approach

discussed here, described the mission of the system as conceived by the user.

These descriptions encapsulated the static and dynamic constraints.

157

The development of requirements for real time systems is a difficult task. The

process of requirements development is incremental in nature. For such a reason

we observe a system as a collection of components, which co-operate with each

other to achieve a desired result. A TRL description can be checked to reveal its

lexical, syntactic, and semantic errors. A TRL description undergoes three phases

of analysis like: Phase 0: Lexical analysis; Phase 1: Syntax analysis; and Phase 2:

Semantic analysis. The general treatment of the techniques employed in Phase 0,

Phase 1, and Phase 2 can be found in the standard compiler literature

(e.g. Abo 86), and is not discussed here.

Description of a system requires the identification of events contained in the

system. As this method is parametrized with respect to events in a system, it

allows to treat different systems in a uniform way. TRL is primarily intended for

representing the conceptual model of a system. Conceptual model of a system

controls the complexity of large systems by identifying the various components of

the system. System behaviour is then the composition of the behaviour of the

various components. The language has a simple underlying model. It proposes a

system at a simple abstract level.

158

Chapter 6

Case Study

The various aspects of the technique discussed so

far is illustrated with two examples. The examples

reflect the essentialfeatures of real-time systems.

159

6.1 Introduction

In the previous chapters, we discussed the modelling approach, and the language -

TRL to represent the system. To illustrate the use of the techniques derived in the

previous chapters, we demonstrate two real world examples.

We chose these example for the reason that:

(1) The applications are realistic, and significant. The applications

demonstrate the essential feature of real-time system, and provide

effective means of demonstrating the problems and deficiencies in the

definition of requirements. In many circumstances these problems are

revealed only when carrying out the task in a timed language.

(2) These systems involve timing constraints, which are intrinsic, i.e.,

timing constraints arise while understanding the intended operation of the

system. This is typical of many real-time systems. Timing constraints

arise because of the nature of work, not because of the need to do the job

fast32•

6.2 The Railroad Crossing Example

The railroad crossing problem has been proposed as a benchmark for the study of

real-time system by the Naval Research Laboratory [Heitmeyer 93]. We briefly

introduced this example in Chapter 3, to discuss the modelling approach. We

32 This means that, Real-Time System is not same as 'Be Quick as a Bunny'.

160

reiterate the basic needs of this system. The basic requirement is whenever the train

is in the crossing region, the gate must be down.

The system has two basic properties, the safety property - whenever the train is in

the crossing, the gate must be down, and the utility property - the gate must be up,

when no train is in the crossing region. The utility property avoids a lazy solution

to the problem. In a lazy solution, once the gate is lowered, the system can keep it

lowered.

6.2.1 Requirements . First Level

This system operates a gate at a railroad crossing. The crossing region (say X) lies

in the region of interest (say R), where X < R. The region of interest is greater

than that of X, so that the gate is lowered before the train enters the region X.

6.2.1.1 Environment Analysis and Modelling

The objective of this phase is to describe the existing world for the application.

This analysis is an abstract description of the agents that are useful for the problem.

As explained in earlier chapters, the agents are initially identified by recognising the

influence they bear on the system. This brings out the factors such as, purpose,

and function. The 'purpose' involves the determination of what the objective

should be. This basically answers the question, is this of use to the system?

Similarly, the function involves the determination of accomplishing this purpose.

This is elaborated with scenarios as discussed in Chapter 3.

161

6.2.1.2 Modelling Agents

In Chapter 3, we discussed modelling the requirements of a real-time system. In

the initial steps we identify the agents, and rewrite the requirements as a set of

scenarios.

By considering each agent, we can list all the functional elements of this agent. The

functional elements are abstracted by the events it is associated with.

6.2.1.3 Train Monitor

We need a train monitor to detect the train approaching the region of interest, and

the absence of train in the region of interest. The train monitor reports the same to

the controller (another agent). The controller, in turn takes a decision depending on

the report by the train monitor, and informs the gate (another agent) either to raise

the gate, or close the gate. Thus effectively, we have three agents, the train

monitor, the gate, and the controller.

The train monitor essentially detects whether the trains are in the region of interest,

or not. The function, and the purpose can be analysed with scenarios.

It is difficult to generate the scenarios for the whole system. The number of

scenarios not only grows out of hand, but it becomes tedious and difficult to

analyse the situation. For such a reason we consider the scenarios of each agent.

When we consider the scenarios of each agent, the scenarios fall into groups,

making it easier to analyse.

162

The purpose of train monitor is to watch the region of interest. The train monitor

reports the same to the controller. If we abstract this information as events, then

The signature of the train monitor is:

Train monitor detects that the train is approaching the region of interest -

denoted by event 'Arriving'

Train monitor reports that the train is approaching the region - denoted by

event 'Approach'

Train monitor detects that no train is in the region of interest - denoted by

event 'Out'

Train monitor reports the absence of train - denoted by event 'Exit'

This is summarised in Figure 6.1, by means of scenarios.

'Arriving'

'Approach'

Scenario 1, when crossing
region is idle

'Out'

'Exit'

Scenario 2, when crossing
region is busy

Figure 6.1 Scenarios with train monitor as an agent

163

6.2.1.4 Controller

The controller, essentially manages the operation of the gate, in co-operation with

the train monitor, and the gate. When the train monitor informs about the arrival of

a train, the controller actuates the gate to be closed, and similarly when no train is in

the region of interest, the controller actuates the gate to be raised.

Thus the signature of the controller is:

Controller is informed by the train monitor that the train is entering the

region of interest - denoted by the event 'Approach'

Controller actuates the gate to be lowered - denoted by the event 'Lower'

Controller is informed by the train monitor that no train is in the region of

interest - denoted by the event 'Exit'

Controller actuates the gate to be raised - denoted by the event 'Raise'

This can be summarised as in Figure 6.2.

164

'Approach'

'Lower'

Scenario 1, when the gate
is up

'Exit'

'Raise'

Scenario 2, when the gate
is down

Figure 6.2 Scenarios with controller as an agent

6.2.1.5 Gate

The Gate accomplishes the task of closing and opening the gate.

The signature of the gate is:

Gate is being requested by the controller to lower the gate - denoted by the

event 'Lower'

Action taken to move the gate down - denoted by the event 'Gate_Down'

Gate is being requested by the controller to raise the gate - denoted by the

event 'Raise'

Action taken to move the gate up - denoted by the event 'Gate_Up'

This can be summarised as in Figure 6.3.

165

~
'Lower'

~
'Gate_Down'

Scenario 1, when the gate
is raised

Figure 6.3 Scenarios with gate as an agent

~
'Raise'

~
'Gate_Up'

Scenario 2, when the gate
is lowered

Thus the railroad crossing system consists of three agents, the train monitor, the

controller, and the gate.

6.2.2 Higher Level Requirements

The higher level requirements involve obtaining additional information from the

customers. Additional information is needed to describe the constraints in the

operation of the agents.

6.2.2.1 Train Monitor

In the scenario of Figure 6.1, the train monitor must report the controller about the

arrival of a train at the earliest. This restriction is a temporal constraint on the train

monitor. The scenario of Figure 6.1 is modified in the Figure 6.4 to describe the

timing restriction.

166

'Arriving'
x=O

'Approach'
x<l

Scenario 1, when crossing
region is idle

'Out'

'Exit'

Scenario 2, when crossing
region is busy

Figure 6.4 Scenario of train monitor with timing constraint

We can translate the behaviour of train monitor, as a TRL process as shown below.

Process Sensor
begin

sl : if (Arriving, i) then (Approach,j) where (j < i+l) & s2 $

s2 : if (Out, k) then (Exit, 1) $

end

6.2.2.2 Controller

Recall the scenarios described in Figure 6.2. The controller must operate in-time

for the safe operation. This places temporal restriction on the controller. For

example, when the controller receives the signal 'Approach' from the train monitor,

it responds with the signal 'Lower' say within two time units. This is a safety

167

requirement. Similarly, the controller must open the gate at the earliest possible

time. This is a liveness requirement. This requirement restricts the operation of

controller, such that, the controller responds with the signal 'Raise' the gate say

within two time units of having received the signal 'Exit' from the train monitor.

This is shown in Figure 6.5.

+
'Approach'

y=O

+
'Lower'

y<2

Scenario 1, when the gate
is up

+
'Exit'

y=O

+
'Raise'

y<2

Scenario 2, when the gate
is down

Figure 6.5 Scenario of controller with constraints

Translating this behaviour in TRL we have,

Process Controller
begin

s 1 : if (Approach, i) then (Lower, j) where (j < i +2) & s2 $

s2 : if (Exit, k) then (Raise, 1) where (l < k+2) $

end

168

6.2.2.3 Gate

For the safe operation of the system, the gate must accomplish the job in-time. The

gate must lower the gate, say within one time unit of receiving the request from the

controller. Similarly the gate must be up say within 2 time units, but after one time

unit of receiving the request 'raise' from the controller. This scenario is shown in

Figure 6.6.

+
'Lower'

z=o

+
'Gate_Down'

z<1

Scenario 1, when the gate
is raised

Figure 6.6 Scenario of gate with constraints

Translating this behaviour in TRL we have,

+
'Raise'

z=o

+
'Gate_Up'

(z> 1) and (z < 2)

Scenario 2, when the gate
is lowered

169

Process Gate
begin

sl : if (Lower, i) then (Gate_Down,j) where (j < i +1) & s2 $

s2 : if (Raise, k) then (Gate_Up, 1) where (1 > k+l) and (1 < k+2) $

end

As shown in Figure 6.7, the entire system is then the composition of the agents,

Train Monitor II Controller II Gate

Railroad Crossing System

lfrain Monito~

(Controller

Gate

Figure 6.7 Railway crossing system as a composition of agents

The event set of the system is the union of the event set of all three agents. As we

discussed in Chapter 3, real-time system, are characterised by real-time liveness,

and safety. The liveness property only states that the gate once closed must

eventually open. This is not sufficient to provide any information either for the

170

customers. or for designers. Where as real-time liveness, constraints the system

temporally. Thus,

Safety Property: The gate must be closed. before the train arrives at the

crossing region.

Real-Time Liveness Property: The gate is never closed at a stretch for more

than 10 time units.

The safety property states that the gate must be closed, before the train arrives at the

crossing region. This ensures that the train can be inside the crossing region, only

when the gate is down.

if (Arriving. w) then (Gate_Down, x) endstmt

Similarly, the real-time liveness property states that, once the gate is closed, it

should be followed by a gate up within ten time units.

if (Gate_Down, y) then (Gate_Up, z) where (z < y + 10) endstmt

With this example we can observe an interesting property of the 'safety

requirement'. Safety is a global requirement of the system. Safety requirement is

normally a pure qualitative property. like robot must not crash a person, and so on.

It may be noted that the safety requirement cannot be achieved without temporal

restriction in a real-time system, as we observed in this example.

171

6.3 Another Example

Truck Loading System

This case study is adapted from [David and AlIa 92]. The problem statement is

expressed as below, and described with Figure 6.8.

A truck may move between points A and B. At A the operator may ask for

the truck to be loaded. The truck proceeds up to point B. Upon arrival, it

is loaded by opening a hopper. When loading is complete, the hopper is

closed and the truck returns to A where its load is made use of. It will set

off again when the operator asks for a fresh loading. In the initial state, the

truck is in stand-by position at point A .

~

I
I

A

(~ ()

Figure 6.8 A truck loading System

I
I
B

As we show, the problem description is far from complete. This illustrate pecific

lapses with the system description and the need to employ a timed description

Janguage to comprehend many of the requirements which are lurking behind. Now

let's consider the basic operations of the system.

172

6.3.1 Basic operations of system

System operation is initiated by the operator. An operation cycle consists of

following moves:

• move from platform A to B;

• wait for the truck to be loaded, at platform B;

• after loading is over, start moving back to platfonn A;

• at platfonn A the load is to be utilised

6.3.2 Resource Structures

Requirements analysis begins by considering the environment. In the environment

we can readily identify an operator, and a truck. To control the movement of truck,

we should know about the position of truck. For such a reason we need to monitor

the position of truck. Thus the system consists of four agents, an operator, truck,

monitor, and controller.

6.3.3 Modelling Agents

Requirements is elicited by classifying the features perceived with each agent

individually. System behaviour is then the composition of the behaviour of the

agents.

173

6.3.3.1 Operator

We consider that an operator presses a switch to initiate the system operation. We

assume that it is a snap-action switch. A snap action switch is normally open and

makes a non-maintained contact when pressed. When a switch is operated, a

request is sent to the controller, to operate the system. Thus the scenario of

operator is: (shown in Figure 6.9)

'Switch_pressed'

'Operate'

Figure 6.9 Scenario of operator

The signature of Operator is:

The switch is pressed - denoted by the event 'Switch_pressed'

Request sent to controller - 'Operate'

6.3.3.2 Truck

Truck moves in both the directions, this means the objective of a truck is to move

towards platform B (forward) or towards A (reverse). Thus at a given time the

truck is either stationary, or moving forward, or reverse.

174

The truck movement is managed by the controller. The three scenarios that arise

with the truck are: to move forward, to move reverse, or to stop. Let's consider

each individually.

To move towards platform B

I I
I

W () o () • 0 0
A Rl R2 B

Figure 6.1O(a) Truck moving in forward direction

The truck can start moving forward, only with the request from the controller.

Let's say initially the truck is at position Rl, and starts moving towards B with the

request, 'Move forward'. Initially the truck moves at a slow pace, and then

increases the speed at R2. The scenario of this is shown in Figure 6.1O(a) and

Figure 6.1 O(b).

'Gojorward'

Figure 6.1 O(b) Scenario representing the truck moving towards platform B

175

To move towards platform A

TI I
[2): 0 Q Q ...

A ~ 4 B

Figure 6.11(a) Truck moving in reverse direction

The truck can start moving towards platform A, only with the request from the

controller. Let's say initially the truck is at position L1, and starts moving towards

A with the request, 'Move reverse'. Initially the truck moves at a slow pace, and

then increases the speed at L2. Such a scenario is shown in Figure 6.11 (a) and

Figure 6.11(b).

'Move_reverse'

'Increase_speed'

Figure 6.11 (b) Scenario representing the truck moving towards platform A

176

To stop the truck

The moving truck requires to be stopped at Platform B, and A. The moving truck

cannot be brought to halt suddenly. This activity involves two sub activities viz.

making the truck to decrease the speed, and then to halt. The two scenarios are as

shown in Figure 6.12

+ +
'Go_slow' 'Stop'

+ +
'Decrease_speed' 'Halt'

Step 1 Decrease the speed Step 2 Halt the moving truck

Figure 6.12 Scenario while stopping the truck

Thus the signature of the truck is:

The controller requests the truck to move towards

platform B - 'Movejorward'

The truck starts to move towards platform B - 'Gojorward'

The truck increases the speed - 'Increase_speed'

177

The controller requests the truck to move towards

platform A - 'Move_reverse'

The truck starts to move towards platform A - 'Go_back'

The controller requests the truck to move slow - 'Go_slow'

The truck decreases the speed - 'Decrease_speed'

The controller requests the truck to stop - 'Stop'

The truck stops - 'Halt'

6.3.3.3 Monitor

The truck must stop at Platform B, during loading operation, and at Platform A

during unloading. To stop the truck at a platform, the position of truck relative to

the platform must be known. The monitor reports the position of truck with respect

to the platform. We assume that the monitor also watches the loading of truck at

Platform B, and reports the same to the controller.

As remarked above truck is halted in two steps, first by decreasing the speed, and

then after a while the vehicle is halted. For such a reason, the monitor first reports,

that the truck is approaching towards the platform, and then the truck's arrival at a

platform.

Thus the monitoring operation is as shown in Figure 6.13.

178

~ ~ ~
'T_closer' 'T-enter' 'Loadin~done'

+ + ~
'Approach' 'Arrived' 'Load_over'

Figure 6.13 Scenarios representing the purpose of 'monitor'

The signature of Monitor is:

The monitor observes the truck approaching a platform - 'T _closer'

The monitor reports to the controller that the truck is arriving at a

platform - 'Approach'

The monitor observes the truck is entering a platform - 'T _enter'

The monitor reports to the controller that the truck has arrived at a

platform - 'Arrived'

The monitor observes that the loading in to the truck is

completed - 'Loading_done'

The monitor reports to the controller that the loading is

completed - 'Load_over'

179

6.3.3.4 Controller

Controller manages the movement of truck in co-operation with the monitor, and

the operator. We assume that the loading, and unloading operations are not

dependent on the controller. The scenarios with the controller are:

(1) to move the truck from A to B (with operator request);

(2) to move the truck from B to A (when loading is completed); and

(3) to stop the truck at a platform

The controller initiates the loading operation, with the request from the operator.

The controller similarly starts the unloading operation (i.e., moving the truck from

B to A) after the loading is done at platform B. Thus the scenario of controller

pertaining to this operation is as shown in Figure 6. 14(a).

~
'Operate'

~
'Move_forward'

Scenario 1 Initiate the
loading operation

~
'Load_over'

~
'Move_reverse'

Scenario 2 Initiate the
unloading operation

Figure 6.14(a) Scenarios of 'controller' for moving the truck

180

A truck is stopped by knowing its position with respect to the platform. The

position of truck is reported by the monitor. The controller commands the truck to

decrease the speed, and then to stop as shown in Figure 6.14(b). This operation is

done in two steps for the reason of safety.

'Approach'

Scenario 3 Reduce the
speed of the Truck

'Arrived'

'Stop'

Scenario 4 Stop the Truck

Figure 6. 14(b) Scenarios of 'controller' for stopping the truck

Thus the signature of the controller is:

The operator signals the controller to start the operation - 'Operate'

The controller requests the truck to move towards

platform B - 'Movejorward'

The monitor reports to the controller that the loading is

completed - 'Load_over'

The controller requests the truck to move towards

platform A - 'Move_reverse'

181

The monitor reports to the controller that the truck is approaching the

platform - 'Approach'

The controller requests the truck to go slow - 'Go_slow'

The monitor informs the controller that the truck has arrived at a

platform - 'Arrived'

The controller requests the truck to stop - 'Stop'

6.3.4 Higher Level Requirements

At this stage the requirements described above are refined in consultation with the

users. We may not need any refinement at the function of operator, as it is very

simple.

6.3.4.1 Operator

Translating the behaviour of operator in TRL we have:

Process Operator

begin

sl : if (Switch_pressed, i) then (Operate, j) $

end

Let's consider the operation of the agent 'truck'.

182

6.3.4.2 Truck

As indicated in Figure 6.1 O(b), and Figure 6.11 (b), the speed of the vehicle has to

be increased after some time since it started to move. A timing constraint of this

sort has both a minimum, and a maximum timing constraint33 associated with it.

In Figure 6. lO(b) , and Figure 6. 11 (b), we indicated that the speed of the truck can

be increased after some time elapses, since starting the vehicle. The refined

scenarios with the temporal constraint is shown in Figure 6.15(a).

'Move_reverse'

'Increase_speed' 'Increase_speed'

i> 2 and i< 5 j > 2 andj < 5

Figure 6.15(a) Scenarios of 'truck' with constraints, while in motion

33 A minimum timing constraint, restricts an event to occur after a stipulated delay, and a

maximum timing constraint enforces an event to occur within a maximum time.

