2,313 research outputs found

    Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem

    Get PDF
    We develop a method for the stabilization of mechanical systems with symmetry based on the technique of controlled Lagrangians. The procedure involves making structured modifications to the Lagrangian for the uncontrolled system, thereby constructing the controlled Lagrangian. The Euler-Lagrange equations derived from the controlled Lagrangian describe the closed-loop system, where new terms in these equations are identified with control forces. Since the controlled system is Lagrangian by construction, energy methods can be used to find control gains that yield closed-loop stability. We use kinetic shaping to preserve symmetry and only stabilize systems module the symmetry group. The procedure is demonstrated for several underactuated balance problems, including the stabilization of an inverted planar pendulum on a cart moving on a line and an inverted spherical pendulum on a cart moving in the plane

    Stabilization of mechanical systems using controlled Lagrangians

    Get PDF
    We propose an algorithmic approach to stabilization of Lagrangian systems. The first step involves making admissible modifications to the Lagrangian for the uncontrolled system, thereby constructing what we call the controlled Lagrangian. The Euler-Lagrange equations derived from the controlled Lagrangian describe the closed-loop system where new terms are identified with control forces. Since the controlled system is Lagrangian by construction, energy methods can be used to find control gains that yield closed-loop stability. The procedure is demonstrated for the problem of stabilization of an inverted pendulum on a cart and for the problem of stabilization of rotation of a rigid spacecraft about its unstable intermediate axis using a single internal rotor. Similar results hold for the dynamics of an underwater vehicle

    Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping

    Get PDF
    For pt.I, see ibid., vol.45, p.2253-70 (2000). We extend the method of controlled Lagrangians (CL) to include potential shaping, which achieves complete state-space asymptotic stabilization of mechanical systems. The CL method deals with mechanical systems with symmetry and provides symmetry-preserving kinetic shaping and feedback-controlled dissipation for state-space stabilization in all but the symmetry variables. Potential shaping complements the kinetic shaping by breaking symmetry and stabilizing the remaining state variables. The approach also extends the method of controlled Lagrangians to include a class of mechanical systems without symmetry such as the inverted pendulum on a cart that travels along an incline

    The inverse problem of the calculus of variations and the stabilization of controlled Lagrangian systems

    Get PDF
    We apply methods of the so-called `inverse problem of the calculus of variations' to the stabilization of an equilibrium of a class of two-dimensional controlled mechanical systems. The class is general enough to include, among others, the inverted pendulum on a cart and the inertia wheel pendulum. By making use of a condition that follows from Douglas' classification, we derive feedback controls for which the control system is variational. We then use the energy of a suitable controlled Lagrangian to provide a stability criterion for the equilibrium

    Controlled Lagrangian Methods and Tracking of Accelerated Motions

    Get PDF
    Matching techniques are applied to the problem of stabilization of uniformly accelerated motions of mechanical systems with symmetry. The theory is illustrated with a simple model-a wheel and pendulum system

    Matching in the method of controlled Lagrangians and IDA-passivity based control

    Get PDF
    This paper reviews the method of controlled Lagrangians and the interconnection and damping assignment passivity based control (IDA-PBC)method. Both methods have been presented recently in the literature as means to stabilize a desired equilibrium point of an Euler-Lagrange system, respectively Hamiltonian system, by searching for a stabilizing structure preserving feedback law. The conditions under which two Euler-Lagrange or Hamiltonian systems are equivalent under feedback are called the matching conditions (consisting of a set of nonlinear PDEs). Both methods are applied to the general class of underactuated mechanical systems and it is shown that the IDA-PBC method contains the controlled Lagrangians method as a special case by choosing an appropriate closed-loop interconnection structure. Moreover, explicit conditions are derived under which the closed-loop Hamiltonian system is integrable, leading to the introduction of gyroscopic terms. The λ\lambda-method as introduced in recent papers for the controlled Lagrangians method transforms the matching conditions into a set of linear PDEs. In this paper the method is extended, transforming the matching conditions obtained in the IDA-PBC method into a set of quasi-linear and linear PDEs.\u

    Mechanical Systems with Symmetry, Variational Principles, and Integration Algorithms

    Get PDF
    This paper studies variational principles for mechanical systems with symmetry and their applications to integration algorithms. We recall some general features of how to reduce variational principles in the presence of a symmetry group along with general features of integration algorithms for mechanical systems. Then we describe some integration algorithms based directly on variational principles using a discretization technique of Veselov. The general idea for these variational integrators is to directly discretize Hamilton’s principle rather than the equations of motion in a way that preserves the original systems invariants, notably the symplectic form and, via a discrete version of Noether’s theorem, the momentum map. The resulting mechanical integrators are second-order accurate, implicit, symplectic-momentum algorithms. We apply these integrators to the rigid body and the double spherical pendulum to show that the techniques are competitive with existing integrators

    Controlled Lagrangians and Potential Shaping for Stabilization of Discrete Mechanical Systems

    Get PDF
    The method of controlled Lagrangians for discrete mechanical systems is extended to include potential shaping in order to achieve complete state-space asymptotic stabilization. New terms in the controlled shape equation that are necessary for matching in the discrete context are introduced. The theory is illustrated with the problem of stabilization of the cart-pendulum system on an incline. We also discuss digital and model predictive control.Comment: IEEE Conference on Decision and Control, 2006 6 pages, 4 figure

    Energy Shaping Control of an Inverted Flexible Pendulum Fixed to a Cart

    Full text link
    Control of compliant mechanical systems is increasingly being researched for several applications including flexible link robots and ultra-precision positioning systems. The control problem in these systems is challenging, especially with gravity coupling and large deformations, because of inherent underactuation and the combination of lumped and distributed parameters of a nonlinear system. In this paper we consider an ultra-flexible inverted pendulum on a cart and propose a new nonlinear energy shaping controller to keep the pendulum at the upward position with the cart stopped at a desired location. The design is based on a model, obtained via the constrained Lagrange formulation, which previously has been validated experimentally. The controller design consists of a partial feedback linearization step followed by a standard PID controller acting on two passive outputs. Boundedness of all signals and (local) asymptotic stability of the desired equilibrium is theoretically established. Simulations and experimental evidence assess the performance of the proposed controller.Comment: 11 pages, 7 figures, extended version of the NOLCOS 2016 pape
    corecore