276 research outputs found

    Sliding mode control of a pneumatic haptic teleoperation system with on/off solenoid valves

    Full text link

    Design, Development, and Evaluation of a Teleoperated Master-Slave Surgical System for Breast Biopsy under Continuous MRI Guidance

    Get PDF
    The goal of this project is to design and develop a teleoperated master-slave surgical system that can potentially assist the physician in performing breast biopsy with a magnetic resonance imaging (MRI) compatible robotic system. MRI provides superior soft-tissue contrast compared to other imaging modalities such as computed tomography or ultrasound and is used for both diagnostic and therapeutic procedures. The strong magnetic field and the limited space inside the MRI bore, however, restrict direct means of breast biopsy while performing real-time imaging. Therefore, current breast biopsy procedures employ a blind targeting approach based on magnetic resonance (MR) images obtained a priori. Due to possible patient involuntary motion or inaccurate insertion through the registration grid, such approach could lead to tool tip positioning errors thereby affecting diagnostic accuracy and leading to a long and painful process, if repeated procedures are required. Hence, it is desired to develop the aforementioned teleoperation system to take advantages of real-time MR imaging and avoid multiple biopsy needle insertions, improving the procedure accuracy as well as reducing the sampling errors. The design, implementation, and evaluation of the teleoperation system is presented in this dissertation. A MRI-compatible slave robot is implemented, which consists of a 1 degree of freedom (DOF) needle driver, a 3-DOF parallel mechanism, and a 2-DOF X-Y stage. This slave robot is actuated with pneumatic cylinders through long transmission lines except the 1-DOF needle driver is actuated with a piezo motor. Pneumatic actuation through long transmission lines is then investigated using proportional pressure valves and controllers based on sliding mode control are presented. A dedicated master robot is also developed, and the kinematic map between the master and the slave robot is established. The two robots are integrated into a teleoperation system and a graphical user interface is developed to provide visual feedback to the physician. MRI experiment shows that the slave robot is MRI-compatible, and the ex vivo test shows over 85%success rate in targeting with the MRI-compatible robotic system. The success in performing in vivo animal experiments further confirm the potential of further developing the proposed robotic system for clinical applications

    A reconfigurable tactile display based on polymer MEMS technology

    Get PDF
    This research focuses on the development of polymer microfabrication technologies for the realization of two major components of a pneumatic tactile display: a microactuator array and a complementary microvalve (control) array. The concept, fabrication, and characterization of a kinematically-stabilized polymeric microbubble actuator (¡°endoskeletal microbubble actuator¡±) were presented. A systematic design and modeling procedure was carried out to generate an optimized geometry of the corrugated diaphragm to satisfy membrane deflection, force, and stability requirements set forth by the tactile display goals. A refreshable Braille cell as a tactile display prototype has been developed based on a 2x3 endoskeletal microbubble array and an array of commercial valves. The prototype can provide both a static display (which meets the displacement and force requirement of a Braille display) and vibratory tactile sensations. Along with the above capabilities, the device was designed to meet the criteria of lightness and compactness to permit portable operation. The design is scalable with respect to the number of tactile actuators while still being simple to fabricate. In order to further reduce the size and cost of the tactile display, a microvalve array can be integrated into the tactile display system to control the pneumatic fluid that actuates the microbubble actuator. A piezoelectrically-driven and hydraulically-amplified polymer microvalve has been designed, fabricated, and tested. An incompressible elastomer was used as a solid hydraulic medium to convert the small axial displacement of a piezoelectric actuator into a large valve head stroke while maintaining a large blocking force. The function of the microvalve as an on-off switch for a pneumatic microbubble tactile actuator was demonstrated. To further reduce the cost of the microvalve, a laterally-stacked multilayer PZT actuator has been fabricated using diced PZT multilayer, high aspect ratio SU-8 photolithography, and molding of electrically conductive polymer composite electrodes.Ph.D.Committee Chair: Allen,Mark; Committee Member: Bucknall,David; Committee Member: Book,Wayne; Committee Member: Griffin,Anselm; Committee Member: Yao,Donggan

    A 3D-Printed Omni-Purpose Soft Gripper

    Get PDF
    Numerous soft grippers have been developed based on smart materials, pneumatic soft actuators, and underactuated compliant structures. In this article, we present a three-dimensional (3-D) printed omni-purpose soft gripper (OPSOG) that can grasp a wide variety of objects with different weights, sizes, shapes, textures, and stiffnesses. The soft gripper has a unique design that incorporates soft fingers and a suction cup that operate either separately or simultaneously to grasp specific objects. A bundle of 3-D-printable linear soft vacuum actuators (LSOVA) that generate a linear stroke upon activation is employed to drive the tendon-driven soft fingers. The support, fingers, suction cup, and actuation unit of the gripper were printed using a low-cost and open-source fused deposition modeling 3-D printer. A single LSOVA has a blocked force of 30.35 N, a rise time of 94 ms, a bandwidth of 2.81 Hz, and a lifetime of 26 120 cycles. The blocked force and stroke of the actuators are accurately predicted using finite element and analytical models. The OPSOG can grasp at least 20 different objects. The gripper has a maximum payload-to-weight ratio of 7.06, a grip force of 31.31 N, and a tip blocked force of 3.72 N

    Toward a Versatile Robotic Platform for Fluoroscopy and MRI-Guided Endovascular Interventions:A Pre-Clinical Study

    Get PDF
    Cardiovascular diseases are the most common cause of death worldwide. Remotely manipulated robotic systems are utilized to perform minimally invasive endovascular interventions. The main benefits of this methodology are reduced recovery time, improvement of clinical skills and procedural facilitation. Currently, robotic assistance, precision, and stability of instrument manipulation are compensated by the lack of haptic feedback and an excessive amount of radiation to the patient. This paper proposes a novel master-slave robotic platform that aims to bring the haptic feedback benefit on the master side, providing an intuitive user interface, and clinical familiar workflow. The slave robot is capable of manipulating conventional catheters and guidewires in multi-modal imaging environments. The system has been initially tested in a phantom cannulation study under fluoroscopic guidance, evaluating its reliability and procedural protocol. As the slave robot has been entirely produced by additive manufacturing and using pneumatic actuation, MR compatibility is enabled and was evaluated in a preliminary study. Results of both studies strongly support the applicability of the robot in different imaging environments and prospective clinical translation

    The Fourteenth Scandinavian International Conference on Fluid Power, SICFP15: Abstracts

    Get PDF
    At this time the conference includes various themes like hybrids, drives, digital hydraulics and pneumatics. Special attention in the program is given for energy efficiency, renewable energy production and energy recovery. They are reflecting well the situation, where environmental issues and energy saving are increasingly important issues
    • …
    corecore