183

Recall the scenario considered in Figure 6.12. In this scenario the truck is required

to stop at a platform. The truck has to be stopped within some time. This is

shown in Figure 6.15(b)

k=O

'Decrease_speed'

k<4

Step 1 Decrease the speed

'Stop'
1=0

'Halt'
I < 2

Step 2 Halt the moving truck

Figure 6.15(b) Scenarios of 'truck' while stopping at a platform with the stipulated

constraints

Translating the behaviour of truck in TRL we have:

184

Process Truck

begin

end

6.3.4.3

sl : if (Movejorward, il) then (Gojorward, i2) ; (Increase_speed, i3)

where (i3 > i2 + 2) and (i3 < i2 + 5) & s2

elsif (Move_reverse, j 1) then (Go_back, j2) ; (Increase_speed, j3)

where 03 > j2 + 2) and 03 <j2 + 5) & s2 $

s2 : if (Go_slow, kl) then (Decrease_speed, k2)

where (k2<kl +4) & s3 $

s3 : if (Stop, 11) then (Halt,12) where (12 < 11 + 2) $

Monitor

Considering the scenario discussed in Figure 6.13, there are not any vital

constraints on this. This behaviour in TRL is expressed as below.

185

Process Monitor

begin

sl: if (T_closer, il) then (Approach, i2)

elsif (T _enter, j 1) then (Arrived, j2)

elsif (Loadin~done, kl) then (Load_over, k2) $

end

6.3.4.4 Controller

The scenarios concerned with the controller is discussed in Figure 6.14(a) and

Figure 6. 14(b). The controller actions are time constrained. In Figure 6. 16(a) the

temporal requirements for initiating the loading and unloading operations are

shown.

186

'Operate'
i=O

'Move_forward'

i<2

Scenario 1 Initiating
the loading operation

'Load_over'

j=O

'Move_reverse'
j<2

Scenario 2 Initiating
the unloading operation

Figure 6.16(a) Temporal requirements while moving the truck

Similarly Figure 6. 16(b) describes the temporal requirements while stopping the

truck at a platform.

'Approach'

k=O

k<4

Scenario 3 Reduce the
speed of the Truck

'Arrived'

1 = 0

'Stop'
1<2

Scenario 4 Stop the Truck

Figure 6.16(b) Temporal requirements while stopping the truck

187

These scenario of the controller are described in TRL as below.

Process Controller

begin

sl : if (Operate, il) then (Movejorward, i2)

where (i2 < il + 2) & s2

elsif (Load_over,jl) then (Move_reverse,j2)

where (j2 < j 1 + 2) & s2 $

s2 : if (Approach, kl) then (Go_slow, k2)

where (k2 < kl + 4) & s3 $

s3 : if (Arrived, 11) then (Stop, 12) where (12 < 11 + 2) $

end

Here we have assumed that the material (to load into the truck) is always available

at platform B, or the operator will have gathered that information before starting the

operation. The entire system is then a composition of the agents discussed above.

Thus the truck loading system as shown in Figure 6.17 is Operator II Truck II

Monitor II Controller

188

Truck Loading system

(Operator I
(Truck I

Monitor

Controller

Figure 6.17 Representing the truck operating system

6.4 Observations

In the light of the arguments presented in the earlier chapters, and the case studies

advanced here, we can deduce the following observations.

An understanding of the system can spring from concentrating on the needs, rather

than concentrating on the finer points (the desires). The needs are the requirements

that must be met under all circumstances. The desires are the requirements that

must be taken into consideration. If we classify the desires, depending on their

importance such as major, medium, and minor, then it may be of help to negotiate

these requirements at a later stage.

Real-time systems control the physical processes. The needs can be better

understood by understanding the domain of the controller, as the characteristics of

the controller depends upon its domain.

189

The technical tasks are performed with the help of many technical artefacts, such as

machines, and components. These artefacts have unique use in the system. The

tasks of these components are normally too varied and complex. Depending on

their use, the requirements engineer has to establish the particular purposes of these

components. This helps to identify the agents in the system. The requirements

determine the relationship between the agents. The functional relationship can be

identified based on the needs. The combination of the agents results in a structure

representing the overall needs.

This identification of agents allows a clear definition of the subsystems, so that they

can be dealt separately. An agent has a purpose to the system. This purpose is

perceived as a feature envisaged by the user. The feature is reported as a scenario.

A scenario describes a purpose of an agent in a particular situation. This scenario

can be abstracted as a sequence of events. Scenarios emphasise the important

properties. The tasks of an agent can have task-specific constraints. These

constraints are defined in the clearest possible terms.

The requirements model provides a platform, on which further discussions with the

users can evolve. Such a discussion increases one's understanding of the system.

A model described in the terminology of the users, helps in the validation of the

model. Validation of the model is to determine the usefulness of the model with

respect to the needs.

The requirements model addresses the abstraction. Some of the examples of this

abstraction are:

* Do not design a rail-road crossing system, but look for the means of

describing the objective of the system.

190

* Do not design a rail-road crossing system, but look for the means of

describing the properties of the system.

From such formulations, the requirements can be derived in such a way that it does

not prejudice the solution, and at the same time turns it into a function.

6.5 Summary

A well defmed model provides a basis for formal communication among developers

and the stakeholders. TRL provides such a model. The use of TRL permits the

system to be described intuitively. TRL provides an approach for stating the

requirements without the inclusion of unwarranted design details, ensures

unambiguous communication of intent, and is responsive to the invariable changes

of requirements.

191

Chapter 7

Evaluation

The approach is evaluated with other representative

approaches discussed in Chapter 2. The evaluation

of the approaches is driven through a case study.

192

7.1 Introduction

In the earlier chapter we studied the usefulness of the language TRL with case

studies. The main impetus to the introduction of TRL arose from the awkwardness

and poor readability of requirements caused by languages with arcane mathematical

symbols, and by languages that included design level descriptions. We provided a

rough genealogy of requirements and specification languages in Chapter 2.

Requirements language must be chosen depending on the application in hand. The

language should match the application as closely as possible. Real-time systems

have specific requirements as studied in earlier chapters. Since requirements

"maintainability" is often the largest desirable factor, the language must supplement

the requirements without causing a sea of change in the whole of requirements

document.

In the following sections we evaluate our approach with some of the other

approaches with the help of a case study.

7.2 Cruise Control System

7.2.1 History

The problem was first posed by Ward (cf. Booch 86) and described in [Booch 86,

Ward 85]. Booch uses the problem as a vehicle to explain object oriented concepts,

while Ward Mellor 85 describe the problem with the Ward-Mellor approach.

7.2.2 Informal Problem Description

The input-output list as explained in [Booch 86] is as follows.

193

Inputs:

Engine on/off

System on/off

Wheel pulse

Accelerator

Brake

Increase/decrease

Resume

Output:

Throttle

System on/off

Engine on/off

Pulses from wheel

Accelerator

Brake

Increase/decrease speed

Resume~

Clock

If on, denotes that car engine is on

If on, denotes that cruise-control is on if engine is on

A pulse is sent for every revolution of the wheel

Digital indicator of how far accelerator has been depressed

When brake is pressed, cruise-control reverts to manual

control

Increase or decrease the maintained speed if cruise-control is

on, and acts as initial set function for cruise-control

Resume the last maintained speed if cruise-control is on

Digital value for engine throttle setting

..
Throttle • Cruise- ...

Control
.. .. System

The problem description following the above input-output list is as follows. and is

adapted from [Ward 85].

194

A cruise control system relieves the driver of the responsibility for maintaining

speed. The speed is maintained by monitoring the speed, and depressing, or

accelerating to keep the actual speed close to the desired speed.

The Cruise Control System operates only when the engine is running, and is

automatically reset to its "off' status when the engine is stopped. When the driver

turns the system on, the speed at which the car is travelling at that instant is

maintained. The system monitors the car's speed by sensing the rate at which the

wheels are turning and maintains desired speed by monitoring and controlling the

throttle position. The monitoring is accomplished by a sensor that produces a

signal proportional to the throttle's position. The control is exercised by changing

the degree of openness of a valve, which in turn controls a suction apparatus that

draws on a chain to open the throttle. The throttle closes itself when not being

actively controlled. After the system has been turned on, the driver may tell it to

"start increasing speed", which causes the system to increase the speed at a fixed

rate. When the driver tells the system to "stop increasing speed", it will maintain

the speed reached at that point. Similarly, the driver may tell it to "start decreasing

speed", which causes the system to decrease the speed at a fixed rate. When the

driver tells the system to "stop decreasing speed", it will maintain the speed reached

at that point.

Of course, the driver may turn the system off at any time. In addition, the driver

can override the system to increase speed simply by depressing the accelerator

pedal. This causes the chain controlling the throttle to go limp. During the period

of greater speed, the system continues to attempt to maintain the speed previously

set, and the system will return to the car to the previous speed when the driver

releases the pedal. If the system is on and senses that the brake pedal has been

195

depressed, it will cease maintaining speed but will not tum off. The driver may

subsequently tell the system to resume speed (provided it hasn't been turned off in

the interim), whereupon it will return at a fixed rate to the speed it was maintaining

before braking and resume maintenance of that speed.

7.3 Application of Case Study

In the following sections we provide solution to the cruise control system in

SREM, RTRL, PAISLey, and TRL.

7.3.1 SREM

As discussed in earlier chapters (see Chapter 2) SREM provides a set of tools to

support the system development during the initial phase [Bell 77, Alford 77]. RSL

is the base language of SREM. SREM approach is based on analysis of the data

exchanged at the interfaces between the processing system and its peripheral

hardware. Here it is assumed that each processing step involves receiving an input

and transforming into an output. RSL expresses requirements in terms of

processing paths. The processing path represents the sequence of data processing

required to operate on an input stimulus and produce an output response. RSL

provides information on the specification of requirements through the use of flow

graphs. The flows through the system are specified by means of R-nets or

requirements networks. The primary descriptive component of RSL is R-net

(requirements network). Each R-net specifies the transformation of an input

message to an output message. Each R-net is a graph with nodes representing

structural and logical nodes. Subnets are used to shorten the length of an R-net.

Each input message interface provides input to a distinct R-net, and the presence of

data at that interface serves as an enabling condition for the R-net. An R-net can

196

tenninate producing an output message. The actual activity of an R-net is described

in terms of processing tasks (called ALPHAs) and events (E-nodes), which

describe the enabling of other R-nets.

R-net makes use of many symbolic representations. For example, the triangular

nodes represent initiation and tennination points. The hexagonal nodes are external

input and output interfaces. The rectangular nodes represent the ALPHAs, and the

circular nodes are the E-nodes. The graph structure on the R-net uses OR nodes to

specify the conditions of processing. The AND nodes represent the paths that must

be executed in any order.

7.3.1.1 Use of the Technique

The technique starts from identifying the stimulus-response, then creating R-nets

and ALPHAs. RSL provides textual description of R -net. The system is thought

of as a net that consumes the input and produces the output. The net can consist of

sub-nets to allow for the expression of large requirements.

The SREM method follows the following phases for the production of

specification:

identification of the interface between controller and environment, and

data description and processing;

produce an initial deSCription using R-nets.;

specify data and behaviour of ALPHA functions in RSL;

validate the specification using validation points;

197

identify perfonnance specifications like timing constraints.

Figure 7.1 shows how the network might look for the cruise control system. The

circled plus indicates a condition for which the process may branch. In the

example, either the left or the right branch may be taken. The circled ampersand

indicates that processes must be followed in parallel, and in any order. The main

tasks of cruise control system are to find the current speed, to calculate the desired

speed, to get the brake status, and to calculate the throttle setting. To make the net

readable we have used the sub-nets as shown in Figure 7.2, Figure 7.3, and Figure

7.4.

198

RNET: CRUISE CONTROL SYSTEM

Figure 7.1 R-Net de cription of the ystem

199

SUBNET: FIND_CURRENT PEED

Figure 7.2 Subnet Description of getting the current peed

200

SUBNET: GETJJRAKE TATUS

OTHERWISE BRAKE=.PRESSED

Figure 7.3 Subnet De cription of setting the brake tatu

201

DECREASE ~PEED

GET_COMMAND
YROM~DRIVER

INCREASE_SPEED

Figure 7.4 Subnet Description of getting the de ired peed

7.3.1.2 RSL Description

After the R-net diagrams are written, then the component of a h diagram at'

translated into their con'esponding RSL tatement . For exampl the R-n t depi t d

in Figure 7.1 is written in RSL language a hown in igut' 7.5. Simi larly th R­

net in Figure 7.2 is depicted in Figure 7.6, Figur 7. in igur 7.7, and igur

7.4 in Figure 7.8.

202

R_NEf: CRUISE CONlROL SYS1EM

S1RUCfURE:

INPUT_INTERFACE GE'CMESSAGE_FROMJ)RIVER

DE'IERMINE_nIE_MESSAGE

DO (MESSAGE = ON)

DETERMINE_IF _ENGINE_ON

DO (STATUS = ON)

DO (GE'CBRAKE_STATUS AND CALCULA TE_DESIRED_SPEED AND

FIND_CURRENT_SPEED AND FIND_ACCELLERA TOR-VALUE

AND DE1ERMINE_SYSTEM_STATUS)

FND

DO (BRAKE_STATUS = SUSPENDED OR SYS1EM_STA TUS = OFF)

IDlE

1ERMINATE

FND

O1llliRWISE

DO (CALCULATE_THROITLE_SE'J11NG_ VALUE)

STORE_nIE_ VALUE

PUT_THR<YI1LE_ VALUE

TERMINATE

FND

aJ'HERWISE

IDLE

TERMINATE

FND

O1HERWISE

IDLE

TERMINATE

FND

FND

Figure 7.5 RSL description of R-net shown in Figure 7.1

203

SUBNEr: CALCUlAlE_DESIRED_SPEED

SlRUCfURE

INPUT INIERFACE GE'CCOMMAND_FROM_DRIVER

EX1RACCTHE_COMMAND

DO (COMMAND = INCREASE SPEED)

INCREASE_THE_SPEED_IN_SlEP _TILL_ABORTED

DO (COMMAND = DECREASE_SPEED)

DECREASE_SPEED_IN_S1EPS_TlLL_ABORlED

arnERWiSE

EQUA lE_DESIRED_SPEED_AS_CURRENT_SPEED

fND

STORE_THE_DESIRED_SPEED

OUTPUT INTERFACE REfURN_THE_DESIRED_SPEED

1ERMINAlE

fND

Figure 7.6 RSL description of R-net shown in Figure 7.2

SUBNEr: FIND_CURRENT_SPEED

STRUCfURE

ACCUMULAlE_ WHEEL_ROTATIOIN

GET_CONVERSION_FACTOR

CALCULAlE_THE_CURREN'f_SPEED

STORE_THE_ V ALUE_IN_DAT ABASE

OUTPUT INIERFACE REPORT_CURRENT_SPEED

1ERMINAlE

fND

Figure 7.7 RSL description of R-net shown in Figure 7.3

204

SOONEr: GECBRAKE_STATUS

S1RUCfURE

INPUT INIERFACE EX1RACCTHE_BRAKE_STATUS

DO (BRAKE = PRESSED)

EQUA1E3HE_BRAKE_STATUS

CYmERWISE

DE1ERMINE_IF _THE_OPERATION_ W AS_SUSPENDED_EARLIER

DO (STATUS = YES)

DETERMINE_IF _RESUMPTION_OF _SERVICE_REQUESTED_FROM_DRIVER

DO (STATUS = YES)

EQUATE_STATUS_AS_RBSUMB_OPERA TION

CYmERWISE

EQUA TE_STA TUS_AS_SUSPEND_OPERATION

arnERWISE

EQUA TE_STATUS_AS_BRAKE_NOT_PRESSED

FND

FND

FND

STORE3HB_BRAKE_STATUS

OUTPUT INIERFACE REPORT_BRAKE_STATUS

TERMINATE

FND

Figure 7.8 RSL description of R-net shown in Figure 7.4

7.3.2 RTRL

RTRL was developed by GTE Laboratories for expressing the requirements of

telecommunication systems [Taylor 83, Dasaratby 85, Chandrasekharan 85, Casey

82]. RTRL provides the textual description of finite-state machine (FSM). RTRL

makes use of explicit use of states, transitions, and decision points (check points).

Like RSL the system is analysed by stimulus-response sequences. The system

after receiving a stimulus moves to a new state while providing a response. RTRL

205

SYSTEM_OFF

ENGINE_OFF

10 IDLE

ENGINE_OFF
I

SYSTEM_OFF TOIDLE ~ oJ I oJ I L..d."I_1J1I

BRAKE_PRESSfD

ENGINE OFF

10 IDlE ~ SYSTEM OFF
I

INC_SPEfD/ST ART_INC
_SPEEl)_IN_STEPS

ENGINE OFF

RESUME

BRAKE_
PRESSfD

STOP _INC_SPEEl)/cEASE_

MAINT A1N_SAME_SPEED

10IDLE .~.~._ .• ~ .. 10 IDLE SYSTEM_OFF

10 ~ BRAKE_PRESSfD
SUSPEND

Fig.7.9 RTRL Description of the System

TO OJRRENT ~ I.AA'UO

SPEED

10
SUSPEND

GET _ACCFLERA TI()!IC V AWE
IOUfPUf_THROTTLE_ V 4

10 IDlE

FGINE_OFF

SYSTEM OFF

provides a transition block to describe the transition. The stimuli names are

enclosed in parentheses in TRANSITION blocks. The transition block is delimited

by the present state and next state. State names are described by the keywords

INSTATE and NEXTST ATE. INSTATE is the name of the state at which the

system is residing and NEXTSTATE is the state the system moves upon receiving

the stimulus. Each INSTATE block defines the behaviour for a single system state.

The system's behaviour that defines the next state can depend on internal data. To

describe such situations a new element called decision nodes are defined. The

decision nodes are analogous to GOTO in FORTRAN. Whenever a possible result

is selected FSM follows that particular path defining a next state.

7.3.2.1 RTRL Description

In RTRL the FSM is first constructed for the problem, and then the FSM network

is translated into RTRL code. In this sense both RSL, and RTRL share the same

view of developing the requirements. The cruise control system in RTRL is as

shown in Figure 7.9, and the code in RTRL for the Figure 7.9 is shown in

Figure 7.10.

%FEATURE idle_to_active;

%FEA TURE tum_system_on;

INSTATE idle;

SEND system_on;

TRANSmON;

(system_on):

DECISION iS3ngine_on;

(engine_on): NEWSTATE currenUpeed;

(engine_off): idle;

ENDDECISION;

(system_off): idle;

ENDTRANSmON;

207

INSTATE currenLspeed;

SEND request joe wheeLrotations;

TRANSmON;

(wheeLrotation):

SEND caIcu]ate_the_currenupeed;

NEWSTA TE vehicle_data;

(system_off): NEWSTATE idle;

(engine_off): NEWSTATE idle;

ENDTRANSmON;

INSTATE vehicle_data;

TRANSmON;

(brake_pressed): NEWSTA TE suspended;

(increase_speed):

SEND starUncreasing_speed_in_steps;

NEWSTA TE: increase_speed;

(maintain_same_speed): NEWSTATE (desire<Upeed);

(decrease_speed):

SEND starLdecreasing...speed_in_steps;

NEWSTA TE: decrease_speed;

(system_off): NEWSTATE idle;

(engine_oft): NEWSTATE idle;

ENDTRANSmON;

INSTATE increase_speed;

TRANSmON;

(stop_increasing...speed):

SEND cease_increase_speed;

NEWSTA TE: desired_speed;

(brake...,pressed): NEWSTA TE suspended;

(system_oft): NEWST ATE idle;

(engine_oft): NEWSTATE idle;

ENDTRASmON;

INSTATE decrease_speed;

TRASITION;

(stop_decreasing...speed):

SEND cease_decraese_speed;

NEWSTA TE: desired_speed;

(brake_pressed): NEWSTATE suspend;

208

(system_off): NEWSTATE idle;

(engine_off): NEWSTATE idle;

ENDTRANSmON

INSTATE desired_speed;

SEND requesCfocacceleration_ value;

TRANSmON;

(gecacc_value):

SEND outpuUhrottle_ value;

NEWSTA TE: issue_throttle_ value;

(brake-pressed): NEWSTATE suspend;

(system_off): NEWST A TE idle;

(engine_off): NEWSTATE idle;

ENDTRANSmON;

INSTATE suspend;

TRANSmON;

(resume): NEWSTATE desired_speed;

(system_off): NEWSTATE idle;

(engine_off): NEWSTATE idle;

ENDTRANSmON;

INSTATE issue_throttle_setting;

TRANSmON;

(brake_pressed): NEWSTATE suspend;

(engine_off) NEWSTATE idle;

(system_off) NEWST A TE idle;

(done) NEWSTATE currenCspeed;

ENDTRANSmON;

Figure 7.10 RTRL description of the system shown in Figure 7.9

7 .3.3 PAISLey

The Process-oriented Applicative and Interpretable Specification Language was

developed by Zave [Zave 82]. PAISley was targeted towards the specification of

embedded systems. The detailed design description feature of the language was

209

described as an operational approach to the system specification [Zave 84]. The

requirements is specified by the interacting model of system and its environment

processes. The specification in PAISLey involves writing the code for the

processes. Understanding of the system's behaviour is achieved by executing the

code. A system is a structure of cyclic processes. Some of the real-time features

like sequencing and control flow is difficult to specify [Zave 91 b].

As shown in Figure 7.11 the system and its environment is decomposed into sets

of interacting processes. The processes are further defined by defining the state

space of the process, and by declaring and defining the successor function (the

function that defines how process changes the state), and exchange function (the

function that defines how process interact). Figure 7.12 the definition of processes

is shown. In figure 7.12:

• The overall speed controlling process is defined as a function mapping the

controller state into controller state; for example, it is capable of changing the

state from "idle" to "output the throttle value to control the speed". To take any

action the system depends upon the driver command, the engine status, the

current speed data, the desired speed data, the accelerator data, and the brake

state.

• The update of the current speed data base depends upon the speed data

measured from the wheel. The wheel speed measuring function reads

hardware sensors attached to the wheel and converts into actual speed data.

This data is stored in the database.

210

Environment

WH8L

ENGINE

SWITCH BOARD

COMMAND
HANDl.FR

Proposed System

SPFED
CONIROLI.FR.

Fig 7.11 Primary Processors for the System and its Environment

• The update of the required speed data base depends upon the command

from the driver. The driver can set the required (desired) speed either above or

below the current speed.

• The update of the brake status depends upon the command (actions) from the

driver. The brake status can be either idle, or pressed. The state changes

depending on the driver action.

• The engine state is independent of controller. Engine state can change from on

to off. The system is operative only when the engine is on.

Controller Cycle:

Current Speed Update:

CONTROLLER STATE '" DRIVER COMMAND DATA", CURRENT

SPEED DATABASE", REQUIRED SPEED DATABASE", BRAKE

STATE • ACCELERATOR DATA '" ENGINE STATUS -l

CONTROLLER STATE

CURRENT SPEED DATABASE", WHEEL DATA ~ CURRENT SPEEI

DATABASE

Required Speed Update: DESIRED SPEED DATABASE. DRIVER SPEED DATA ~ DESIREI

Brake Status Update:

Monitor Engine state:

SPEED DATABASE

BRAKE STATE '" DRIVER COMMAND DATA -+ BRAKE STATE

ENGINE STATE ~ ENGINE STATE

Figure 7.12 Declaration of PAISLey processes

7.3.4 TRL

TRL is aimed at the conceptualisation of real-time systems. In the literature,

extensive studies have pointed out that most of the eventual system errors could be

traced to problems in the requirements definition, due largely to the complexity of

212

extracting the requirements from volumes of narrative system description. TRL

focuses on the needs and objectives of the system, and provides a framework in

which the descriptions are expressed with the much needed simplicity.

Framework for Modelling the System

TRL establishes a framework by analysing and identifying the agents relevant to the

system. As we begin to analyse a system, we find many parts that interact. These

parts involve details of inescapable complexity. The fundamental task of

requirements engineer is to mask this complexity while focusing on the aims of the

system. TRL identifies agents that help us to make intelligent decisions regarding

the separation of concerns, and provides an economy of expression.

Modelling Agents

In this section, we briefly describe the role played by each agent. An agent has a

specific responsibility to the system. This responsibility defines its use. The

detailed narration of the use of an agent is provided by scenarios. As explained in

earlier chapters, the scenarios are characterised by events.

Driver

The main function of the driver can be abstracted by following scenarios. The

driver can bring the system into operation by pressing a switch, and similarly can

take the system out of operation by pressing another switch. While system is on,

the driver can ask the system either to increase or decrease the speed in steps, and

later aborts the process of varying the speed.

213

The scenarios are abstracted by events, and are as shown below.

+ +
'Activate' 'Deactivate'

+ • 'System_start' 'System_putoff

Figure 7. 13(a) Scenario of driver activating/deactivating the system

Similarly the driver can increase or decrease the speed in steps. The corresponding

scenarios are as shown below.

'Start_reduce_speed'

Figure 7 .13(b) Scenario of driver initiating the process of varying the speed

Figure 7.13(c) Scenario of driver terminating the process of varying the speed

214

'Brake_pressed' 'Resume'

'Brake_operated' 'Continue_operation'

Figure 7 .13(d) Scenario of driver operating the brake

The signature of the Driver is:

Driver initiates the system to operate - Activate

System status turned on - System_on

Driver instructs the system to shut-down - Deactivate

System status turned off - System_putoff

Driver instructs the system to increase the speed in steps - Inc_speed

Message sent to increase the speed in steps - Start_raise_speed

Driver instructs the system to decrease the speed in steps - Dec_speed

Message sent to decrease the speed in steps - Start_reduce_speed

Driver instructs the system to stop increasing the speed - Stop_inc_speed

Message sent to stop increasing the speed in steps - Stop_raise_speed

Driver instructs the system to stop decreasing the speed - Stop_dee_speed

Message sent to stop decreasing the speed in steps - Stop_reduce_speed

Driver presses the brake - Brake_pressed

Message sent to denote that the brake is operated - Brake_operated

Driver requests for the resumption of service - Resume

Message sent to resume the operation - Continue_operation

Static Constraints associated are:

215

Engine is on - engine_on

Translating the above scenarios in TRL we have:

Process Driver

begin

sl: if (Activate, il) and (engine_on) then (Sys_on, i2) & s2 %

s2: if (Deactivate, j 1) then (Sys_putoff, j2)

elsif (Inc_speed, kl) then (Starcraise_speed, k2) & s3

elsif (Dec_speed, 11) then (Start_reduce_speed, 12) & s4

elsif (Brake_pressed, ml) then (Brake_operated, m2) & s5 %

s3: if (Stop_inc_speed, nl) then (Stop_raise_speed, n2) %

s4: if (Stop_dec_speed, pI) then (Stop_reduce_speed, p2) %

s5: if (Resume, q 1) then (Continue_operation, q2) %

end

Speed Sensor

The Speed sensor, measures the current speed by monitoring the wheel rotations.

A conversion factor is used to calculate the current speed with the accumulated

wheel rotations.

The scenario is as shown in Figure 7.14.

The signature of Speed_Sensor is:

System status turned on - System_on

Wheel rotations are collected to measure the current speed - GeL wheeCrotations

Conversion factor is recalled to calculate current speed - Get_conversion_factor

216

Current speed is calculated with the help of conversion factor - Cal3urrencspeed

'Gee wheeCrotations'

'Geeconversion_factor'

'Cal3urrenCspeed'

Figure 7.14 Scenario of 'speed_sensor' monitoring the current speed

Expressing the behaviour in TRL we have:

Process Speed_Sensor

begin

s1: if (System_on, tl) and (engine_on) then (Geewheel_rotations, t2) ;

(GeCconversion_factor, t3) ; (Cal_currenespeed, t4) %

end

217

Monitor

The monitor, monitors the operator command to vary the speed. The desired speed

varies, when the driver wishes either to increase or decrease the current speed. The

speed is varied in steps till aborted.

'Start_reduce_speed'

Figure 7.15 (a) Scenario of 'monitor' start varying the speed

'Stop_ varyin~speed' 'Stop_ varyin~speed'

Figure 7.15 (b) Scenario of 'monitor' stop varying the speed

The signature of Monitor is:

Monitor recognises the request to start increase speed - Start_raise_speed

Monitor takes action to raise the speed in step - Raise_speed_in_step

Monitor recognises the request to start decrease speed - Start_reduce_speed

Monitor takes action to decrease the speed in step - Reduce_speed_in_step

Monitor recognises the request to stop increasing speed - Stop_raise_speed

218

Monitor recognises the request to stop decreasing speed - Stop_reduce_speed

Monitor takes action to stop varying the speed in step - Stop_ varyin~speed

The above scenarios are translated in TRL as below.

Process Monitor

begin

sl: if (Start_raise_speed, el) and (engine_on) then

(Raise_speed_in_step, e2) & s2

elsif (Start_reduce_speed, fl) and (engine_on) then

(Reduce_speed_in_step, f2) & s3 %

s2: if (Stop_raise_speed, gl) then (Stop_varyin!Lspeed, g2) %

s3: if (Stop_reduce_speed, hI) then (Stop_varyin~speed, h2) %

end

Controller

Controller controls the vehicle speed by issuing the value for the throttle position.

The throttle value is decided depending on the current speed, the desired speed, and

the accelerator value.

The scenario is as shown in Figure 7.16.

219

+ ~ ~
'Brake_idle' 'Brake_operated' 'Continue_operation'

+ + +
calculate_throttle_ value 'Suspend_operation' calculate_throttle_ value

Figure 7.16 Scenario of 'controller' as an agent

The signature of Controller is:

Controller recognises that the break is idle - Break_idle

Controller recognises that the break. is operated - Break_operated

Controller recognises the continue operation request - Continue_operation

Controller suspends the operation - Suspend_operation

Controller collects the current speed data - GeCcs

Controller collects the desired speed data - GeCds

Controller collects the accelerator value - Gecacc_ value

Calculate and output throttle value - Issue_th_ value

The static constraint associated can be expressed as:

system live == (sytem_active) and (engine_on)

Translating the behaviour in TRL we have,

220

Process Controller

begin

sl: if (Brake_idle, al) and (system_live) then (Geccs, a2) ; (GeCds, a3) ;

(GeCacc_value, a4) ; (Issue_th_value, as)

elsif (Brake_operated, bl) and (system_live) then

(Suspend_operation, b2) & s2 %

s2: if (Continue_operation, c1) and (system_live) then (Get_cs, c2) ;

(GeCds, c3) ; (GeCacc_ value, c4) ; (Issue_th_ value, c5) %

end

The entire system is then a composition of the agents discussed above. Thus the

entire system is as shown in Figure 7.17

Cruise Control System

Driver

(Speed_Sensor)

Monitor)

Controller

Figure 7.17 Representing cruise control system

7.4 Evaluation of What and for What?

An evaluation is meant to determine the usefulness of a solution with respect to a

given objective. An objective is fundamental here. The importance of a solution

221

must be gauged in terms of these objectives. Here we recall the evaluation criteria

discussed in Chapter 2.

The main criterion of requirements modelling is to promote the circumstances, in

which requirements engineers can develop a clear understanding of the system. If

this is achieved a requirements engineer is more likely to develop an accurate

representation of the system. Identification of user's overall perception of the

system helps to promote the requirements engineers' and users' understanding of

how the system works. It is essential that the requirements engineer builds an

accurate conceptual representation of the system. This is essential as the end

product should meet expectations - the customer likely to assert.

This conveys the factors such as:

• is it possible to take this representation back to the users, in order for

them to usefully comment and further explain, if necessary?

• is this representation able to provide a generic description of the system?

As discussed in Chapter 3, timing constraints involve both safety and temporal

requirements. As explained in Chapter 5, it is necessary for the fonnalism to state

all types of timing constraints that may arise in a system. Also it is necessary that

the timing requirements be described easily, as these requirements are used by

various parties including users. This conveys the factors such as:

• how easy it is to reason about time in the formalism? and

• is it possible to state all types of timing properties?

222

The problems with requirements (as explained in earlier chapters) are:

•

•

•

•

ill-disciplined requirements;

disassociation of validation from users;

bulk of information; and

inappropriateness of description languages.

As computer controlled systems are expanding unabatedly, the systems become

more specific, and the requirements language plays an increasingly significant role.

Conceptual models are the abstract representations of the system which omit the

fine details of the system, and faithfully reflect its externally observable

characteristics. In this representation, whatever is represented is done so to the

level of rigour and accuracy that there is an adequate basis for suitability

assessment. Also, the representations are required to be in a medium, in which

alterations can be more easily investigated. The representation medium must

include:

•

•

•

ability to mirror real-time systems requirements, and to support a mechanism

for formal communication of requirements within the structure identified by

the model;

ability to capture the realities of real-time system, with emphasis on dynamic

constraints; and

ability to describe the performance implications of timing constraints. The

description of timing constraint must recognise not only the importance of the

time with which the job has to be done, but also the hidden fact of what if the

job could not be completed within the prescribed time. Temporal

223

requirements describe the constraints to be observed in a system. To consider

the temporal issue seriously, the formalism must also incorporate a

mechanism to describe the timing exceptions in the syntax of the language.

7.4.1 Comparison of the Approaches

Every technique is likely to have some kind of framework for rationalising concepts

and requirements in order to allow clarity and professional communication. The

same system can have different types of descriptions as shown above (with the

cruise control system). We discussed the salient features of the techniques above.

The example discussed above, highlights differences in philosophy and the

approach taken by each of the techniques.

As explained in Chapter 2. the requirements language has at least three goals: as an

analysis tool; as a vehicle for human communication; and as a vehicle towards

automation. In the following sections we drive our discussion of the techniques

through these goals. Here we recall our earlier discussion of the approaches. and

also the solution of the case study to comment on these characteristics.

7.4.1.1 Analysis Tool

Analysis comprises of descriptive representations that depict the motivation of the

model. The basic motivation of the model is to describe the objectives. The

objectives are achieved by strategies, the kind of descriptions that achieve the

conceived goal. Traditional approaches have a bias towards functional

decomposition. Such an approach normally results in a system that is rigid. and

often unmaintainable [Heitmeyer 83].

224

As explained in Chapter 2, a model can represent different perspectives. The three

perspectives provide a representation for each class of player involved in the

development of the system: requirements engineer, specifier, and designer. The

requirements engineer has a conceptual representation of the product that serves

some purpose. The specifier transcribes this perception of product into the

operational model. Next the designer translates this representation into a solution

model.

As each perspective reflects a different set of constraints, the meaning or definition

of the modelling language changes depending upon the emphasis of the

perspective. For example, the RSL statements provide meaning for the specifier,

while the constructs of PAISLey have a meaning for the designer. Since the

emphasis of each perspective is different, the structure and the objective of the

model is likely to be different. Since each language has a unique basic model, the

meaning (and thus its usefulness) of the model is unique.

In the following section we describe the approaches with dimensions of analysis,

such as abstraction, localisation, uniformity, and temporal reasoning. The notation

has to provide facilities that makes it easier to model the essential properties without

getting into its details. Such a notation allows the important properties to be

expressed and distinguished.

As observed by many researchers (for example Luqi 88) SREM does not support

abstractions very well. When a modeller tries to understand a system, the way the

system is to be designed, then the computing aspects become more important than

the conceptual understanding of the requirements. Commenting on the practical use

of SREM, Scheffer et al [Scheffer 85] observe that the description of the system

225

takes the form of initial system specification. They express that, "it was developed

to specify software requirements after the system requirements analysis phase has

been completed, but before any detailed processing algorithms have been formed".

As shown in the example, R-net provides a mechanism to decompose the

requirements, in terms of ALPHAs. The RSL notation is used to define data access

properties. The structures in RSL consists of primitives whose meaning may be

unclear [Bell 77]. SREM does not provide a unified approach to define

requirements. With any change in requirements more than one document needs

modification.

The abstraction level in RTRL depends on stimulus-response sequence. In large

systems, it is difficult to think of a system's features in terms of stimulus-response

[Davis 88]. Also as Taylor observes [Taylor 82] many of the system failures can

be attributed to the system being viewed merely as a transformation of stimulus to

response. RTRL does not provide any mechanism to decompose the requirements.

The descriptions in RTRL follows the FSM description. Without the FSM drawing

it is difficult to understand the description. RTRL as a modelling language is very

inefficient. It is difficult to express the requirements of large systems as a

monolithic state machine. Also such a description is difficult for the user and

requirements engineer to visualise the activities in a system.

PAISLey needs complete description of the way the functions are achieved. Zave

[Zave 84] defends the criticism by stating the approach as operational. Zave [Zave

91b] considers the three major activities in software development process as

construction, validation, and implementation. A PAISLey specification is written

as a set of function definitions. The activities like sequencing, or control flow is

226

difficult to specify [Zave 91b]. PAISLey provides a unified approach to specify the

requirements.

TRL stresses that requirements elicitation is not a design of the system, it is rather a

statement of the need. (Here we recall some of the salient features of our approach

discussed in earlier chapters). TRL consists of a defined approach to requirements

elicitation. TRL provides a description of the real-world model. The system

structure provided by the recognition of agents assists in evaluating the

explanations obtained by the customers. Explanations obtained by the customers

are in the form of scenarios. Scenarios comprise of events. The following

descriptive elements provide an objective manner to determine how events interact:

(1) What event occurred?

(2) Who performed an event?

(3) With what aim was an event performed?

(4) What caused an event to occur?

(5) Under what circumstances did an event occur?

(6) By what means was an event performed?

(7) When (at what time) was an event performed?

Interpreting the explanations of an event with the above criteria provides an

excellent understanding of the events occurring in the system. The above list of

criteria is further explained below.

What event occurred; is answered by the event name. An event name symbolises

the unit of work performed.

227

Who performed an event; is answered by the name of an agent. The list of events

performed by an agent provides the signature of an agent.

With what aim was an event performed; is answered by the reason in performing

this event. It provides an explanation on the importance of this event.

What caused an event to occur; provides a reasonable explanation on the reactivity

of the system.

Under what circumstances did an event occur; provides explanation on the

static constraints. For example, an event 'e' can occur only if the water temperature

exceeds twenty five degrees.

By what means was an event performed; provides explanation on the mechanics

of the system. This provides details of 'how the event was performed'.

When was an event performed; provides explanation on the temporal constraint of

the event. Temporal requirement must be described at the application level as a

requirement. A timing constraint described at the application level (as a

requirement) makes one to think of the implications of satisfying or not satisfying a

timing constraint, and this is the focal issue of referring to a timing constraint.

Temporal Requirements: Rationale and Description

Temporal requirements are the primary determinants of the functional correctness

with real-time systems. In the earlier chapters we categorised and explained the

influences of temporal requirements. The impact of timing constraints is felt in

various stages of the system development cycle. Well defined timing constraints do

228

not influence a solution method, and provide more information about the desirable

solution. Leveson [Leveson 90] points out that, simple primitives for timing, such

as a time-out, do not adequately capture the complexities of time and therefore are

inadequate for fully specifying and modelling timing requirements.

In SREM the timing constraints are described over R-nets. A timing constraint is

described with the help of validation points. Validation points are drawn as circles

and inserted over R-nets. Validation points are labelled. A validation path is a

series of validation points. A timing constraint is described over a validation path.

For example in Figure 7.2 consider a timing constraint such that, the current speed

is calculated within 2 seconds of accumulating the wheel rotations. To define a

timing constraint over this path, a validation point is inserted after the alpha

'accumulate wheel rotations' and after the alpha 'calculate current speed'. Then our

2 second requirement is a descriptor of the path from one validation point to

another. Description of timing constraint in R-net can span over several R-nets.

and thus becomes difficult to visualise the requirement.

Timing constraints in RTRL are expressed as a timer alarm. When the alarm

expires, it causes a transition. This is similar to SOL way of defining timing

constraints. The time-out (timer alarm) feature can describe the timing constraint

between two events, and cannot describe timing constraints over several events.

The description of timing constraint over several events in RTRL is similar to the

description in SREM. For example. refer to the diagram described below

(Figure 7.18). If the timing constraint over the path ABCD is 2 seconds, then it is

described as

LATENCY ABCD 2

229

s

Figure 7.18 Timing Constraint on several events in RTRL

The temporal requirements in PAISLey is again a time-out feature. There is no

mechanism to state timing constraints over several events [Zave 82]. When the

specification is executed, the simulator prints the timing of each event. The timing

constraints, like time-out can be expressed. It is not possible to describe other

complex timing constraints. As explained in Chapter 2, a timing constraint in

PAISLey is described as a comment.

TRL framework provides a means to better plan and integrate the real-time

considerations. As demonstrated in Chapter 5 TRL handles all types of

complicated timing constraints, and are stated very easily. For example, the two

second timing requirement we discussed in this section, is a timing relation between

the two events accumulate wheel rotations, and calculate current speed. TRL

provides a concise notation for defining all complicated timing constraints. The

description of temporal requirements is handled at a high level. The rigorous and

extensive ability to handle all types of timing constraints is of particular concern to

the requirements engineers. Real-time systems are often safety critical systems.

Safety concerns the implication of timing constraints. The language as a tool of

thought provides means to think in these aspects.

230

Criterion RSL RTRL PAISLey TRL

Primary Real-time Telecommunicati Embedded Real-time
application systems on systems. Can systems systems
emphasis be used with all

real-time
systems.

Perspecti ve Specifier User level Designer level User level

Abstraction Detailed Stimulus- Design A the right
description. response sequence orientation. granularity for
Description Complete code users and
oriented towards must be written. engineers.
specification.

Localisation Hierarchies of No localisation Process described Agents
ALPHAs at characterised by

implementation scenarios
level

Uniformity Makes use of Descriptions are Unified approach See PAISLey
variety of at least two level:
descriptions. like the FSM
R-net, and RSL. diagram. and the

code.

Temporal Time values can Informal Restricted Can describe all
reasoning be represented extension of temporal types of timing

over ALPHA. timer facility to requirements constraints
Timing FSM.
description can
span several
R-nets

Representation of Not addreSsed Not addressed Not addressed Addressed
timing exception

Table 7.1 Comparison highlighting the differences in the approaches

7.4.1.2 Human Communication Tool

Various people are involved during system development. This means that the

requirements document has to be communicated explicitly among a number of

231

people. As pointed out in earlier chapters (see Chapter 1 and Chapter 2) the

primary purpose of requirements document is to promote effective communication

among developers and stakeholders. Given the various roles different people play t

it is essential to communicate in order to ensure a common understanding of the

desired system. Communication is needed among users, requirements engineers,

specifiers, and developers in order to obtain a system that will reflect users'

requirements.

Constructing a large software system is not merely a matter of technical capability,

but also a matter of communication. Problems arise because many people are

involved in this phase from marketing, technical, financial, and the user group.

The simplicity of the language aided with the absence of arcane mathematical

symbols assists the persons in communication. People communicate but not very

effectively. As described in Chapter 2, human communication improves with two

vital characteristics: understandability, and modifiability.

Understandability

Understandability is an important but a difficult criterion to measure.

Understandability is a subjective connotation. However understandability is often

related with complexity. This means that anything that is highly complex is

difficult to understand. If the complexity is simplified, it is made more accessible

to a wider community, and more easily understood. The term 'complexity' is used

in an informal way. As we are referring to the representation technique, simplicity

(the absence of complexity) means that the technique must be both easy and fast to

use. For the users, and acceptance testers the representation formalism must be

easy to recall. Understandability is a means to achieve a clear idea of the concepts.

232

As described in Chapter 2, understandability is related to a number of

characteristics, like structuredness, conciseness, self-descriptiveness, and

readability. The stakeholders, and acceptance testers read the document for the

purpose of evaluation, and these factors are important for them.

Self-Descriptiveness: This quality is directly related the syntactic aspects of the

language. Requirements document must use the terminology of the environment,

the way the users interact with the system. The requirements document is

descriptive, rather than prescriptive. The requirements language must provide

suitable constructs for defining various constraints that the system must satisfy, and

these constructs must reflect the nature of the environment. This results in a close

correspondence between reality and notation.

As expressed by Bell [Bell 77] the constructs in RSL may be unclear. The same is

true for RTRL, as it is a description of FSM. PAISLey is very cryptic. As

commented by many persons the descriptions in PAISLey is difficult to read and

understand (for example, Davis 90, Stokes 91). The constructs in TRL follow the

working rules of the user, and are meaningful and realistic in the context of real­

time system and its environment.

Conciseness: The representation of the model influences the way in which different

people perceive the system. A well chosen representation technique induces a clear

conceptual understanding of the system for all concerned persons. When

modelling complex systems, it is necessary to avoid detailed design descriptions. as

it may be obtrusive to understanding the objectives of the system.

Descriptions in RSL are detailed, and provides specification of the system

[Scheffer 85]. Descriptions in RTRL provide a description of monolithic finite

233

state machine. PAISLey statements provide explicit design details. The framework

in TRL acknowledges that the entities in real-time systems are reactive, and

descriptions in TRL contain details relevant to that level.

Structuredness: Human learning, and problem solving are greatly facilitated by

meaningful structure. Meaningful structure is beneficial for representing

environmental and computer concepts. A structure is meaningful if the users can

relate the concepts with the components they work in every day life. A system

represented as an organised set of components is in harmony with the mechanism

the users can relate to, and (such a structure) is meaningful to assimilate advanced

features.

The structuring mechanism in SREM is by means of R-net and subnets. Each net

or sub net describe a function or sub function. RTRL lacks any modularity.

PAISLey provides modularity by defining the processes. TRL provides a structure

of agents, a structure that the users can identify with the environment.

Readability: As pointed out in Chapter 2, the ability to read a fragment of

requirements is more important than the ability to write the same piece of fragment.

Requirements document is likely to be read by many persons, and must be

comprehensible. It is difficult to expect people to agree to a document if they

cannot read the same.

Both in SREM, and RTRL the requirements are described with the help of the

diagrams: R-net in case of SREM, and FSM in the case of RTRL. PAISley code

is difficult to read. The descriptions in TRL mimic the causal nature of reactive

systems, and is easy to read in the absence of any cryptic declarations.

234

Modifiability

It is simplistic to assume that all the requirements of a system can be captured at

once, and then be described in the requirements document. In fact requirements are

not captured, requirements are negotiated and agreed upon after a number of

meetings and discussions. Requirements document like the development of a

system follows an evolutionary process. Requirements evolve, changes must be

made to the requirements document. As noted earlier (in Chapter 2) modifiability is

associated with features such as structuredness, self-descriptiveness, extendability.

and writeability. Modifiability provides means whereby changes in requirements

are controlled.

Extendability: As pointed out earlier, changes do occur in requirements, and needs

to be accommodated in the document. Extendability ensures that the resulting

changes are managed. With the associated features such as structuredness, and

self-descriptiveness extendability simplifies the evolution.

For example, consider a change to the requirements of cruise-control system

described above. In the above description, when the driver presses the accelerator

pedal (while the system is on) the system continues to attempt to maintain the

previous speed. This requirement may later be recognised as a hindrance to the

intentions of the driver, and a change may occur. The changed requirement,

suggests that whenever the driver presses the accelerator pedal (while the system is

on) the operation of the system must be suspended, and the system be brought to

service, with the request (resume) from the driver.

In SREM the changes occur in R-net, the R-net has to be changed to introduce the

check the status of the accelerator alpha, and then decision be taken depending on

235

the accelerator status. RSL requires detailed information, and requires suitable

modification in RSL. The data description in RSL requires modification.

In RTRL the change is difficult to implement, as it lacks the notion of modularity.

The FSM has to be re-written creating new states, and this distorts the FSM.

Changes have to be incorporated in to the textual description of RTRL also. The

error may creep in while changing the requirement, as the unchanged states may not

reflect the belief held earlier.

The changes to the requirements occur on the basis of discussion with the

stakeholders. With descriptions in PAISLey the possibility of such a discussion

may not be possible, as the descriptions are difficult to understand. Once the

changes are identified, the detailed instructions in PAISLey needs to be modified.

TRL approach identifies the agents, and its documentation is readable and localised.

The description of agents has a high level of visibility, and is self-contained. An

agent cooperates with other agents to achieve the desired goal. Modifications to the

function of agent, makes change only in one part of the document and needs no

change in the other parts of the document. Even if totally new functions are to be

added, then a new agent may be created to achieve the desired goal. The structure

of TRL advocates adaptability.

For example, the change that we mentioned in the requirements of cruise control

system can be incorporated in the description of 'controller' agent. The

descriptions of 'controller' agent needs only another statement to be added to it.

stating that if the 'accelerator pedal' is pressed then the system operation is

suspended.

236

An important problem in large projects is the changes occurring in requirements.

With our technique these changes can be incorporated easily without changing the

whole organisation of the requirements document. The advantage comes from the

localisation of the information. While in RSL and RTRL the information is

processed in sequence, and any change is reflected in disturbing the whole

organisation of the requirements document. With our technique the changes have

to be determined with only the affected agents. While in other approaches the

changes may have to be carefully determined as it can affect the whole definition of

the system.

Writeability: The information that is captured and documented is likely to change

with the increased knowledge about the environment and the intended system. The

requirements document must be easily updatable. The writeability dimension

denotes how easy it is to create and update the document. Writeability improves

with computer understandable languages. All the approaches considered here

provide writeability. Once the requirements or change in the requirements are

identified, the information can easily be documented.

The above discussion is summarised in table 7.2.

237

Criterion RSL RTRL PAISLey TRL

Self descriptive- Descriptions in Descriptions Descriptions are Descriptions by
ness RSLmay be follow the FSM not intuitive and means of user

unclear structure difficult to defined scenarios
understand

Conciseness Detailed design Monolithic finite Complete code Concise scenario
description state machine must be written description.

Structuredness R-netand Not addressed Processes Structure of
ALPHAs described at agents categories

implementation scenarios into
level groups

Readability Like FSM See RSL Concepts are not Scenario
diagrams intuitive, and description with

constructs are readable
difficult to read constructs

Extendability A small change Monolithic The hierarchies of Scenarios thai
may disturb the nature of the process fall into groups
whole net. document is description cope make the
Hierarchies of difficult to with changes evolution easier
ALPHA provide extend. A small
some control. change can

disturb the whole
net.

Writeability Document can See RSL See RSL See RSL
easily be updated

Table 7.2 Comparison highlighting the differences in the approaches

7.4.1.3 Vehicle towards Automation

System development is regarded as a series of model building activities. A good

conceptual modelling approach accommodates the evolution of the model. As

pointed out earlier in Chapter 2, the computer understandable language helps in

propagating the changes, that occur in requirements. The issue of representing the

requirements document is complicated by the frequent changes that occur in

238

requirements. Automated tools can be of help in propagating the changes. because

of their ability to handle volume of data. Automated tools help in supporting the

evolution of the model in few steps, like supporting the creation of test data. In

general automated tool can support in the following functions:

•

•

•

•

capturing new requirements;

updating the requirements;

inquiring the requirements (to check whether a requirement has been

considered); and

evaluating the requirements.

Such a language helps in document creation. document polishing. and document

production. Such a document can also be used to create test data automatically.

The modelling approaches like SREM. RTRL. PAISley. and TRL are a suitable

approach to use it as a vehicle towards automation. In these approaches

requirements can be checked against a validation criteria. for example timing

violations, or syntax errors.

7.5 An Overview of TRL

Requirements modelling roughly deals with the following activities:

• grasp of the problem;

• familiarisation with the problem;

• presentation of the problem, and

• validation of the problem.

239

Requirements modelling as seen by the above activities, is a user centred activity.

During the system development a gulf arises between the users and system

developers. The vocabulary of the two is entirely different. In the design of TRL,

requirements modelling is projected as a bridge between the two different worlds,

the world of customer, and the world of developers.

The conceptual modelling process discussed earlier (see Chapter 3), provides an

engineering approach to problem understanding. In this approach, when we use an

agent, we use a representation. The power of an agent comes from the concept of a

representational device. In fact I define an agent as an artificial device that serves a

representational function. Agents are mediators between the customers, and the

developers. A set of scenarios provides a concrete representation of the use to

which the agent will be put. Our approach enumerates critical and typical scenarios

that users want to do and need to do, to achieve the desired goal. The scenario

description helps to reveal any mismatch. Scenarios are descriptive stories about

the intended use of the system. Scenarios is a valuable tool for vaJidating the

requirements. The scenario concept is a powerful one. It allows the user to know

in advance whether the 'requirements engineer' has understood their needs. The

importance of such a step cannot be over emphasised. Bubenko [Bubenko 86]

terms the trend in system development as 'You Don't See What You Get'. In

traditional system development phase, a user does often not have a reasonable

understanding and feeling of what kind of a system he/she will get until the system

is operational. Such a situation is mitigated here. Scenarios are used as a

mechanism for mental prototyping. The various facets of this modelling approach

is reported in [Sateesh 95a, Sateesh 95b, Sateesh 95c, and Sateesh 95d).

240

This concept is a well suited tool for constructing descriptions, and abstractions

about the system. It is particularly well suited for the iterative nature of the

conceptual modelling process. The description language TRL is used with a variety

of problems. The use of TRL in MMI (Man-Machine Interaction) is reported in

[Sateesh 94a], and the practicality of the language is also reported in [Sateesh 94b,

Sateesh 94c, and Sateesh 94d].

7.6 Summary

The point is not that one representation is superior to another, but that the different

approaches have different properties, and priorities. We are of the opinion that the

users must be able to comment on the proposed description of what the system

does. This aspect of representation is of prime importance because requirements

description is of constructing, analysing and documenting the description. After

all, the primary purpose of the document is a description of the system that fulfils

the client's needs. The document must be easily maintainable to take care of the

changes occurring in the requirements.

The TRL modelling technique is an effective approach. The technique allows the

modeller to focus hislher attention on the needs and objectives of the system. The

concept of agent provides better understanding of the requirements without any

influence on the implementable aspect of the system. The means of description

serve for describing the agents as well as for analysing, and documenting the

specific use of them.

Requirements description is intellectually tough. A requirements language can at

most, alleviate the difficulty of the task. The important aspects of a system can

only be discussed effectively by defining the use of a system. The use of a system

241

is captured through scenarios. Users can become frustrated, and confused if they

are not able to visualise the proposed use of the system, which they expect. This is

necessary to comment usefully and in detail, on specific features. This analysis

provides a sound understanding of the work to be carried out by the system. These

are the basic underlying viewpoints in our approach.

242

Chapter 8

Summary and Conclusions

A system has a well defined use to its community.

The requirements must reflect those needs. A

requirements model of a system must rely on the

user level activities, and aid the human

understanding and communication. In this thesis we

proposed a novel approach suitable for the

description of requirements of real-time systems.

243

Engineering in general is directed to build things according to the requirements -

with needed functional capability. Requirements of real-time systems are becoming

increasingly complex. This increase in complexity is partly due to the increasing

capability of microprocessors. Real-time systems are penetrating a wide range of

applications like, industrial applications, military applications, and health care

systems. Requirements of these systems are difficult to understand. This thesis

has described the results of research into the problems of modelling the

requirements of real-time systems.

8.1 Thesis Summary

Chapter 1 argued that the future systems are likely to be characterised by the

desirable property of real-time systems. Real-time systems are time critical and

reactive. These systems interact with physical devices, and perform complex

functions. The requirements description of these systems must encompass these

characteristics. Requirements is different from specification. Requirements

description produces the conceptual model of a system, while specification

produces the empirical model of a system. A requirements description must include

the facilities to describe the dynamic nature of real-time systems. We contend that

the requirements engineers must be provided with an approach that supports the

description, analysis, and validation of the requirements.

Chapter 2 reviews the requirements modelling area, that is of primary interest to

this thesis. It gave an insight into the position of requirements modelling

languages, and into the common ancestry of these languages. We examined the

research efforts in the area, and noted that there is an issue to be addressed. With

the traditional approach of modelling, it is difficult to visualise the application's

244

requirements. A conceptual model must describe both the static and dynamic

aspects of the system. A conceptual model must reflect the collective (stakeholders.

and requirements engineer) perception of the system. It is important that the

requirements description reflects the stakeholders perception of the problem to

validate the understanding of the problem.

In chapter 3 a real-time system is viewed within a broad operational environment.

with user as an integral part of the system. We present an engineering approach to

derive the conceptual model of real-time system. Each phase is associated with an

objective. This analysis suggests what infonnation to look for. and what analysis

to be performed during each phase. The aim of this approach is the clear

formulation of the system needs. The splitting of the conceptual modelling process

into steps ensures that the essential links between problem definition, and

objectives are maintained. The goals provide important criteria for the exploration

of requirements. The important aspects of a system can be discussed effectively by

defining the use of a system. Such an approach provides fonnal expression to the

goals of the system. A systematic approach avoids time consuming errors due to

the lack of information or bias. The purpose of an agent is to accomplish

something. Scenarios include a simple elaboration of the wayan agent

accomplishes a goal. Scenarios describe the use of agents, and reflect a user's

belief about the system.

Real-time systems are event-driven. and requires explicit description of temporal

properties. Chapter 4 discussed a formal event model of a system. In this model

we make use of dense time. The model describes the functional and temporal

restrictions, using the same framework. This is done by enriching the elements in

the domain, with an explicit time component.

245

The events are regarded as atomic. The events that overlap in time (continuous

events) are represented by treating their initiation and termination as distinct atomic

events. We associate an event symbol to each event. In our model the following

phenomena can be noted:

- events trigger the operations,

- operations modify the state of the agents, and

- agents are characterised by scenarios.

Real-world systems often consist of several agents. The behaviour of an agent is

then a possible event sequence, over the alphabet of event symbols. A system is

regarded as a combination of concurrently acting agents.

Chapter 5 discusses the description language TRL. A problem associated with

requirements elicitation is the communication barrier between the two parties. the

stakeholders and system engineers. Every one is aware how difficult it is to

understand the description of a well known system, with complex descriptions. It

is even more difficult to understand a non-existent system. with a complex

description. There is a fair amount of evidence that the specification languages

create more harm than good during requirements [Fraser 94]. The user level

requirements are not readily recognisable when confined into such a structure. To

alleviate such problems, we present TRL. Real-time systems are time sensitive.

Qualitative approaches such as Allen's interval relations [Allen 83] face difficulties

in representing and reasoning about metric constraints (restricting the distance

between temporal events). Our model allows the representation of all types of

timing constraints that may arise in a system. We also present a general

classification of timing constraints, noting the limitation of classification provided

246

by Dasarathy [Dasarathy 85]. Our formalism conveniently handles all forms of

temporal constraints. The syntax of the language also provides features to describe

the time-related exception scenario.

Chapter 6 demonstrates the practical use of our approach. TRL has been used for a

number of problems discussed in the literature. In this chapter two standard case

studies are reported.

Chapter 7 discusses evaluation of our approach with the representative techniques

discussed in Chapter 2. Evaluation is driven with the help of another standard case

study.

Chapter 8 is the conclusion and summarises the thesis. It also explores avenues

for further research.

8.2 Contributions

A new approach to describe the requirements of real-time systems was presented.

Among the salient features of the TRL model, is a fundamental notion of time, and

compositionality. The payoff for this dual treatment is manifold. Requirements

become more structured since they can constrain the system events. This model

allows the representation of external environment and the controller along with the

available resources, in a unique framework making it possible to study the

properties of the system. The description language - TRL is small and simple. As

Hoare [Hoare 81] observes, if the basic tool, the language is itself complicated,

then it becomes part of the problem, rather than part of its solution. As Wirth

[Wirth 95] expresses 'increasingly, people seem to misinterpret complexity as

sophistication, which is baffling - the incomprehensible should cause suspicion

247

rather than admiration'. The simplicity reduces the number of errors made by the

requirements engineer. As noted by Parnas [Parnas 94] a common error found in

formal specifications is that the specifiers write down something that does not

correspond to their intent. It is simple to describe the structure of a system and its

properties in TRL, as it allows a requirements engineer to express the real world

scenarios easily. TRL formalism helps to organise and understand a complex

system, as it supports abstractions, and hierarchical decompositions. The

constructs and abstractions provided by TRL are useful for modelling real-time

systems, and controlling the complexity of large systems.

A real-time system is viewed within a broad operational environment. An

engineering approach is presented to derive the conceptual model of real-time

systems. This layered approach ensures that the essential links between problem

definition, and objectives are maintained. The approach enables an efficient

interaction with the users. It encourages the user to reason on the requirements.

The important aspects of real-time systems are the static and dynamic constraints.

TRL handles both of these aspects well. TRL also provides a natural facility to

describe the time related exception scenarios. This increases confidence in the

users, and requirements engineer, as such decisions are not left alone to the

imagination of designers.

In process controlled systems the failures of computing system is often due to

unexpected scenarios that arise between the environment and controller

[Leveson 86]. The main difficulty in studying the interactions between controller

and environment, is the lack of an approach, that provides a graceful transition

from real world (non-computing) to concrete world (computing). The TRL

formalism bridges this gap. Requirements engineer works between two worlds,

248

the world of user, and the world of system developers. Gougen [Gougen 92J

terms the two worlds as 'the dry' and 'the wet' aspects. Gougen argues that

reconciling the two worlds has a strong practical need, and this reconciliation may

be the essence of requirements engineering. TRL as summarised in Chapter 7

essentially achieves this.

In TRL the information is presented in a way the user handles it. The benefits of

the approach discussed allows the requirements engineer to speak in the users'

language, and to view the interaction from the users' perspective. The advantages

with TRL are twofold. First, concentrating on the user level terminology focuses

the attention away from design issues. Secondly, the identification of agents

allows the abstraction of key features without being lost in a mass of detail. The

detail is available, but it is localised. This makes the requirements description

hierarchically structured in terms of the levels of abstraction of the goals of the

agents, and this undoubtedly is an aid to understanding.

The TRL formalism captures naturally many aspects of the real world, while

encapsulating the notion of discrete event system. During requirements analysis,

validation is a process to gain confidence in the model. Validation is performed

with stakeholders. There are many aspects of software requirements that can be

most effectively validated by user inspection of the scenarios. Scenarios include

something the agent wants to accomplish, which is associated with action. This

essentially poses the question, what must be done in order to accomplish the

mission? A scenario is an encapsulated description of achieving a specific

outcome, under specified circumstances. Scenarios have two main uses: First

scenarios can be used to understand the needs. Second, scenarios can be used for

validating those needs. The scenarios can increase the confidence in the

249

requirements engineers, and users. This can be visualised as a process of

mechanically reducing the requirements into a unique simple form.

In a goal directed reasoning the engineer analyses the ways of achieving a desired

goal. This reasoning provides an opportunity to identify unforeseen consequences.

While in a data directed reasoning the engineer is attempting to interpret the data

(associated with the situation) to identify the course of action. Jackson

[Jackson 94] observes that concentration on solution is widespread, and all

methods place their emphasis on describing a solution. According to Shemer

[Shemer 87] such solution specification is the cause of many failures of software

systems development.

The approach advocated addresses the key issues. They are:

I. The approach focuses on the features conceived by the users, and

requirements are derived from these features. This need based

concept reduces the tendency of requirements engineers to over

specify the system, and thus step into the system design. The over

specification cuts into the design freedom of system developers,

making the system overly restrictive.

2. The description focuses on the important objectives, while

emphasising the constraints to be met by the system.

3. As the description of the requirements is in the terminology of the

users, it allows the users to provide valuable comments on the

model.

250

Thus the approach is effective for requirements description. The benefits of this

approach are that it enables the stakeholders and requirements engineers to develop

a shared understanding of the needs.

8.3 Directions for Future Research

It is common in every research that, as some progress is made, a substantial

amount of further work is generated. The work described here is no exception. In

this section we highlight the areas in which the research presented here can be

further extended.

Specification - - - System

Figure 8.1 Position of TRL in system development

As described in Figure 8.1 TRL provides a bridge between the scruffy world

(real world), and the neat world34 (of specification). Please note in Figure 8.1, we

are not advocating any life cycle, but are highlighting the main activities during the

development of a system. Reviewing the Figure 8.1, we can identify two areas for

34 We are using the terminology as used in 3rd European Software Engineering Conference. 1991

(for example see [Greenspan 91]).

251

further research, as shown in Figure 8.2. The objectives of the areas are (1) to

make sure, and (2) to know more. These are explained below.

Making Sure

Specification System

Knowing More

Figure 8.2 Identifying the areas for further work

8.3.1 Making Sure

Any software system, undergoes mainly three types of testing, the module testing,

integration testing, and acceptance testing. In this section we are interested in

acceptance testing. Acceptance testing (AT) is normally carried out with the

stakeholders. This testing is carried out on the real hardware, normally in the same

environment where the system is likely to be installed. Some times, an external

agency may also be involved in validating the system. This external agency

comprises of specialists appointed by the stakeholders to validate the system.

This process (AT) consists of three basic activities: (1) generation of detailed test

plans, (2) the documentation of test results to check the progress, and

252

(3) agreement on the resolution of test results, and procedure on retest of the defect

tests. In this process the generation of test data is dependent upon the requirements

description of the application. In this sense, acceptance testing, is the testing of the

system against the needs of the stakeholder. The purpose of generating the test data

is to establish a means to formally demonstrate that the system to be delivered

performs according to the requirements. As shown in Figure 8.3, it is possible to

generate the test data automatically [Weyuker 94].

Software
Requirements

Test plan
generator

Figure 8.3 Automatic generation of test data

Test scenarios

Another interesting area is the design of a query language (knowing more) which is

discussed below.

8.3.2 Knowing More

The goal of requirements engineering is to increase the understanding of the

requirements. This is partly achieved by the design of TRL which is both

253

understandable, and executable. However the understanding of the requirements

both by the stakeholders, and system engineers increase in the presence of a

querying language [Potts 94]. The purpose of querying language (now on referred

as RQL - Requirements Querying Language) is to construct queries against the

requirements expressed in TRL. RQL makes it possible to gather information on

properties of the system. A query singles out a behaviour based on the properties

supplied by the query. RQL increases the capabilities of requirements inspection35•

Requirements inspection, is a process to provide information, whether a particular

property, or a scenario has been considered in the requirements description. A

real-time system exhibits a great variety of behaviour, which may become difficult

to analyse the properties of a system manually. The presence of RQL can mitigate

this problem.

8.4 Conclusion

The study relating to the modelling of real-time systems presented here has struck

an important chord in learning more about the requirements modelling of real-time

systems. The research discussed here can be extended with a number of tools to

span the various fields of requirements engineering. This research holds great

potential for further work.

35 We are borrowing the tenninology of [Fagan 86]. The details of Fagan's work is outside the

scope of this thesis, and can also be found in [Sommerville 92], [Pressman 87].

254

Appendix A

Published Works

The following publications have originated from the work reported in this thesis:

[Sateesh 95a]

[Sateesh 95b]

[Sateesh 95c]

T.K. Sateesh, "Real World Model for Real-Time Systems",

in the Requirements Engineering and Knowledge

Engineering track of KA W '95, (Ninth Knowledge

Acquisition Workshop) Banff, Canada, March 1995.

T.K. Sateesh, "Conceptual Model for Real-Time Systems: A

Perspective", in proceedings of the 10th Annual ACM

Symposium on Applied Computing (SAC '95), Nashville,

Tennessee, February 1995

T.K. Sateesh, "Making the Requirements of Process

Controlled Systems Explicit", in proceedings of the 28th

Annual Hawaii International Conference on System Sciences

(HICSS-28) Maui, Hawaii, January, 1995

255

[Sateesh 95d]

[Sateesh 94a]

[Sateesh 94b]

[Sateesh 94c]

[Sateesh 94d]

T.K. Sateesh, "Representing the Conceptual Model of a

Time Critical System", in proceedings of Groningen

Information Technology Conference (GRONICS '95),

Netherlands, February 1995

T.K. Sateesh, "Modelling the Temporal Requirements of

Man-Machine Interaction", in proceedings of the 1994

Workshop on Information Technology and Systems (WITS

'94) Vancouver, Canada, December, 1994, pp. 252 - 261

T.K. Sateesh and P.A.V. Hall, "Eliciting the Requirements

for Process Controlled Systems", in proceedings of the

1994 International Computer Symposium (ICS '94)

Hsinchu, Taiwan, 1994

T.K. Sateesh and P.A.V. Hall, "Modelling the

Requirements for Process Controlled Systems", in Software

Quality and Productivity: Theory, Practice, Education and

Training, Edited by Matthew Lee, Ben-Zion Barta and Peter

Juliff, Chapman and Hall, pp. 88-91

T .K. Sateesh, "Expressing Temporal Requirements of

Man-Machine Interaction", in Integrating Human Factors

with Software Engineering, Ed. by William E. Hefley,

Human Computer Interaction Institute and Software

Engineering Institute, Carnegie Mellon University,

Pittsburgh, pp. 123 - 140

256

Bibliography

[Abbott 90]

[Abbott 81]

[Abbott 83]

[Abbott 88]

[Adhame 89]

[Agerwala 79]

[Aho 86)

[Alford 77]

R.J. Abbott, "Resourceful Systems for Fault Tolerance,

Reliability, and Safety", ACM Computing Surveys, vol. 22,

No.1, March 1990, pp. 35-68

R.J. Abbott and D.K. Moorhead, "Software Requirements

and Specifications: A Survey of Needs and Languages",

Journal of Systems and Software, 2(4) Dec. 1981,

pp.297-316

R.I. Abbott, "Program Design by Informal English

Descriptions", Communications of the ACM, vo1.26 (1),

Nov. 1983, pp. 882-894

R. Abbott and H. Garcia-Molina, "Scheduling Real-time

Transactions", Sigmod Record, vol. 17, No.1, March

1988, pp. 71-81

E. Adhame, R.E.M. Champion, and R. Pyburn, "A

Knowledge Based Approach to Requirements Engineering",

in Software Engineering Environments: Research and

Practice, (Ed) K. Bennett, Ellis Horwood Ltd., Chichester,

1989, pp. 187-202

T. Agerwala, "Putting Petri Nets to Work", IEEE Computer,

December 1979, pp. 85-94

A.V. Aho, R. Sethi, and J.D. Ullman, Compilers:

Principles, Techniques and Tools, Addison-Wesley 1986

M.W. Alford, "A Requirements Engineering Methodology

for Real-time Processing Requirements", IEEE Transactions

On Software Engineering, January 1977, pp. 60-69

257

[Alford 85]

[Allen 83]

[Alpern 85]

[Alpern 89]

[Alur90J

[Alur92]

[Anderson 81]

[Anderson 89]

[Arnold 80]

[Arnold 94]

M. Alford, "SREM at the Age of Eight: The Distributed

Computing Design System", IEEE Computer, April 1985,

pp.36-46

J.F. Allen, "Maintaining Knowledge About Temporal

Intervals", Communication of the ACM, vol. 26, No. 11,

Nov. 1983, pp. 832-843

B. Alpern, and F.B. Schneider, "Defining Liveness",

Information Processing Letters, 21, 1985, pp. 181-185

B. Alpern, and F.B. Schneider, "Verifying Temporal

Properties without Temporal Logic", ACM Transactions on

Programming Languages and Systems, 11 (1), January

1989, pp.147-167

R. Alur, C. Courcoubetis and D. Dill, "Model Checking for

Real-Time Systems", in Fifth Annual IEEE Symposium on

Logic in Computer Science, 1990, pp. 414-425

R. Alur and D. Dill, "The Theory of Timed Automata",

Lecture Notes in Computer Science-600, Springer-Verlag,

1992 pp. 45-73

T. Anderson and P.A. Lee, Fault Tolerance: Principle and

Practice, Prentice-Hall, Englewood Cliffs, USA, 1981

J.S. Anderson, and S. Fickas, "A Proposed Perspective

Shift: Viewing Specification Design as a Planning Problem",

in Proceedings of the 5th International Workshop on

Software Specification. and Design, Pittsburgh, USA, 1989

A. Arnold, and M. Nivat, "Formal Computations of

Nondeterministic Recursive Programme Schemes", Math.

Systems Theory, 13, 1980, pp. 219-236

A. Arnold (translated by John Plaice), Finite Transition

Systems: Semantics of Communicating Systems, Prentice

Hall,1994

258

[Auernheimer 86]

[Balzer 79]

[Balzer 82]

[Balzer 83]

[Basili 88]

[Bell 77]

[Bennett 91]

[Benthem 91]

[Berzins 85]

S.B. Auemheimer, and R.A. Kemmerer, "RT·ASLAN: A

specification Language for Real·Time Systems", IEEE

Transactions on Software Engineering, 12(9), September

1986, pp. 879-889

RM. Balzer and N.M. Goldman, "Principles of Good

Software Specification and their Implication for Specification

Languages", Proceedings of the Specification of Reliable

Software Conference, April 1979 pp. 58-67

RM. Balzer, N.M. Goldman, and D.S. Wile, "Operational

Specification as the Basis for Rapid Prototyping", A CM

Sigsoft Software Engineering Notes, vol. 7 (5), 1982,

pp.3-16

R Balzer, T.E. Cheatam and C. Green, "Software

Technology in the 1990's: Using New Paradigm", IEEE

Computer, November 1983, pp. 34-45

V.R Basili and H.D. Rombach, "The TAME Project:

Towards Improvement-Oriented Software Environments",

IEEE Transactions on Software Engineering, SE-14, 6, June

1988, pp. 758-773

T.E. Bell, D.C. Bixler, and M.E. Dyer, "An Extendable

Approach to Computer-Aided Software Requirrements

Engineering", IEEE Transactions on Software Engineering.

Jan 1977, pp.49-60

P.A. Bennett, Safety, in Software Engineering Reference

Book, Ed. By J.A. McDermid. Butterworth-Heinemann.

1991

J. van Benthem, The Logic Of Time. Kluwer Academic

Publications, Second Edition, 1991

V. Berzins, and M. Gray, "Analysis and Design in MSG.84:

Fonnalizing Functional Specifications", IEEE Transactions

259

[Bestavros 91]

[Boehm 76]

[Boehm 81]

[Bolognesi 88]

[Booch 83]

[Booch 86]

[Borgida 85]

[Borriello 90]

[Bowen 93]

on Software Engineering, vol.SE-11, No.8, August 1985,

pp.657-670

A. Bestavros, "Specification and Verification of Real-time

Embedded Systems using Time-constrained Reactive

Automata", IEEE Real-Time Systems Symposium. 1991,

pp.244-253

B. Boehm, "Software Engineering", IEEE Transactions On

Computers. C-25, 1976, pp. 1226-1241

B. Boehm, Software Engineering Economics, Englewood

Cliffs, NJ: Prentice Hall, 1981

T. Bolognesi, and H. Brinksma, "Introduction to the ISO

Specification Language LOTOS", Computer Networks and

ISDN Systems, 14(1), 1988, pp. 25-29

G. Booch, Software Engineering with ADA, First Edition,

Benjamin/Cummings, Menlo park, California, 1983

G. Booch, "Object-Oriented Development", IEEE

Transactions on Software Engineering, Vol 12, No.2, Feb

1986, pp. 211-221

A. Borgida, S. Greenspan, and J. Mylopoulos, "Knowledge

Representation as the Basis for Requirements

Specifications", IEEE Computer, (18), 1985, pp. 82-91

G. Borriello and T. Amon, "On the Specification of Timing

Behaviour", in proceedings of TAU'90: The 1990 ACM

International workshop on Timing Issues in the Specification

and Synthesis of Digital Systems, Vancouver, Canada,

August 1990

J. Bowen, and V. Stavridou, "Safety-critical systems,

formal methods and standards, Software Engineering

Journal, July, 1993, pp. 189-209

260

[Bowen 95]

[Brodie 84]

[Brooks 87]

[Bubenko 80]

[Bubenko 86]

[Buehl 62]

[Burns 90]

[Burns 91]

[Carroll 92]

J.P. Bowen, and M.G. Hinchey, "Ten Commandments of

Formal Methods", IEEE Computer, April 1995, pp. 56-63

M.L. Brodie, J. Mylopoulos, and J.W. Schimdt (Ed), On

Conceptual Modelling: Perspectives from artificial

Intelligence, Databases, and Programming Languages,

Springer-Verlag, 1984

F.P. Brooks, Jr. "No Silver Bullet Essence and Accidents of

Software Engineering", IEEE Computer, April 1987,

pp. 10-19

J.A. Bubenko, "Information Modelling in the Context of

System Development", in Information Processing 80, Ed.

S.H. Lavington, North-Holland, Amsterdam, 1980,

pp.395-411

J.A. Bubenko jr., "Information System Methodologies-A

Research View", in Information System Design

Methodologies: Improving the Practice, Ed. by T.W. Olle,

H.G. Sol, and A.A. Verrijn-Stuart, North-Holland, 1986,

pp.289-318

J.R. Buchl, "On a Decision Method in Restricted Second

Order Arithmetic", Logic, Methodology And Philosophy Of

Science, Stanford University Press, 1962, pp. 1-11

A. Burns and A. Wellings, Real-Time Systems and Their

Programming Languages, Addison-Wesley, 1990

A. Burns, "Scheduling Hard Real-Time Systems: A

Review", Software Engineering Journal, May 1991,

pp.116-128

J.M. Carroll, and M.B. Rosson, "Getting Around the Task­

Artifact Cycle: How to Make Claims and Design by

Scenario", ACM Transactions on Information Systems,

10(2), April 1992, pp. 181-212

261

[Casey 82]

[CCITT 88]

B.E. Casey and B. Dasarathy, "Modelling and Validating the

Man-Machine Interface", Software-Practice And Experience,

vol. 12, 1982,pp. 557-569

CCITT Z. 100-Z. 104, Specification and Description

Language, CCITT, Geneva, 1988

[Chandrasekaran 85] M. Chandrasekaran, B. Oasarathy and Z. Kishimoto,

"Requirements-Based Testing of Real-Time Systems:

Modeling for Testability", IEEE Computer, vol. 18, No.4,

Apr. 1985, pp. 71-80

[Chandrasekaran 91] B. Chandrasekaran, R. Bhatnagar, D.O. Sharma, "Real­

Time Disturbance Control", Communication of the ACM,

vol. 34 (8) August 1991 pp. 32-47

[Chandy 89]

[Checkland 81]

[Chen 76]

[Choueka 74]

[Ciapessoni 93J

[Clarke 86]

K.M. Chandy and 1. Misra, Parallel Program Design,

Addison-Wesley Publishing company, May 1989

P. Checkland, Systems Thinking, Systems Practice, Wiley,

1981

P.S. Chen, "The Entity Relationship Model: Towards a

Unified View of Data", ACM Transactions on Database

Systems 1 (1) ,March 1976 pp. 9-36

Y. Choueka, "Theories of Automata on 00-Tapes: A

simplified Approach", Journal of Computer and System

Sciences, 8, 1974 pp. 117-141

E. Ciapessoni, E. Corsetti, A. Montanari, and P.S. Pietro,

"Embedding time granualarity in a logical specification

language for a synchronous real-time systems", in Science

of Computer Programming, 20, 1993, pp. 141-171

E.M. Clarke, E.A Emerson, and AP. Sistla, "Automatic

Verification of Finite-State Concurrent Systems Using

Temporal Logic Specifications", ACM TOPLAS, 8(2) 1986,

pp.244-263

262

[Coad 90]

[Coolahan 83]

[Coombes 93]

[Dardenne 93]

[Dasarathy 85]

[Dasgupta 91]

[David 92]

[Davies 89]

[Davis 77]

[Davis 79]

P. Coad, and E. Yourdon, Object-Oriented Analysis,

Prentice-Hall, 1990

J.E. Coolahan Jr, and N. Roussopoulos, "Timing

Requirements for Time-Driven Systems Using Augmented

Petri Nets", IEEE Transactions on Software Engineering,

9(5), Sept. 1983, pp. 603-616

A. Coombes and J. McDermid, "Specifying temporal

requirements for distributed real-time systems in Z",

Software Engineering Journal, September 1993, pp.273-283

A. Dardenne, A. van Lamsweerde, and S. Fickas,

"Goal directed requirements acquisition", in Science of

Computer Programming, 20, 1993, pp. 3-50

B. Dasarathy, "Timing Constructs of Real-Time Systems:

Constructs for Expressing Them, Methods of Validating

Them", IEEE Transactions On Software Engineering,

vol. SE-ll, No.1, January 1985, pp. 80-86

S. Dasgupta, Design Theory and Computer Science,

Cambridge University Press, 1991

R. David and H. Alia, Petri Nets and Grafcet, Prentice Hall,

New Jersey, 1992

J. Davies and S. Schneider, "An Introduction to Timed

CSP", Technical Monograph PRG-75, Oxford University,

August 1989

e.O. Davis and C.R. Vick, "The Software Development

System", IEEE Transactions on Software Engineering,

SE-3 (1), Jan 1977, pp. 69-84

A.M. Davis and T.O. Rauscher, "Formal Techniques And

Automatic Processing to Ensure Correctness In

Requirements Specification", Proceedings of Specification

of Reliable Software Conference, IEEE Computer Society,

1979, pp. 15-35

263

[Davis 82a]

[Davis 82b]

[Davis 88]

[Davis 90]

[De Marco 78]

[Deutsch 88]

[Dijkstra 68]

[Dill 89)

[Dobson 93]

[Dubois 86]

A.M. Davis, "The Design Of a Family Of

Application-Oriented Requirements Languages", IEEE

Computer, May 1982, pp. 21-28

G.B. Davis, "Strategies for Information Requirements

Determination", IBM Systems Journal, vol. 21 (1), 1982,

pp.4-30

A.M. Davis, "A Comparison of Techniques for the

Specification of External Behaviour of Systems",

Communications of the ACM, 31(9), Sept. 1988,

pp.1098-1115

A.M. Davis, Software Requirements: Analysis and

Specification, Prentice Hall, 1990

T. De Marco, Structured Analysis and System Specification,

Yourdon Press, New York, 1978

M.S. Deutsch, "Focusing Real-Time Systems Analysis On

User Operations," IEEE Software, September 1988,

pp.39-50

E.W. Dijkstra, "Go to statements considered harmful",

Communications of the ACM, 11 (3), March 1968,

pp. 147-148

D.L. Dill, "Timing Assumptions and Verification of

Finite-State concurrent Systems", Lecture Notes in

Computer Science-407, Springer-Verlag. 1989. pp. 197-212

J. Dobson, and R. Strens, "A methodology for requirements

management applied to safety requirements", in Safety­

critical Systems: Current issues techniques, and standards,

(Ed) F. Redmill, and T. Anderson, Chapman and Hall,

London, 1993, pp.123-136

E. Dubois, J. Hagelstein, E. Lahou, F. Ponsaert, A. Rifaut

and F. Williams, "The ERAE Model: A Case Study", in

Information Systems Design Methodologies: Improving the

264

[Dubois 87]

[Easterbrook 93]

[Eilenberg 74]

[Elmendorf 74]

[Emerson 89]

[Faci 91]

[Fagan 86]

[Faulk 83]

[Feather 87]

Practice, Ed.by T.W. OBe, H.G. Sol, and

A.A. Verrijn-Stuart, North-holland, 1986, pp. 87-105

E. Dubois and J. Hagelstein, "Reasoning on Formal

Requirements: A Lift Control system", Proceedings of the

International Workshop on Software Specification and

Design, 1987, pp. 161-168

S.M. Easterbrook, 'Domain Modelling with Hierarchies of

Alternative Viewpoints", in Proceedings of IEEE

Symposium on Requirements Engineering, San Diego,

California, 1993

S. Eilenberg, Automata, Languages, And Machines

Volume-A, Academic Press, 1974

W.R. Elmendorf, "Functional Analysis using Cause-Effect

Graphs", in Proceedings of SHARE XliII, New York,

1974, pp. 567-576

E.A. Emerson, A. Mok, A.P. Sistla and J. Srinivasan,

Quantitative Temporal Reasoning, in First Workshop on

Computer Aided Verification, Grenoble, France, 1989

M. Faci, L. Logrippo, and B. Stepien, "Formal specification

of telephone systems in LOTOS: the constraint-oriented style

approach", Computer Networks and ISDN Systems,

vol. 21, 1991, pp. 53-67

M.E. Fagan, "Advances in Software Inspections", IEEE

Transactions on Software Engineering, 12(7), 1986,

pp.744-751

S.R. Faulk and D.L. Parnas, "On the Uses of

Synchronisation in Hard-Real-time Systems", Proceedings

of the Real-Time Systems Symposium, Arlington, 1983,

pp. 101-109

M.S. Feather, "Language Support for the Specification and

Development of Composite Systems", A eM Transactions on

265

[Feather 89]

[Feather 93]

[Fickas 87]

[Fickas 92]

[Finkelstein 87]

[Finkelstein 88]

[Finkelstein 92]

[Foster 81]

Programming Languages and Systems, vol. 9, Nov. 1987.

pp. 198-234

M.S. Feather, "Constructing Specifications by Combining

Parallel Elaborations", IEEE Transactions on Software

Engineering, 15(2), 1989, pp. 198-208

M. Feather, "Requirements Engineering: Getting Right from

Wrong", in Europen Software Engineering Conference,

Springer-Verlag, 1993, pp. 485-488

S. Fickas, "Automating the Analysis Process", in

Proceedings of the 4th International Workshop on Software

Specification and Design, IEEE, Monterrey, 1987, pp.58-67

S. Fickas, and B.R. Helm, "Knowledge Representation and

Reasoning in the Design of Composite Systems", IEEE

Transactions on Software Engineering, 18(6) June 1992,

pp.470-482

A. Finkelstein and C. Potts, "Building Formal Specifications

Using Structured Common Sense", Proceedings of the

International Workshop on Software Specification and

Design, 1987, pp. 108-113

A. Finkelstein, "Reuse of Formatted Requirements

Specifications", in Software Engineering Journal, September

1988, pp. 186-197

A. Finkelstein, J. Krammer, B. Nuseibeh, L. Finkelstein,

and M. Goedicke, "Viewpoints: A Framework for Multiple

Perspectives in System Development", International Journal

of Software Engineering and Knowledge Engineering,

vol. 2 (1), March 1992, pp. 31-57

c.c. Foster, Real Time Programming-Neglected Topics,

Addison-Wesley series 'the joy of computing', 1981

266

[France 92]

[Fraser 91]

[Fraser 94]

[Freeman 87]

[Freeman 89]

[Fuggetta 93]

[Gabrielian 91]

[Gane 79]

[Gehani 86]

[Ghezzi 91]

R.B. France, "Semantically Extended Data Flow Diagrams:

A Formal Specification Tool", IEEE Transactions on

Software Engineering, vo1.18 (4) Apr. 1992, pp. 329-346

M.D. Fraser, K. Kumar, and V.K. Vaishnavi, "Informal

and Fonnal Requirements Specification Languages: Bridging

the Gap", IEEE Transactions on Software Engineering,

vol.17 (5), May 1991, pp. 454-466

M.D. Fraser, K. Kumar, and V.K. Vaishnavi, "Strategies

for Incorporating Formal Specifications in software

Development", Communications of the ACM, vol. 37 (10)

Oct. 1994, pp. 74-86

P. Freeman, Software Perspectives: The System is the

Message, Reading MA: Addison-Wesley, 1987

P. Freeman, in the Foreword to the book, Managing the

Software Process, By W.S. Humphrey, Addison-Wesley

Publishing Company, 1989, pp.v-vi

A. Fuggetta, C. Ghezzi, D. MandrioJi, and A. Morzenti,

"Executable Specifications with Data-flow Diagrams",

Software-Practice and Experience, vol. 23(6), June, 1993,

pp.629-653

A. Gabrielian, and M. Franklin, "Multilevel specification of

real-time systems", Communications of the ACM, 34(5),

1991, pp. 50-60

C.P. Gane and T. Sarson, Structured System Analysis :

Tools and Techniques, Prentice-Hall International,

Englewood Cliffs, NJ, 1979

Software Specification techniques, Edited by N. Gehani,

and A.D. McGettrick, Addison-Wesley Publishing Co.,

1986

C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezze, "A

Unified high-level Petri net Model for Time Critical

267

[Glass 80]

[Glass 83]

[Goldman 80]

[Goldsack 91]

[Gomaa 84]

[Gomaa 86]

[Gordon 79]

[Gorski 89]

[Gougen 92J

Systems", IEEE Transactions on Software Engineering,

17(2), February 1991, pp.160-172

R.L. Glass, "Real-Time: The Last World of Software

Debugging and Testing", Communications of the ACM,

vol. 23(5), May 1980, pp. 264-271

R.L. Glass, Real-Time Software, Prentice-Hall, 1983

N. Goldman and D. Wile, "A relational database foundation

for process specification", in Entity relationship approach to

systems analysis and design, North-Holland, 1980,

pp.413-432

SJ. Goldsack and A.C.W. Finkelstein, "Requirements

engineering for real-time systems", Software Engineering

journal, May 1991, pp. 101-115

H. Gomaa, "A Software Design Method for Real-Time

Systems", Communications of the ACM, 27(9), 1984,

pp.938-984

H. Gomaa, "Software Development of Real-Time Systems",

Communications of the ACM, 29(7), 1986, pp.657-668

M.l.C. Gordon, The Denotational Description of

Programming Languages: An Introduction, Springer-Verlag,

New York, 1979

l. Gorski, "Formal approach to Development of Critical

Computer Applications", Proceedings of the 22nd annual

Hawaii International Conference on System Sciences, 1989,

pp.243-251

1.A. Gougen, "The dry and the wet", Technical Monograph

PRG-IOD, Oxford University Computing Laboratory, March

1992

268

[Gougen 93]

[Gray 91]

[Greenspan 86J

[Greenspan 91]

[Greenspan 94]

[Guinan 86]

[Ha1176]

[Hall 90]

[HareI85]

I.A. Gougen, and C. Linde, "Techniques for Requirements

Elicitation", Proceedings of IEEE Symposium on

Requirements Engineering, San Diego, California, 1993

E.M. Gray and R.H. Thayer, "Requirements", in Aerospace

Software Engineering A Collection of Concepts, Ed. by

C. Anderson and M. Dorfman, Washington: AIAA, 1991

pp.89-121

Sol I. Greenspan, A. Borgida, and J. Mylopoulos, "A

Requirements Modeling Language And Its Logic",

Information Systems, vol. II, (1), 1986, pp. 9-23

Sol Greenspan, "The Scruffy Side of Requirements

Engineering", Lecture Notes in Computer Science-550,

Springer-Verlag, 1991, pp. 492-494

S. Greenspan, I. Mylopoulos, and A. Borgida, "On Formal

Requirements Modelling Languages: RML Revisited", in

Proceedings of the 16th International Conference on

Software Engineering, May 16-21, Sorrento, Italy, 1994,

pp. 135-147

P.I. Guinan, and R.P. Bostrom, "Development of

Computer-Based Information Systems: A Communication

Framework", DataBase, Spring, 1986, pp. 3-16

P. Hall, I. Owlett, and S. Todd, Relations and Entities, in

Modelling in Data-base Management Systems,

(Ed) G.M. Nijssen, North-Holland, 1976, pp.201-220

A. Hall, Seven Myths of Formal Methods, IEEE Software.

7(5), 1990, pp. 11-20

D. Harel and A. PnueH, "On the Development of Reactive

Systems", in K.R. Apt (ed), Logics and Models of

Concurrent Systems, NATO ASI Series F 13,

Springer-Verlag, New York, 1985, pp. 477-498

269

[Hare187]

[Harel92]

[Hatley 87]

[Hayes 87]

[Heitmeyer 83]

[Heitmeyer 93]

[Heninger 80]

[Hilbrook 90]

[Hirschheim 89]

D. Harel, "Statecharts: A Visual Formalism For Complex

Systems", Science of Computer Programming, 8 (1987)

pp.23-274

D. Harel, "Biting the Silver Bullet Toward a Brighter Future

for System Development", IEEE Computer, January 1992,

pp.8-20

D.J. Hatley, and I.A. Pirbhai, Strategies for Real-time

System Specification, Dorset House Publishing New-York,

1987

Ian Hayes (Ed), Specification Case Studies, Prentice-Hall

International, 1987

c.L. Heitmeyer and J.D. Mclean, "Abstract Requirements

Specification: A New Approach and Its Application",IEEE

Transactions on Software Engineering. vol. SE-9, No.5,

September 1983, pp. 580-589

C. Heitmeyer, R. Jeffords, and B. Labaw, itA Benchmark

for Comparing Different Approaches for Specifying and

Verifying Real-Time Systems", in IEEE Workshop on

Real-Time Operating Systems and Software., 1993

K.L. Heninger, "Specifying Software Requirements for

Complex Systems: New Techniques and Their

Applications", IEEE Transactions On Software Engineering,

SE-6 (1), 2-12, Jan 1980

Capt H. Hilbrook III, "A Scenario-Based Methodology for

Conducting Requirements Elicitation", ACM Sigsofl

Software Engineering Notes, vol. 15(1), Jan 1990,

pp.95-104

R.A. Hirschheim, and H.K. Klein, "Four Paradigms of

Information Systems development", Communications oj the

ACM, 32(10), 1989, pp. 1199-1216

270

[Hoare 78]

[Hoare 81]

[Hoare 85]

[Hoare 90]

[Holliday 87J

[Hoogeboom 86J

[Hooper 82]

[Hopcroft 79]

[Hsia 88]

[Humphrey 89]

C.A.R. Hoare, "Communicating Sequential Processes",

Communications of the ACM, 21(8), 1978, pp. 666·677

C.A.R. Hoare, "The Emperor's Old Clothes",

Communications of the ACM, 24(2), February 1981,

pp.75-83

C.A.R. Hoare, Communicating Sequential Processes,

Prentice-Hall International, U.K, 1985

C.A.R. Hoare, "Let's Make Models", in Lecture Notes in

Computer Science-458, Ed. J.C.M. Baeten and J.W. KJop,

CONCUR-90, Theories of Concurrency: Unification and

Extension, Springer-Verlag, 90 pp. 33

M.A. Holliday and M.K. Vernon, "A Generalized Petri Net

Model for Performance Analysis", IEEE Transactions on

Software Engineering, 13(12) December 1987,

pp. 1297-1310

R.I. Hoogeboom and G. Rozenberg, "Infinitary Languages:

Basic Theory And Applications To Concurrent Systems",

Lecture Notes in Computer Science-224, 1986,

Springer-Verlag, pp. 266-342

I.W. Hooper and P. Hsia, "Scenario-Based Prototyping for

Requirements Identification", ACM Sigsoft Software

Engineering Notes, vol. 7 (5), 1982, pp. 88-92

I.E. Hopcroft and J.D. Ullman, Introductlon to Automata

theory, Languages and Computation, Addition-Wesley,

Reading, Mass, 1979

P. Hsia and A.T. Yaung, "Another Approach to system

decomposition: Requirements Clustering", COMPSAC,

1988, pp. 75-82

W.S. Humphrey, Managing the Software Process,

Addison-Wesley Publishing Company, 1989

271

[lnan 88]

[ISO 87]

[Jackson 83]

[Jackson 94]

[Jacob 83]

[Jacobson 92]

[Jaffe 91]

[Jahanian 86]

[Jahanian 87]

[Jahanian 88]

K. lnan and Varaiya, "Finitely Recursive Process Models

for Discrete Event Systems", IEEE Transactions on

Automatic Control vol. 33 (7), July 1988, pp. 626-639

Information Processing systems-Concepts and terminology

for the conceptual schema and the information base,

International Organization for Standardization, 1987,

Ref.No. ISOITR 9007: 1987(E), 1987

M.A. Jackson, System Development, Prentice Hall, 1983

Michael Jackson, "Problems, methods, and specialisation",

Software Engineering Journal, November 1994, pp.249-255

RJ.K. Jacob, Using Formal specifications in the Design of

a Human-computer Interaface, Communication of the A CM,

vol. 26 (4) April 1983 pp. 259-264

I. Jacobson, M. Christerson, P. Jonsson, and

G. Overgaard, Object-Oriented Software Engineering: A Use

Case Driven Approach, Addison Wesley, 1992

M.S. Jaffe, N.G. Leveson, M.P.E. Heimdahl and

B.E. Melhart, "Software Requirements Analysis for

Real-Time Process-Control Systems", IEEE Transactions

On Software Engineering, voU7, No.3, Mar 1991, pp.

241-258

F. Jahanian and A.K. Mok, "Safety Analysis of Timing

Properties in Real-Time Systems", IEEE Transactions on

Software Engineering, SE-12(9), Sept. 1986, pp. 890-904

F. Jahanian and A.K. Mok, "A Graph-Theoretic Approach

For Timing Analysis and its Implementation", IEEE

Transactions on Computers, vol-36, Aug 1987,

pp.961-975

F. Jahanian and D.A. Stuart, "A Method for Verifying

Properties of Modechart Specifications", Proceedings of the

272

[Jahanian 94]

[Jarke 94]

[Jensen 85]

[Jones 90]

[Joseph 92]

[Kaposi 93]

[Kesten 91]

[Koymans 88]

[Koymans 92]

Real-Time Systems Symposium, Dec. 1988 , Huntsville,

pp. 12-21

F. Jahanian and A.K. Mok, "Modechart: A Specification

Language for Real-Time Systems", IEEE Transactions on

Software Engineering, 20(12) December 1994, pp.933

M. Jarke and K. Pohl, "Requirements Engineering in 2001:

(virtually) managing a changing reality", in Software

Engineering Journal, November 1994, pp. 257-266

E. Jensen D. Locke, and H. Tokuda, "A Time-Driven

Scheduling Model for Real-Time Operating Systems",

Proceedings of the 6th Real-Time Systems Symposium,

1985, San Diego, CA, December 1985, pp. 112-122

C.B. Jones, Systematic Software Development using VDM,

Prentice Hall, London, Second Edition, 1990

M. Joseph, "Problems, promises and performance: some

questions for real-time system specification", Lecture Notes

in Computer Science-600, Springer-Verlag 1992,

pp.315-324

A. Kaposi, and I. Pyle, "Systems are not only software",

Software Engineering Journal, January 1993, pp. 31-40

Y. Kesten, and A. Pnueli, "Timed and Hybrid Statecharts

and their Textual Representation", in Lecture Notes in

Computer Science-571, Springer-Verlag, 1991, pp. 591-620

R. Koymans, R. Kuiper and E. Zilstra, "Paradigms for

real-time systems", Proceeding of symposium on Formal

Techniques in Real-Time and Fault Tolerant Systems,

Warwick, U.K. Sept, 1988, Springer-Verlag

R. Koymans, "(Real) Time: A Philosophical Perspective".

Lecture Notes in Computer Science-600, Springer-Verlag

1992, pp. 353-370

273

[Koymans 90]

[Kung 83]

[Kung 89]

R Koymans, "Specifying real-time properties with metric

temporal logic" , Journal of Real-Time systems, 2, 1990

C.H. Kung, An Analysis of Three Conceptual Models with

Time Perspective, in Information systems Design

Methodologies-A Feature Analysis, Ed. by T.W. One et ai,

North-Holland, Amsterdam, 1983

C.H. Kung, "Conceptual Modelling in the Context of

Software Development", IEEE Transactions on Software

Engineering, vol. 15, Oct. 1989, pp. 1176-1187

[Kuo 67] B.C. Kuo, Automatic Control Systems, 2nd Edition,

Prentice-Hall, 1967

[Kurki-Suonio 92] R Kurki-Suonio, "Operational Specification With Joint

Actions: Serializable Databases", Distributed Computing, 6,

1992, pp. 19-37

[Kurki-Suonio 93] R. Kurki-Suonio, K. Systa, and J. Vain, "Real-time

specification and modeling with joint actions", in Science of

Computer Programming, 20, 1993, pp. 113-140

[Kurki-Suonio 94] R Kurki-Suonio, "Real Time: Further Misconceptions (or

Half-Truths)", IEEE Computer, June 1994, pp. 71-76

[Kurshan 87] RP. Kurshan, "Complementing Deterministic Buchi

Automata in Polynomial Time", Journal of Computer

System Sciences, (35), 1987, pp. 59-71

[Kurshan 90]

[Lala 91]

RP. Kurshan, "Analysis of Discrete Event Coordination",

Lecture Notes in Computer Science vol. 430, Stepwise

Refinement of Distributed Systems Models, Formalisms,

Correctness, Ed. J.W. deBakker, W.-P. deRoever and

G. Rozenbeg, Springer-verlag, 1990, pp. 414-453

J.H. Lala, R.E. Harper and L.S. Alger, "A Design

Approach for Ultrareliable Real-Time Systems", IEEE

Computer 1991 pp. 12-22

274

[Lam 90]

[Lamport 77]

[Lamport 78]

[Lamport 83]

[Lamport 89]

[Ledru 93]

[Leveson 83]

[Leveson 86]

[Leveson 87]

[Leveson 90]

[Leveson 91]

S.S. Lam, and A. Udaya Shankar, "A Relational Notation

for State Transition Systems", IEEE Transactions on

Software Engineering, 16(7) July 1990, pp.755-775

L. Lamport, "Proving the correctness of mUltiprocess

programs", IEEE Transactions o/Software Engineering, 3,

1977, pp.125-143

L. Lamport, "Time, Clocks and the Ordering of Events in a

Distributed System", Communication of the ACM, vol. 21

(7), July 1978, pp. 558-565

L. Lamport, "What Good Is Temporal Logic", Proceedings

of IFIP 9th World Computer Congress, 1983, pp. 657-668

L. Lamport, "A Simple Approach to Specify Concurrent

Systems", Communications 0/ the ACM, vol. 32 (1),

January 1989, pp. 32-45

Y. Ledru, "Developing Reactive systems in a VDM

Framework", in Science of Computer Programming, 20,

1993, pp. 51-71

N.G. Leveson and P.R. Harvey, "Software Fault Tree

Analysis", The Journal of Systems and Software, (3) ,

1983, pp. 173-181

N. Leveson, "Software Safety: Why, What and How",

ACM Computer Surveys, 18(2), June 1986 pp. 125-163

Nancy Leveson, and Janice Stolzy, "Safety Analysis Using

Petri Nets", IEEE Transactions on Software Engineering,

vol. 13 (3) March 1987, pp. 386-397

N.G. Leveson, "The Challenge of Building Process-control

Software", IEEE Software, November 1990, pp. 55-62

N.G. Leveson, "Software Safety in Embedded Computer

Systems", Communication of the ACM, Feb. 1991,34 (2),

pp.34-46

275

[Leveson 94]

[Lewis 90]

[Luqi 88J

[Lustman 94]

[Lynch 88]

[Lynch 90J

[Mahony 92]

[Malhotra 80J

[Manna 91]

N.G. Leveson, M.P.E. Heimdahl, H. Hildreth. and

I.D. Reese, "Requirements Specification for Process-control

systems", IEEE Transactions on Software Engineering,

20(9) Sept 1994, pp. 684

Harry Lewis, "A Logic of Concrete Time Intervals", in

proceedings of the 5th annual IEEE Symposium on Logic in

Computer Science, Philadelphia, PA, June, 1990, IEEE

Computer Society Press

Luqi, V. Berzins, and R.T. Yeh, "A Prototyping Language

for Real-Time Software", IEEE Transactions on Software

Engineering, 14(10), 1988, pp.1409-1423

F. Lustman, "Specifying Transaction-Based Information

Systems with Regular Expressions", IEEE Transactions on

Software Engineering, vo1.20, No.3, March 1994,

pp.207-217

Nancy Lynch and Mark Tuttle, "An Introduction to

Input/Output Automata", Technical Report

MITILCSITM-373, MIT, Cambridge, Massachusetts,

Nov. 1988

N. Lynch, and H. Attiya, "Using mappings to prove timing

properties", in Proceedings of the Ninth ACM Symposium

on Principles of Distributed Computing, 1990, pp.265-280

B.P. Mahony and 1.1. Hayes, "A Case-Study in Timed

Refinement: A Mine Pump", IEEE Transactions on Software

Engineering. 18(9). September 1992, pp. 817-826

A. Malhotra, I.M. Carroll, J.e. Thomas, and L.A. Miller,

"Cognitive Processes in Design", International Journal

Man-Machine Studies, vol. 12,1980, pp.l19-140

Z. Manna and A. Pnueli, The Temporal Logic of Reactive

and Concurrent Systems: Specification, Springer-Verlug

1991

276

[McDermid 93]

[McMenamin 84]

[McNaughton 66]

[Mellichamp 83]

[Merlin 76a]

[Merlin 7 6b]

[Merlin 83]

[Meyer 90]

[MIL-STD 84]

[Mok 84]

[Mok 91]

l A. McDermid, "Object Objection Sustained", Proceedings

of Requirements Engineering, 1993, pp. 228

S.M. McMenamin, and IF. Palmer, Essential Systems

Analysis, Englewood Cliffs, NJ: Yourdon Press, 1984

R. McNaughton, "Testing and Generating Infinite

Sequences By a Finite Automaton", Information And

Control, (9), 1966, pp. 521-530

D. Mellichamp, Real Time Computing with Applications to

Data Acquisition and Control, VanNostrand Reinhold, 1983

P.M. Merlin and D.J. Farber, "Recoverability of

Communication Protocols", IEEE Transaction on

Communications, September 1976

P.M. Merlin, "A Methodology for Design And

Implementation of Protocols", IEEE Transaction on

Communications, June 1976, pp. 614-621

P.V. Merlin and G. Bochmann, "On the Construction of

Submodule Specifications and Communication Protocols",

ACM Transactions on Programming Languages and

Systems, vol. 5 (1), January, 1983, pp. 1-25

B. Meyer, Introduction to the Theory of Programming

Languages, Prentice Hall, 1990

MIL-STD-822B System Safety Program Requirements,

Department of Air Force, Government Printing Office,

Washington, USA, March 1984

A.K. Mok, "The Decomposition of Real-Time System

Requirements into Process Models", Proceeding.v of

Real-Time Systems Symposium, 1984 pp. 125-134

A.K. Mok, "Towards Mechanisation of Real-time System

Design", in Foundations of Real-Time Computing: Formal

Specifications and Methods, Kluwer Press, 1991

277

[Moller 89]

[Monarchi 92]

[Mullery 79]

[MyJopoulos 80]

[Nordstrom 84]

[Nuseibeh 94]

[Ogata 90]

[DUe 82]

rOUe 83]

[Ostroff 87]

F. Moller, and C. Tofts, "A Temporal Calculus of

Communicating Systems", Technical Report, University of

Edinburgh, 1989

D.E. Monarchi and OJ. Puhr, "A Research Typology for

Object-Oriented Analysis and Design", Communications of

the ACM, Sept. 1992, vol. 35 (9), pp. 35-47

O.P. Mullery, "CORE-A Method for Controlled

Requirement Specification," 4th International Conference On

Software Engineering, Sept. 17-19, 1979, pp. 126-135

J. Mylopoulos, P.A. Bernstein, and H.K. Wong, "A

Language Facility for Designing Data-Intensive

Applications", ACM Transacations on Database Systems,

5(2), June 1980

B. Nordstrom and J. Smith, "Propositions And

Specifications of Programs in Martin-Lars Type Theory",

BIT, 24(1984) pp. 28-301

B. Nuseibeh, 1. Kramer, and A. Finkelstein, "A Framework

for Expressing the Relationships Between Multiple Views in

Requirements Specification", IEEE Transactions on

Software Engineering, 20(10), October 1994, pp. 760-773

K. Ogata, Modern Control Engineering, 2nd Edition,

Prentice-Hall International, 1990

T.W. OIle, H.O. Sol, and A.A. Verrijn-Stuart (Eds),

Information Systems Design Methodologies: a Comparative

Review, North-Holland, Amsterdam, 1982

T.W. Olle, H.O. Sol, and C.J. Tully (Eds), Information

Systems Design Methodologies: a Feature Analysis,

North-Holland, Amsterdam, 1983

J.S. Ostroff and W.M. Wonham, "Modelling, Specifying

and Verifying Real-Time Embedded Computer Systems",

278

[Ostroff 89]

[Ostroff 92]

[Ould 94J

[Oxford 89J

[Oxford 90]

[Pagan 81J

[Parnas 69]

[Parnas 72J

[Parnas 74]

[Parnas 86]

Proceedings of the Real-Time Systems Symposium, Dec.

1987, pp. 124-132

1.S. Ostroff, Temporal Logic for Real-Time Systems,

Research Studies Press Ltd., Somerset, England, 1989

1.S. Ostroff, "Formal Methods for the Specification and

Design of Real-Time Safety Critical Systems", Journal of

Systems Software, 18, 1992, pp. 33-60

M.A. Ould, "Systems will be people too", Software

Engineering Journal, November 1994, pp. 244-248

The Oxford English Dictionary, Second Edition, Clarendon

Press-Oxford, Prepared by 1.A. Simpson, and

E.S.C. Weiner, 1989

Dictionary of Computing, Oxford, Oxford University Press,

3rd Edition, (Oxford Science Publications), Editors:

V. Illingworth, E.L. Glaser, and I.C. Pyle, 1990

F.G. Pagan, Formal Specification of Programming

Languages: A Panoramic Primer, Prentice-Hall, New

lersey, 1981

D.L. Parnas, "On the Use of Transition Diagrams in the

Design of a User Interface for an Interactive Computer

System ", in proceedings of the 24th A CM Conference, New

York: ACM Press, 1969, pp.379-385

D.L. Parnas, "On the Criteria to be Used in Decomposing

Systems into Modules", Communication of the ACM,

vol. 15, December 1972, pp. 1053-1058

David Parnas, "On A 'Buzzword': Hierarchical Structure",

proceedings of IFIP 74, North-Holland, pp. 336-339

D.L. Parnas, and P.C. Clements, "A Rational Design

Process: How and Why to Fake It ", IEEE Transactions On

279

[Parnas 90]

[Parnas 94]

[Perrow 84]

[Peterson 77]

[Peterson 81]

[Pnueli 77]

[Pnueli 86]

[PohI94]

[Potts 91]

Software Engineering, vol. SE-12, No.2, Feb. 1986,

pp 251-257

D.L. Parnas, J.V. Schouwen, and S.P. Kwan, "Evaluation

of Safety-Critical Software", Communication of the ACM.

33(6) June 1990, pp. 636-648

Y. Wang and D.L. Parnas, "Simulating the Behaviour of

Software Modules by Trace Rewriting", IEEE Transactions

of Software Engineering, 20 (10),1994, pp. 750-759

C. Perrow, Normal Accidents: Living With High Risk

Technologies, Basic Books, New York, USA, 1984

J.L. Peterson "Petri Nets," ACM Computing Surveys.

vol. 9, No.3, September 1977, pp. 223-252

J.L. Peterson, Petri Net Theory And The Modeling of

Systems, Prentice Hall Inc., 1981

A. Pnueli, "The Temporal Logic of Programs". Proceedings

of the 18th IEEE Symposium on foundations of Computer

Science, 1977, pp. 46-77

A. Pnueli, "Applications of Temporal Logic to the

Specification and Verification of Reactive Systems: A

Survey of Current Trends", in Lecture Notes in Computer

Science -244, Springer-Verlag, 1986, pp. 510-584

K. PohI, "The three dimensions of requirements

engineering: a framework and its application", Information

Systems, vol. 19 No.3 1994

C. Potts, "Expediency and Appropriate Technology: An

agenda for requirements engineering research" in the 1990s,

in Lecture Notes in Computer Science-550, Springer-Verlag.

1991, pp. 495-496

280

[Potts 94]

[Pressman 87]

[Pressman 94]

[Raju 94]

[Ramadge 89]

C. Potts, K. Takahashi, and A.I. Ant6n, "Inquiry-Based

Requirements Analysis", IEEE Software, March 1994,

pp.21-32

R.S. Pressman, Software Engineering : A Practitioner's

Approach, Second Edition, McGraw Hill, New York, 1987

R.S. Pressman, Adapted by Darrel Inee, Software

Engineering : A Practitioner's Approach, Third Edition,

European Edition, McGraw Hill, 1994

S.C.V. Raju, and A.C. Shaw, "A Prototyping Environment

for Specifying, Executing and Checking Communicating

Real-Time State Machines", Software Practice and

Experience, 24(2) February 1994, pp. 175-195

P.I. Ramadge, "Some Tractable Supervisory Control

Problems for Discrete event Systems modeled by BUchi

Automata", IEEE Transactions on Automatic Control, vol.

34 (I), January, 1989, pp. 10-19

[Ramamoorthy 78] C.V. Ramamoorthy and H.H. So, "Software Requirements

and Specifications: Status and Perspectives", in Tutorial

Software Methodology, IEEE catalog no. EHO 142-0,

1978, pp. 43-164

[Ramchandani 74] C. Ramchandani, "Analysis of Asynchronous Concurrent

Systems By Timed Petri Nets", Technical Report 120,

Massachussets Institute of Technology, Feb. 1974

[Ramesh 92] B. Ramesh, and V. Dhar, "Supporting Systems

Development Using Knowledge Captured During

Requirements Engineering", IEEE Transactions on Software

Engineering, 18(6), June 1992. pp. 498-510

[Ramesh 93] B. Ramesh. and M. Edwards, "Issues in the Development of

a Requirements Traceability Model", Proceedingl' of IEEE

Symposium on Requirements Engineering, San Diego,

California, 1993

281

[Reisig 85]

[IEEE 87]

[Reubenstein 91]

[Richter 86]

[Riddle 79]

[Rockstrom 83]

[Roman 85]

[Ross 77a]

[Ross 77b]

[Ross 85]

W. Reisig, "Petri nets: An Introduction", in EATCS

Monograph on Theoretical Computer Science, New York,

Springer-Verlag, 1985

"Challenges to Control: A Collective View", Report of the

Workshop held at the University of Santa Barbara,

September 18-19, 1986, IEEE Transactions on Automatic

Control, vol. AC-32(4), April 1987, pp. 275-285

H.B. Reubenstein, and R.C. Waters, "The Requirements

Apprentice: Automated Assistance for Requirements

Acquisition", IEEE Transactions on Software Engineering,

vol. SE- 17, No.3, March 1991. pp. 226-240

c.A. Richter, "An Assessment of Structured Analysis and

Structured Design", SIGSOFT Software Engineering Notes,

11(4), 1986

W.E. Riddle, "An Approach to Software System Behaviour

Description", Computer Languages, vol. 4, 1979, pp. 29-47

A. Rockstrom, and R. Saracco, "SDL-CCm Specification

and Description Language", IEEE Transaction on

Communications, vol. COM-3~ (6), June, 1983,

pp. 1310-1318

G. Roman, "A Taxonomy of Current Issues in

Requirements Engineering", IEEE Computer, April 1985,

pp. 14-22

D.T. Ross and K.E. Schoman Jr., "Structured Analysis for

Requirements Specification", IEEE Transactions on

Software Engineering, vol. SE-3, Jan 1977, pp. 6-15

D.T. Ross, "Structured Analysis (SA): A Language for

Communicating Ideas", IEEE Transactions on Software

Engineering, vol. SE-3, Jan 1977, pp. 16-34

Interview: "Douglas Ross Talks about Structured Analysis",

IEEE Computer, July 1985, pp. 80-88

282

[Rouse 81]

[Ruggles 90]

[Safra 88]

[Sateesh 94a]

[Sateesh 94b]

[Sateesh 94c]

[Sateesh 94d]

[Sateesh 95a]

W.B. Rouse, "Human-Computer Interaction in the Control

of Dynamic Systems", ACM Computing Surveys, (13),

1981, pp. 13-31

C.L.N. Ruggles (Ed), "Formal Methods in Standards" A

Report from the BCS Working Group, Springer-Verlag,

1990

S. Safra, "On The Complexity of ro-automata", 29th Annual

Symposium on foundations of Computer science, October

1988, pp. 319-327

T.K. Sateesh, "Modelling the Temporal Requirements of

Man-Machine Interaction", in proceedings of the 1994

Workshop on Information Technology and Systems (WITS

'94) Vancouver, Canada, December, 1994, pp. 252-261

T.K. Sateesh and P.A.V. Hall, "Eliciting the Requirements

for Process Controlled Systems", in proceedings of the

1994 International Computer Symposium (ICS '94)

Hsinchu, Taiwan, December, 1994

T.K. Sateesh and P.A.V. Hall, "Modelling the

Requirements for Process Controlled Systems", in Software

Quality and Productivity: Theory, Practice, Education and

Training, Edited by Matthew Lee, Ben-Zion Barta and Peter

Juliff, Chapman and Hall, 1994, pp. 88-91

T.K. Sateesh, "Expressing Temporal Requirements of

Man-Machine Interaction", in Integrating Human Factors

with Software Engineering, Ed. by William E. Hefley,

Human Computer Interaction Institute and Software

Engineering Institute, Carnegie Mellon University,

Pittsburgh, 1994, pp. 123-140

T.K. Sateesh, "Real World Model for Real-Time Systems",

in the Requirements Engineering and Knowledge

Engineering track of KAW '95, (Ninth Knowledge

Acquisition Workshop) Banff, Canada.March. 1995.

283

[Sateesh 95b]

[Sateesh 95c]

[Sateesh 95d]

[Scharer 81]

[Scheffer 85]

[Schobbens 93]

[Sennett 89]

[Shaler 88]

[Shankar 93)

[Shaw 92]

T.K. Sateesh, "Conceptual Model for Real-Time Systems: A

Perspective", in proceedings of the 10th Annual ACM

Symposium on Applied Computing (SAC '95). Nashville,

Tennessee, February, 1995

T.K. Sateesh, "Making the Requirements of Process

Controlled Systems Explicit", in proceedings of the 28th

Annual Hawaii International Conference on System Sciences

(HICSS-28) Maui, Hawaii, January, 1995

T.K. Sateesh, "Representing the Conceptual Model of a

Time Critical System", in proceedings of Groningen

Information Technology Conference (GRONICS '95),

Netherlands, February, 1995

Laura Scharer, "Pinpointing Requirements", Datamation,

April 1981, Reprinted in [Thayer 9Oa], pp. 17-34

P.A. Scheffer, A.H. Stone and W.E. Rzepka, "A Case

Study of SREM", IEEE Computer, April 1985, pp. 47-54

P. Schobbens, "Exceptions for algebraic specifications: on

the meaning of 'but"', in Science of Computer

Programming, 20, 1993, pp. 73-111

C. Sennett (Ed), High Integrity Software, Pittman, 1989

S. Shaler and S.J. Mellor, Object-oriented Systems

Analysis, Yourdon Press, 1988

A. Udaya Shankar, "An Introduction to Assertional

Reasoning for Concurrent Systems", ACM Computing

Surveys, 25(3), September, 1993, pp.225-262

A.C. Shaw, "Communicating Real-Time State Machines",

IEEE Transactions on Software Engineering, 18(9),

September 1992, pp. 805-816

284

[Shemer87]

[Shin 1987]

[Sistla 87]

[Smoliar 81]

[Snepscheut 85]

[Sol 83]

[S~lveberg 80]

[Sommerville 92]

[Sommerville 93]

I. Shemer, "Systems Analysis: A Systematic Analysis of a

Conceptual Model", Communication of the ACM. vol. 30.

No.6, June 1987, pp. 506-512

K.G. Shin, "Introduction to Special Issue on Real-Time

Systems," IEEE Transactions on Computers, vol. C-36.

No.8, August 1987, pp.901-902

A.P. Sistla, M.Y. Vardi, and P. Wolper. "The

Complementation Problem for Bilchi automata with

Application to Temporal Logic", Theoretical Computer

Science, 49, 1987, pp. 217-237

S.W. Smoliar, "Operational Requirements Accommodation

in Distributed Systems Design", IEEE Transactions on

Software Engineering, vol. SE-7, (6), Nov. 1981,

pp.531-537

Jan L.A. van de Snepscheut, "Trace Theory and VLSI

Design", Lecture Notes in Computer Science-200,

Springer-Verlag, 1985

H.G. Sol, "A Feature Analysis of Information Systems

Design Methodologies: Methodological Considerations", in

Information Systems Design Methodologies: A Feature

Analysis, (Ed) by T.W. OBe, H.G. Sol, and C.J. Tully.

North-Holland. 1983 pp. 1-8

A. S~lveberg, "A Contribution to the Definition of Concepts

for Expressing User's Information Systems Requirements",

in Entity-Relationship Approach to Systems and Design (Ed.

by P.P. Chen) Elsevier, Amsterdam, 1980, pp. 359-380

I. Sommerville, Software Engineering. Fourth Edition.

Addison-Wesley, Reading, MA, 1992

I. Sommerville, T. Rodden, P. Sawyer, R. Bentley, and

M. Twidale, "Integrating Ethnography into the Requirements

285

[Spivey 88]

[Stankovic 88a]

[Stankovic 88b]

[Stavely 83]

[Stewart 87]

(Stokes 91]

[Taggart 77]

[Taylor 80]

[Taylor 82]

Engineering Process", Proceedings of IEEE Symposium on

Requirements Engineering, San Diego, California, 1993

lM. Spivey, Understanding Z. A Specification Language

and its Formal Semantics, Cambridge Tracts in Theoretical

Computer Science, Cambridge University Press,

Cambridge, England, 1988

l.A. Stankovic and K. Ramamritham, Hard Real-Time

Systems, Computer Society Press of IEEE 1988

J.A. Stankovic, "Misconceptions about Real-Time

Computing: A serious Problem for Next Generation

Systems", IEEE Computer vol. 21 (10), 1988, pp. 10-19

A.M. Stavely, "Modeling and Projection in Software

Development", The Journal of Systems and software,

vol. 3, 1983, pp. 137-146

D.V. Stewart, Software Engineering With Systems Analysis

and Design, Brooks/Cole Publishing Co., Monterey, 1987

D.A. Stokes, Requirements Analysis, in Software

Engineering Reference Book. Ed. By J.A. McDermid,

Butterworth-Heinemann Ltd, 1991

W.M. Taggart Jr., and M.O. Tharp, !fA Survey of

Information Requirements analysis Techniques". A C M

Computing Surveys. 9(4), Dec. 1977. pp.273-290

B. Taylor, "A Method for expressing the Functional

Requirements of Real-Time Systems", [FAC Real-Time

Programming. Austria 1980. pp. 111-120

lR. Taylor, An Integrated Approach to the Treatment of

Design and Specification Errors in Electronic System,o; and

Software, in Electronic Components and Systems,

(Eds). E. Lauger and J. Motoft. North-Holland.

Amsterdam. 1982

286

[Tennent 81]

[Terwilliger 87]

[Thayer 9Oa]

[Thayer 9Ob]

[Thomas 81]

[Tse 91]

[Turski 86]

[Turski 88]

[Vardi 86]

R.D. Tennent, Principles of Programming Languages,

Prentice-Hall International, Inc., 1981

R. Terwilliger and R. Campbell, "PLEASE: A language for

incremental software development", in Proceedings of the

4th International Workshop on Software Specification and

Design, April 1987

R. Thayer and M. Dorfman, Standard, guidelines, and

examples on system and software requirements engineering,

Tutorial, IEEE Computer Society Press, California, 1990.

R. Thayer and M. Dorfman, System and software

requirements engineering, Tutorial, IEEE Computer Society

Press, California, 1990.

W. Thomas, "A Combinatorial Approach to the Theory of

co-Automata", Information and Control, 48, 1981,

pp.261-283

T.H. Tse, and L. Pong, "An Examination of Requirements

Specification Languages", The Computer Journal, 34(2),

1991, pp. 143-152

W.M. Turski, "And No Philosophers' Stone. Either",

Information Processing 86, North-Holland, 1986,

pp.1077 -1080

W.M. Turski. "Time Considered Irrelevant for Real-time

Systems", BIT, 28, 1988 , pp. 473-486

M.Y. Vardi and P. Wolper, "An automata Theoretic

approach to Automatic Program Verification", In

Proceedings of the Symposium on Logic in Computer

Science, Cambridge, June 1986, pp. 322-331

[Verrijn-Stuart 87] A. Verrijn-Stuart, "Themes and Trends in Information

systems: TC8", 1975-1985, Computer Journal, vol. 30 (2).

1987, pp. 97-109

287

[Wang 91]

[Ward 85]

[Ward 86]

[Ward 89]

[Wasserman 79]

[Wasserman 90]

[Welke 92]

[Weyuker 94]

[Wing 88]

Yi Wang, "CCS + Time = an interleaving model for

real-time systems", in ICALP'91. Lecture Notes in

Computer Science-5l0, Springer-Verlag, 1991, pp.217-228

P.T. Ward and S.J. Mellor, Structured Development for

Real-Time Systems, Yourdon Press, 1985

P.T. Ward, "The Transformation Schema: An Extension of

the Data Flow Diagram to Represent Control and Timing",

IEEE Transactions on Software Engineering, vol. SE-12,

1986, pp. 198-210

P.T. Ward, "How to Integrate Object Orientation with

Structured analysis and Design", IEEE Software, March

1989, pp. 74-82

A.I. Wasserman, and S.K. Stintson, "A Specification

Method for Interactive Information Systems", in proceedings

of the Symposium on Specification of Reliable Software,

1979, pp. 68-79

A.I. Wasserman, P.A. Pircher, and R.J. Muller, "The

Object-Oriented Design Notation for Software Design

Representation", IEEE Computer, vo1.23 (3), March 1990,

pp.50-63

R.J. Welke, "The Case Repository: More than Another

Database Application", in Challenges and Strategies for

Research in Systems Development, Ed. by

W.W. Cotterman and J.A. Senn, John-Wiley and Sons Ltd,

1992, pp. 181-218

E. Weyuker, T. Goradia, and A. Singh, "Automatically

Generating Test Data from a Boolean Specification", IEEE

Transactions on Software Engineering, vol. SE-20. No.5.

May 1994, pp. 353-363

J.M. Wing, "A Study of 12 Specifications of the Library

Problem", IEEE Software, July 1988, pp.66-76

288

[Wing 90]

[Wirfs-Brock 90]

[Wirth 77]

[Wirth 95]

[Witrow 80]

[Yeh 84]

[Yourdon 79]

[Y ourdon 90]

[Zave 81]

[Zave 82]

J. Wing, "Specifiers Introduction to Formal Methods", IEEE

Computer 23(9), Sept. 1990, pp. 8-26

R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing

Object-Oriented Software, Prentice-Hall Inc., 1990

N. Wirth, "Towards a Discipline of Real-Time

Programming", Communication of the ACM, Aug. 1977, 20

(8) , pp. 577-583

N. Wirth, "A Plea for Lean Software", IEEE Computer,

February 1995, pp.64-68

G.J. Witrow, The Natural Philosophy of Time, Clarendon

Press, Oxford, 1980

R.T. Yeh, P. Zave, A.P. Conn and G.E. Cole jr.,

"Software Requirements: New Directions and Perspectives,"

in Handbook of Software Engineering edited by C.R. Vick

and C.V. Ramamoorthy, Van Nostrand Reinhold Co. 1984,

pp.519-543

E. Y ourdon and L. Constantine, Structured Design, Prentice

Hall International, Englewood Cliffs, N.J, 1979

E. Yourdon, "Auld Lang Syne", BYTE, October 1990,

pp.257-263

P. Zave and R.T. Yeh, "Executable Requirements for

Embeded Systems", in Proceedings of the 5th International

Workshop on Software Engineering, IEEE New York,

March 1981 pp. 295-304

P. Zave, "An Operational Approach to Requirements

Specification for Embedded Systems", IEEE Transactions

on Software Engineering, vol. SE-8, No.3, May 1982,

pp.250-269

289

[Zave 84]

[Zave 86]

[Zave 91a]

[Zave 91b]

[Zeigler 76]

[Zeigler 84]

P. Zave, "The Operational Versus The Conventional

Approach To Software Development", Communication of

the ACM, Feb. 1984, vol.27, No.2 pp. 104-118

P. Zave and W. Schell, "Salient Features of an Executable

Specification Language and Its Environment", IEEE

Transactions on Software Engineering, vol. SE-12, No.2,

Feb 1986, pp. 312-325

P. Zave, "A Comparison of the Major Approaches to

Software Specification and Design", in System and Software

Requirements vol. 1 , Ed. By R. Thayer and M. Dorfman,

IEEE Computer Society Press, 1990, pp. 199

P. Zave, "An Insider's Evaluation of PAISLey", IEEE

Transactions on Software Engineering, vol. SE-17, No.3,

March 1991, pp. 212-225

B.P. Zeigler, Theory of Modelling and Simulation, Wiley,

New York, 1976

B.P. Zeigler, Multifaceted Modelling and Discrete Event

Simulation, Academic Press, Orlando, Florida, 1984

290

	282122_001
	282122_002
	282122_003
	282122_004
	282122_005
	282122_006
	282122_007
	282122_008
	282122_009
	282122_010
	282122_011
	282122_012
	282122_013
	282122_014
	282122_015
	282122_016
	282122_017
	282122_018
	282122_019
	282122_020
	282122_021
	282122_022
	282122_023
	282122_024
	282122_025
	282122_026
	282122_027
	282122_028
	282122_029
	282122_030
	282122_031
	282122_032
	282122_033
	282122_034
	282122_035
	282122_036
	282122_037
	282122_038
	282122_039
	282122_040
	282122_041
	282122_042
	282122_043
	282122_044
	282122_045
	282122_046
	282122_047
	282122_048
	282122_049
	282122_050
	282122_051
	282122_052
	282122_053
	282122_054
	282122_055
	282122_056
	282122_057
	282122_058
	282122_059
	282122_060
	282122_061
	282122_062
	282122_063
	282122_064
	282122_065
	282122_066
	282122_067
	282122_068
	282122_069
	282122_070
	282122_071
	282122_072
	282122_073
	282122_074
	282122_075
	282122_076
	282122_077
	282122_078
	282122_079
	282122_080
	282122_081
	282122_082
	282122_083
	282122_084
	282122_085
	282122_086
	282122_087
	282122_088
	282122_089
	282122_090
	282122_091
	282122_092
	282122_093
	282122_094
	282122_095
	282122_096
	282122_097
	282122_098
	282122_099
	282122_100
	282122_101
	282122_102
	282122_103
	282122_104
	282122_105
	282122_106
	282122_107
	282122_108
	282122_109
	282122_110
	282122_111
	282122_112
	282122_113
	282122_114
	282122_115
	282122_116
	282122_117
	282122_118
	282122_119
	282122_120
	282122_121
	282122_122
	282122_123
	282122_124
	282122_125
	282122_126
	282122_127
	282122_128
	282122_129
	282122_130
	282122_131
	282122_132
	282122_133
	282122_134
	282122_135
	282122_136
	282122_137
	282122_138
	282122_139
	282122_140
	282122_141
	282122_142
	282122_143
	282122_144
	282122_145
	282122_146
	282122_147
	282122_148
	282122_149
	282122_150
	282122_151
	282122_152
	282122_153
	282122_154
	282122_155
	282122_156
	282122_157
	282122_158
	282122_159
	282122_160
	282122_161
	282122_162
	282122_163
	282122_164
	282122_165
	282122_166
	282122_167
	282122_168
	282122_169
	282122_170
	282122_171
	282122_172
	282122_173
	282122_174
	282122_175
	282122_176
	282122_177
	282122_178
	282122_179
	282122_180
	282122_181
	282122_182
	282122_183
	282122_184
	282122_185
	282122_186
	282122_187
	282122_188
	282122_189
	282122_190
	282122_191
	282122_192
	282122_193
	282122_194
	282122_195
	282122_196
	282122_197
	282122_198
	282122_199
	282122_200
	282122_201
	282122_202
	282122_203
	282122_204
	282122_205
	282122_206
	282122_207
	282122_208
	282122_209
	282122_210
	282122_211
	282122_212
	282122_213
	282122_214
	282122_215
	282122_216
	282122_217
	282122_218
	282122_219
	282122_220
	282122_221
	282122_222
	282122_223
	282122_224
	282122_225
	282122_226
	282122_227
	282122_228
	282122_229
	282122_230
	282122_231
	282122_232
	282122_233
	282122_234
	282122_235
	282122_236
	282122_237
	282122_238
	282122_239
	282122_240
	282122_241
	282122_242
	282122_243
	282122_244
	282122_245
	282122_246
	282122_247
	282122_248
	282122_249
	282122_250
	282122_251
	282122_252
	282122_253
	282122_254
	282122_255
	282122_256
	282122_257
	282122_258
	282122_259
	282122_260
	282122_261
	282122_262
	282122_263
	282122_264
	282122_265
	282122_266
	282122_267
	282122_268
	282122_269
	282122_270
	282122_271
	282122_272
	282122_273
	282122_274
	282122_275
	282122_276
	282122_277
	282122_278
	282122_279
	282122_280
	282122_281
	282122_282
	282122_283
	282122_284
	282122_285
	282122_286
	282122_287
	282122_288
	282122_289
	282122_290
	282122_291
	282122_292
	282122_293
	282122_294
	282122_295
	282122_296
	282122_297
	282122_298
	282122_299
	282122_300
	282122_301
	282122_302
	282122_303
	282122_304
	282122_305
	282122_306

